EXHIBIT 119

Walker River Decision Support Tool Groundwater Model Component

Greg Pohll

DST 2.0 Model Components

PRMS models of headwater areas (Supply Side) MODSIM River Basin Management system

Groundwater/Surface Water – One Resource

Stream/Aquifer Interaction

Water table

Shallow aquifer

Phreatophyte ET t t t t t

Deep Water Table

Shallow Water Table

Groundwater Model Construction

- Two groundwater models were built

 Smith Valley
 Mason Valley
- Key inputs
 - o Recharge
 - o Well information
 - o Hydraulic conductivity
 - o Phreatophyte ET
 - Stream and ditch information

Groundwater Model Revisions

- Two groundwater models were built
 - o Smith Valley
 - o Mason Valley
- Key inputs
 - o Recharge
 - o Well information
 - Hydraulic conductivity
 - o Phreatophyte ET
 - Stream and ditch information

Groundwater Model Revisions

- NDOW properties included and ponds simulated using General Head Boundary (GHB package
- Smith Valley model initial conditions adjusted to yield better agreement with measured water levels
- HRU water balance, which includes calculations of groundwater pumping rates is handled in MODSIM

Recharge

Well Information

Hydraulic Conductivity

Iviason

	Zone	Unit	K (m/d)
Mason Valley	1	Upper River	3.76
	2	Lower River	25.0
	3	Younger Alluvium	1.0
	4	Younger Fans	1.0
	5	Older/Burried Alluvium	0.5
	6	Bedrock	0.01
Smith Valley	1	Northwest Sediments	3.0
	2	Northeast Sediments	6.0
	3	Artesia Playa	2.41
	4	West Central Sediments	9.62
	5	West Central above River	1.6
	6	East Central Sediments	1.6
	7	River Gravels	9.62
	8	Southern Sediments	1.6

Smith

Phreatophyte ET

Stream & Ditch Information

- A complete water budget is calculated using the SFR package within MODFLOW for the Walker River and agricultural drains
- Losses from irrigation ditches are handled separately in MODSIM and are treated as a fluid source term in MODFLOW

Mason Valley

RMSE = 3.7 m

Relative Error = 1.98%

Smith Valley

RMSE = 8.8 m

Relative Error = 5%

Stream Gains and Losses

- Warm Colors Losing
- Cool Colors Gaining

Conclusions

- Two groundwater models were constructed for use in the DST
- These models were calibrated, validated, and peer-reviewed
- The models are integrated into the DST to provide groundwater flux information at every time step

