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PREFACE

The methods and guidelines described in this report are designed to promote accuracy when 
simulating complex systems with mathematical models that need to be calibrated, and in which the 
calibration is accomplished using inverse modeling. This report focuses on the implementation of 
the described methods in the computer codes UCODE (Poeter and Hill, 1998) and MODFLOWP 
(Hill, 1992), which perform inverse modeling using nonlinear regression, but the methods have 
been implemented in other codes. The guidelines as presented depend on statistics described in this 
work, but other statistics could be used. Many aspects of the approach are applicable to any model 
calibration effort, even those conducted without inverse modeling. The methods and guidelines 
presented have been tested in a variety of ground-water modeling applications, many of which are 
cited in this report, and are described in the context of ground-water modeling concepts. They are, 
however, applicable to a much wider range of problems.

Second printing, 2001
For the capabilities described in this report, MODFLOWP has been replaced by MODFLOW-
2000. MODFLOW-2000 and  UCODE are available from
http://water.usgs.gov/software/ground_water.html/
MODFLOW-2000 is documented by the following reports:

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-
2000, the U.S. Geological Survey modular ground-water model, User’s guide to the 
Modularization concepts and the Ground-Water Flow Process: U.S. Geological 
Survey Open-File Report 00-92, 121 p. 

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, Documentation of 
MODFLOW-2000, the U.S. Geological Survey modular ground-water model, User’s 
guide to the Observation, Sensitivity, and Parameter-Estimation Process and three 
post-processing programs: U.S. Geological Survey Open-File Report 00-184, 209 p. 

Anderman, E.R. and Hill, M.C., 2000, Documentation of MODFLOW-2000, the U.S. 
Geological Survey modular ground-water model, the Hydrogeologic Unit Flow (HUF) 
Package: U.S. Geological Survey Open-File Report 00-342, 89p. 
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METHODS AND GUIDELINES FOR EFFECTIVE 
MODEL CALIBRATION

____________________________________

By Mary C. Hill
____________________________________

ABSTRACT

This report documents methods and guidelines for model calibration using inverse model-
ing. The inverse modeling and statistical methods discussed are broadly applicable, but are present-
ed as implemented in the computer programs UCODE, a universal inverse code that can be used 
with any application model, and MODFLOWP, an inverse code limited to one application model. 
UCODE and MODFLOWP perform inverse modeling, posed as a parameter-estimation problem, 
by calculating parameter values that minimize a weighted least-squares objective function using 
nonlinear regression. Minimization is accomplished using a modified Gauss-Newton method, and  
prior, or direct, information on estimated parameters can be included in the regression. Inverse 
modeling in many fields is plagued by problems of instability and nonuniqueness, and obtaining 
useful results depends on (1) defining a tractable inverse problem using simplifications appropriate 
to the system under investigation and (2) wise use of statistics generated using calculated sensitiv-
ities and the match between observed and simulated values, and associated graphical analyses.  
Fourteen guidelines presented in this work suggest ways of constructing and calibrating models of 
complex systems such that the resulting model is as accurate and useful as possible.

INTRODUCTION

Problem
In many fields of science and engineering, mathematical models are used to represent com-

plex processes. Commonly, quantities simulated by the mathematical model are more readily mea-
sured than are model input values, and model calibration is used to construct a model and estimate 
model input values. In model calibration, various parts of the model, including the value of model 
input values, are changed so that the measured values (often called observations) are matched by 
equivalent simulated values, and, hopefully, the resulting model accurately represents important 
aspects of the actual system.

The model inputs that need to be estimated are often distributed spatially and(or) temporal-
ly, so that the number of parameter values could be infinite. The number of observations, however, 
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generally is limited and able to support the estimation of relatively few model input values. Ad-
dressing this discrepancy is one of the greatest challenges faced by modelers in many fields. Gen-
erally a set of assumptions are introduced that allows a limited number of values to be estimated, 
and these values are used to define selected model inputs throughout the spatial domain or time of 
interest. In this work, the term "parameter" is reserved for the values used to characterize the model 
input.  Alternatively, some methods, such as those described by Tikhonov (1977) typically allow 
more parameters to be estimated, but these methods are not stressed in the present work.

Not surprisingly, formal methods have been developed that attempt to estimate parameter  
values given some mathematically described process and a set of relevant observations. These 
methods are called inverse models, and they generally are limited to the estimation of parameters 
as defined above. Thus, the terms "inverse modeling" and "parameter estimation" commonly are 
synonymous, as in this report.

For some processes, the inverse problem is linear, in that the observed quantities are linear 
functions of the parameters. In many circumstances of practical interest, however, the inverse prob-
lem is nonlinear, and solution is much less straightforward than for linear problems. This work dis-
cusses methods for nonlinear inverse problems.

Despite their apparent utility, inverse models are used much less than would be expected, 
with trial-and-error calibration being much more commonly used in practice. This is partly because 
of difficulties inherent in inverse modeling technology. Because of the complexity of many real 
systems and the sparsity of available data sets, inverse modeling is often plagued by problems of 
insensitivity, nonuniqueness, and instability. Insensitivity occurs when the observations do not 
contain enough information to support estimation of the parameters. Nonuniqueness occurs when 
different combinations of parameter values match the observations equally well. Instability occurs 
when slight changes in, for example, parameter values or observations, radically change inverse 
model results. All these problems are exacerbated when the inverse problem is nonlinear.

Though the difficulties make inverse models imperfect tools, recent work has clearly dem-
onstrated that inverse modeling provides capabilities that help modelers take greater advantage of 
their models and data, even when the systems simulated are very complex. The benefits of inverse 
modeling include (1) clear determination of parameter values that produce the best possible fit to 
the available observations; (2) diagnostic statistics that quantify (a) quality of calibration, (b) data 
shortcomings and needs, (3) inferential statistics that quantify reliability of parameter estimates 
and predictions; and (4) identification of issues that are easily overlooked during non-automated 
calibration. Quantifying the quality of calibration, data shortcomings and needs, and confidence in 
parameter estimates and predictions are important to communicating the results of modeling stud-
ies to managers, regulators, lawyers, and concerned citizens, as well to the modelers themselves. 
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Purpose and Scope
This report describes the theory behind inverse modeling and guidelines for its effective ap-

plication. It is anticipated that the methods discussed will be useful in many fields of the earth sci-
ences, as well as in other disciplines. The expertise of the author is in the simulation of ground-
water systems, so the examples presented in this report all come from this field, which is charac-
terized by three-dimensional, temporally varying systems with a high degree of spatial variability 
and sparse data sets. 

For convenience, the methods and guidelines are presented in the context of the capabilities 
of specific inverse models. The models chosen are UCODE (Poeter and Hill, 1998) and MOD-
FLOWP (Hill, 1992). These models were chosen because they were designed using the methods 
and guidelines described in this report, and because UCODE is a universal inverse code with broad 
applicability, and MODFLOWP  is an inverse code programmed using the most accurate methods 
available for calculation of sensitivities. 

The report is dominated by sections on methods and guidelines of inverse modeling using 
nonlinear regression. Because computer execution time is nearly always of concern in inverse 
modeling, a section is dedicated to issues related to this problem. There have been a number of field 
applications using the methods and guidelines presented in this report, and these are listed. Finally, 
a section is devoted to the use of the guidelines with inverse models with capabilities that differ 
from those of UCODE and MODFLOWP.

Previous Work
The methods presented are largely derived from Hill (1992) and Cooley and Naff (1990) 

and references cited therein. Various aspects of the suggested guidelines have a long history, and 
relevant references are cited when the guidelines are presented. To the author’s knowledge, no sim-
ilar set of guidelines that provide as comprehensive a foundation as those presented here have been 
presented elsewhere.

Acknowledgments
The author would like to acknowledge the following colleagues and students for insightful 

discussions and fruitful collaborations: Richard L. Cooley, Richard M. Yager, Claire Tiedeman, 
Frank D’Agnese, and Ned Banta of the U.S. Geological Survey, Eileen P. Poeter of the Colorado 
School of Mines, Evan R. Anderman of ERA Ground-Water Modeling, LLC, Heidi Christiansen 
Barlebo of the Geological Survey of Denmark and Greenland, and Steen Christensen of Aarhus 
University, Denmark. In addition, thought-provoking questions from students and MODFLOWP 
users throughout the years have been invaluable. 
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GUIDELINES FOR EFFECTIVE MODEL CALIBRATION
A clear, thorough discussion of an entire modeling protocol is presented by Anderson and 

Woessner (1992, p. 4-9). The guidelines presented here fit into that protocol, enhancing the cali-
bration, prediction, and uncertainty analysis phases, and emphasizing the testing of different con-
ceptual models. Preliminary steps of the protocol include identifying the purpose of the model and 
selecting or programming a model with the appropriate capabilities, and the guidelines presented 
in this work assume these have been accomplished.

Ideally, the model is constructed and the data are collected with the purpose of the model 
in mind, with the evolving model used to guide data collection efforts. Formally using the model 
in these effort is complicated because, as noted by Sun (1994, p. 210), there is an inherent difficulty 
associated with the optimal design of experiments for nonlinear problems, i.e., the solution of op-
timal design depends on the values of the unknown parameters.  In addition, in the three-dimen-
sional, transient problems common to many fields, evolution of the conceptual models may be 
significant, and new data may challenge previous conceptual models, as well as change the opti-
mized parameter values. Sun (1994) presents some elegant methods of addressing this problem; 
those presented here tend to be simpler, and, in some circumstances, may serve as preliminary steps 
to a more sophisticated evaluation. 

To ensure that a reasonably accurate model is used to guide data collection, the guidelines 
presented in this work do not suggest using the model to evaluate potential new data or to formally 
consider the desired prediction until Guidelines 12 and 14, respectively. This is not intended to di-
minish the importance of considering these issues throughout data collection and model develop-
ment, but to provide steps by which the available data can be used to develop a model that is as 
accurate as possible for each phase of the analysis. Once a reasonable model is developed, it may 
be used to visit previously considered guidelines. Thus, the guidelines are not intended to be fol-
lowed sequentially once, but may be repeated many times during model calibration.

The guidelines are summarized in table 1 and are explained further in the text. The guide-
lines are presented in the context of ground-water model calibration, but are applicable to other 
fields. Many aspects of the approach have had a long history in a variety of fields. The idea of start-
ing simple and building complexity, emphasized in guideline 1, is discussed by Parker (1994), 
among others. The principle of parsimony and some of the other characteristics have been dis-
cussed or used by Cooley and others (1986), Constable and others (1987), Cooley and Naff (1990) 
and Parker (1994). Most of the graphical analyses of Guideline 8 were suggested for application to 
ground-water problems by Cooley and Naff (1990), as derived from Draper and Smith (1981). The 
approach developed by Hill and others (1998) is close to the approach presented here, and they test 
the approach using a complex synthetic test case.  Simple synthetic test cases are used to demon-
strate many aspects of the approach in Poeter and Hill (1996, 1997).
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. 

Table 1: Guidelines for effective model calibration

Guideline Description

1. Apply the 
principle of 
parsimony

Start simple and add complexity as warranted by the hydrogeology and the inabil-
ity of the model to reproduce observations.

2. Use a broad 
range of 
information to 
constrain the 
problem 

For example, in ground-water model calibration, use hydrology and hydrogeology 
to identify likely spatial and temporal structure in, for example, areal recharge and 
hydraulic conductivity, and use this structure to limit the number of parameters 
needed to represent the system. Do not add features to the model to attain model fit 
if they contradict other information about the system.

3. Maintain a 
well-posed, 
comprehensive 
regression 
problem

a) Define parameters based upon their need to represent the system, within the 
constraint that the regression remains well-posed. Accomplish this using compos-
ite scaled sensitivities (cssj) and parameter correlation coefficients. 
b) Maintain a comprehensive model in which as many aspects of the system as 
possible are represented by parameters, and as many parameters as possible are 
estimated simultaneously by regression.

4. Include many 
kinds of data as 
observations in 
the regression

Adding different kinds of data generally provides more information about the sys-
tem. In ground-water flow model calibration, it is especially important to provide 
information about flows. Hydraulic heads simply do not contain enough informa-
tion in many circumstances, as indicated by the frequency with which extreme val-
ues of parameter correlation coefficients occur when using only hydraulic heads.

5. Use prior 
information 
carefully

a) Begin with no prior information to determine the information content of the 
observations.
b) Insensitive parameters (parameters with small composite scaled sensitivities) 
can be included in regression using prior information to maintain a well-posed 
problem, but during calibration it often is advantageous to exclude them from the 
regression to reduce execution time. Include these parameters for Guidelines 13 
and 14.
c) For sensitive parameters, do not use prior information to make unrealistic opti-
mized parameter values realistic. 

6. Assign weights 
which reflect 
measurement 
errors

Initially assign weights to equal , where  is the best available 
approximation of the variance of the error of the ith measurement 
(This is for a diagonal weight matrix; see text for full weight matrix.)

7. Encourage 
convergence by 
making the model 
more accurate

Even when composite scaled sensitivities and correlation coefficients indicate that 
the data provide sufficient information to estimate the defined parameters, nonlin-
ear regression may not converge. Working to make the model represent the system 
more accurately obviously is beneficial to model development, and generally 
results in convergence of the nonlinear regression. Use model fit and the sensitivi-
ties to determine what to change.

1 σi
2⁄ σi

2
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From the perspective of stochastic inverse methods, the approach presented here can be 
thought of as a strategy to approximate the mean, or effective, values. Stochastic methods generally 
require that the mean of any spatially distributed quantity, such as hydraulic conductivity, be con-
stant or a simple function. Unfortunately, geologic media often defy these limitations. The method 
presented here can be used to test whether the mean is constant, and, if not, to provide an estimate 
of what could be a very complex spatial distribution, often with sharp contrasts. Once these large-

8. Evaluate model 
fit

Use the methods discussed in the sections "Statistical Measures of Model Fit" and 
"Graphical Analysis of Model Fit and Related Statistics".

9. Evaluate 
optimized 
parameter values

a) Unreasonable estimated parameter values could indicate model error. 
b) Identify parameter values that are mostly determined based on one or a few 
observations using dimensionless scaled sensitivities and influence statistics.
c) Identify highly correlated parameters.

10. Test 
alternative models

Better models have three attributes: better fit, weighted residuals that are more ran-
domly distributed, and more realistic optimal parameter values.

11. Evaluate 
potential new data 

Use dimensionless scaled sensitivities, composite scaled sensitivities, parameter 
correlation coefficients, and one-percent scaled sensitivities. These statistics do 
not depend on model fit or, therefore, the possible new observed values.

12. Evaluate the 
potential for 
additional 
estimated 
parameters

Use composite scaled sensitivities and parameter correlation coefficients to iden-
tify system characteristics for which the observations contain substantial informa-
tion. These system characteristics probably can be represented in more detail using 
additional estimated parameters.

13. Use 
confidence and 
prediction 
intervals to 
indicate parameter 
and prediction 
uncertainty.

a) Calculated intervals generally  indicate the minimum likely uncertainty. 
b)  Include insensitive and correlated parameters, perhaps using prior information, 
or test the effect of excluding them.
c) Start by using the linear confidence intervals, which can be calculated easily.  
d) Test model linearity to determine how accurate these intervals are likely to be. 
e) If needed and as possible, calculate nonlinear intervals (This is not supported in 
the present versions of UCODE and MODFLOWP). 
f) Calculate prediction intervals to compare measured values to simulated results.
g) Calculate simultaneous intervals if multiple values are considered or the value is 
not completely specified before simulation.

14. Formally 
reconsider the 
model calibration 
from the 
perspective of the 
desired 
predictions

Evaluate all parameters and alternative models relative to the desired predictions 
using prediction scaled sensitivities (pssj), confidence intervals, composite scaled 
sensitivities, and parameter correlation coefficients.

Table 1: Guidelines for effective model calibration

Guideline Description



37

scale variations are established, it may be useful to use stochastic methods to assess the influence 
of smaller scale variations. To date, methods of determining large-scale variations, such as those 
described in this work, and methods of charaterizing small-scale variations, such as stochastic 
methods, have been integrated very little, and this is an area for future research.

Guideline 1: Apply the principle of parsimony
Using the principle of parsimony, the model is kept as simple as possible while still ac-

counting for the system processes and characteristics evident in the observations and while respect-
ing other information about the system. In many fields, including ground-water hydrology, the 
known complexities of the systems being simulated often seem overwhelming, and being parsimo-
nious in model development can require substantial restraint. 

It is important to apply the principle of parsimony to various aspects of model construction 
and calibration. For example, it is important to use a mathematical model that is only as complex 
as is needed for the system being considered, or which is designed such that unneeded capabilities 
do not add complexity. It also is important to investigate the processes and characteristics that are 
likely to be most dominant first and add processes or complexity gradually, always testing the im-
portance of the added complexity to the observations available for model calibration and the pre-
dictions of interest. For inverse modeling, it is important to begin calibration estimating very few 
parameters that together represent most of the features of interest and to increase the complexity 
of the parameterization slowly. The remaining guidelines suggest methods for accomplishing this.

Guideline 2: Use a broad range of information to constrain the problem 
 In most fields, there is information about the modeled system that cannot, given present 
methods, be directly included as observations in the regression. Effective use of this information 
can mean the difference between a parsimonious model that represents the system well and a par-
simonious model that produces nonsense. 

For example, if a ground-water model is to have any credibility, it must respect what is 
known about the hydrology and hydrogeology. Using hydrogeologic data to constrain model cali-
bration is practical in many cases. Most ground-water problems consider relatively shallow geo-
logic systems, and there is often substantial geologic data. This is in contrast to many fields of 
geophysics and other Earth sciences in which the depth of the region of interest precludes being 
able to constrain the calibration much with the known geology. Often, it is geologic data that allows 
useful well-posed ground-water inverse models to be developed, as suggested in guideline 3. Hy-
drogeologic data often indicate that sharp contrasts probably occur in the hydraulic-conductivity 
distribution, which need to be represented to simulate the ground-water system and which cannot 
usually be represented well by, for example, most geostatistical methods. A good example of using 
hydrologic and hydrogeologic data in ground-water flow model development of an incredibly com-
plex system using geoscientific information systems (GSIS) is described by D’Agnese and others 
(1996, 1998, and in press). The GSIS approach can be described as a fully three-dimensional GIS 
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that is able to represent common geologic relationships such as faults and sequential layering. Oth-
er approaches have been suggested by Poeter and McKenna (1995), McKenna and Poeter (1995) 
and Eppstein and Dougherty (1996). This is an area ripe for further development.

There will inevitably be some overlap in the information used to constrain a problem as de-
scribed in this guideline, and information used as prior information on parameters as discussed in 
Guideline 5. For example, the results of hydraulic tests may be used to determine that two hydro-
geologic units have similar hydraulic-conductivity values and probably can be combined to form 
one parameter in the regression, producing what may be an important constraint on the problem. 
Later, the same results may be used to determine a prior information value for the combined or in-
dividual hydrogeologic units.

Guideline 3: Maintain a well-posed, comprehensive regression problem
A well-posed regression problem is one that will converge to an optimal set of parameter 

values given reasonable starting parameter values. Given commonly available data, the require-
ment of maintaining a well-posed regression produces rather simple models with relatively few es-
timated parameters. Often, however, it is this simple level of  model complexity that can be 
supported by the data based on regression methods. Thus, determining the greatest possible level 
of model complexity while maintaining a well-posed regression can be thought of as an objective 
analysis of the information provided by the data. Prior information can be used to support addition-
al complexity (See Guideline 5). Developing simplifications that produce a meaningful model is 
difficult and requires the constraints discussed in Guideline 2. 

Hydrologic and hydrogeologic information, and composite scaled sensitivities and param-
eter correlation coefficients, can be used to define parameters and to decide which parameters to 
estimate using regression. Composite scaled sensitivities and parameter correlation coefficients are 
well-suited for this purpose because they depend only on the sensitivities and are independent of 
the actual values observed. Evaluated for the starting parameter values, they can be used to deter-
mine what sets of parameters are likely to be estimated given a model and a set of observations 
(Anderman and others, 1996), as described in the following paragraphs. 

If some parameters have composite scaled sensitivities that are less than about 0.01 times 
the largest composite scaled sensitivity, it is likely that the regression will have trouble converging. 
Often, it is useful to plot the composite scaled sensitivities as a bar chart, as in D’Agnese and others 
(1996,1998, in press) and Barlebo and others (1996; in press). The bar chart for starting parameter 
values used by D’Agnese and others (1998) shown in figure 3 indicates that the K4 and RCH pa-
rameters are likely to be easy to estimate by regression with this model, while the ANIV1 and ETM 
parameters are not. In general, it appears that the available observations contain substantial infor-
mation about K (hydraulic conductivity) and RCH (areal recharge) parameters, and less informa-
tion about ANIV (vertical anisotropy) and ETM (maximum evapotranspiration) parameters. 
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Composite scaled sensitivities were calculated often during model clibration and were used to de-
termine what new parameters to introduce, and whether previously excluded parameters should be 
included. The composite-scaled sensitivities for the final model are shown in figure 4. Note that 
there are more K (hydraulic conductivity) and RCH (recharge) parameters, and that most of these 
were estimated by regression. This is consistent with the initial evaluation that the data contained 
substantial information for these types of parameters. There is one new type of parameter: GHB, 
which represents the hydraulic conductivity of the head-dependent boundary conditions being used 
to represent ground-water supported springs. None of the GHB parameters were estimated in the 
regression in the final model because they tended to produce a good match solely to the flow of the 
spring or set of springs at which they were applied, and any error in the spring flow measurement 
would be fit by the model through adjustment of the GHB parameters. Instead, their values were 
determined based primarily on hydrogeologic arguments.

Parameter correlation coefficients indicate whether the estimated parameter values are like-
ly to be unique. For the parameters of figures 3 and 4, all correlation coefficients were less than 
0.95, suggesting that uniqueness was not a problem. A situation in which uniqueness was a prob-
lem is presented by Anderman and others (1996), as displayed in figure 5.  Figure 5 shows corre-
lation coefficients calculated for initial parameter values for the same five parameters of the same 
model for three sets of observation data: (1) hydraulic heads only, (2) hydraulic heads and a lake 
seepage value, and (3) hydraulic heads, lake seepage, and an advective-travel observation. Figure 
5 clearly shows that with only hydraulic heads (data set 1), all parameters are completely correlated 
(the absolute values of all correlation coefficients equal 1.0), so that any parameter estimates found 
by the regression are not unique. Adding one lake seepage measurement (data set 2) reduced cor-
relations some, but only the data set including the advective-travel observation (data set 3) was suf-
ficient to uniquely estimate all of the parameters.
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Figure 3:  Composite scaled sensitivities for parameters of the initial Death Valley regional ground-
water flow  system model of D’Agnese and others (1998, in press). K* are hydraulic-
conductivity parameters, ANIV* are vertical anisotropy parameters, RCH is an areal re-
charge parameter, and ETM is a maximum evapotranspiration parameter.

Figure 4:  Composite scaled sensitivities for the parameters of the final calibrated Death Valley re-
gional ground-water system model of D’Agnese and others (in press). K* are hydraulic-
conductivity parameters, ANIV* are vertical anisotropy parameters, RCH is an areal re-
charge parameter, ETM is a maximum evapotranspiration parameter, and GHB* are pa-
rameters related to the conductance of head-dependent boundaries used to represent 
springs. Parameters estimated by regression have black bars; parameters defined but not 
estimated by regression have grey bars.
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Figure 5:  Parameter correlation coefficients for the same five parameters for three data sets from 
the Cape Cod sewage plume model of Anderman and others (1996), evaluated for the 
initial parameter values. Data set 1 includes only hydraulic heads, and all parameters are 
extremely correlated (the absolute value of all correlation coefficients equals 1.0). Data 
set 2 includes hydraulic heads and one flow observation, and many parameter pairs are 
still extremely correlated; data set 3 also contains an advective-travel observation, which 
reduced correlation considerably.

Figure 6:  Correlation of parameters T1 and T2 of figure 1 at specified parameter values, plotted 
on a log10 weighted least-squares objective function surface. T1 and T2 are in square 
meters per day. (from Poeter and Hill, 1997)

Two concerns about using calculated correlation coefficients exist: the effects of model 
nonlinearity and inaccurate calculated senstivities. The first of these also affects composite scaled 
sensitivities. 

The nonlinearity of inverse problems can make composite scaled sensitivities and correla-
tion coefficients quite different for different sets of parameter values. Figure 6 demonstrates this 
for correlation coefficients calculated for the simple test case from figure 1. This figure shows that 
though there is a distinct minimum to this objective function surface, so that the parameters can 
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clearly be estimated uniquely, correlation coefficients close to 1.0 are calculated for some sets of 
parameter values. For most sets of parameter values, however, the values are significantly less that 
1.0, correctly indicating that unique parameter values can be estimated. Thus, in this problem, the 
misleading results can be detected by calculating correlation coefficients for several sets of param-
eter values.

The effects of both nonlinearity and scaling by the parameter value also make composite 
scaled sensitivities different for different sets of parameter values. If the differences that occur for 
a reasonable range of parameter values are too extreme, composite scaled sensitivities are inade-
quate for the purposes they serve in the guidelines. Their utility can be tested by calculating values 
for several sets of parameter values. They have been useful in many ground-water flow and trans-
port problems (Christiansen and others, 1995, Anderman and others, 1996; D’Agnese and other, 
1996, 1988; Barlebo and others, 1996; Poeter and Hill, 1997; Hill and others, 1998). 

The second concern about calculated correlation coefficients is that they can be substantial-
ly affected by sensitivities that are accurate to less than about four or five significant digits (O. Os-
terby, Aarhus University, Denmark, written commun., 1997). This is a more serious issue for 
UCODE, in which the sensitivities are calculated by less accurate difference methods, and can oc-
cur even when the more accurate central difference method is used to calculate sensitivities. It is 
important, therefore, to follow the suggestions provided in the UCODE documentation (Poeter and 
Hill,1998) to enhance sensitivity accuracy. Inaccurate sensitivities are less of a problem for MOD-
FLOWP, which uses the sensitivity-equation method to calculate sensitivities.

UCODE and MODFLOWP calculate and print correlation coefficients and composite 
scaled sensitivities for the final parameter values of any run, whether the regression converges or 
not. Composite scaled sensitivities also can be printed at initial and intermediate parameter-esti-
mation iterations.
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Guideline 4: Include many kinds of data as observations in the regression
 Guideline 4 stresses the importance of using as many kinds of observations as possible. For 
example, in ground-water flow problems, it is important to augment commonly available hydrau-
lic-head observations with flow observations. The latter serve to constrain solutions much more 
than the relatively easy to fit hydraulic heads and, therefore, using observations that reflect the rate 
and(or) direction of ground-water flow tends to promote the development of more accurate models.  
MODFLOWP supports many types of observations relevant to ground-water flow problems, such 
as hydraulic heads, temporal changes in hydraulic head, streamflow gains and losses, and advective 
travel (Hill, 1992; Anderman and Hill, 1997). An advantage of UCODE is that it allows any quan-
tity to be used as an observation for which a simulated equivalent value is printed in any application 
model output file, or for which a simulated equivalent value can be calculated from the values 
printed in any application model output file. A detailed analysis of the importance of different types 
of observations and how to conduct such an analysis is presented by Anderman and others (1996).

In some circumstances, it may appear that guideline 4 could be addressed by using con-
toured values to increase the number of observations. In a ground-water example, Neuman (1982), 
Clifton and Neuman (1982), Neuman and Jacobson (1984), and Carrera and Neuman (1986) used 
kriging to interpolate hydraulic-head measurements to generate hydraulic heads used in the regres-
sion. When kriging is used, the associated kriging variances and variogram can be used to calculate 
the variance-covariance matrix on hydraulic-head observation errors needed to calculate the 
weighting. The advantage of interpolation methods is that more hydraulic-head values are avail-
able for the regression. As shown by Cooley and Sinclair (1976) and noted by Hill (1992), the dis-
advantage of interpolation methods is that the interpolated hydraulic heads are not based on the 
physics of ground-water flow, so that interpolated values generally do not respect the underlying 
processes represented in the model. This problem can be severe if aquifer properties change rapidly 
because the interpolation method would tend to make the ‘observed’ hydraulic-head distribution  
unrealistically smooth. Use of interpolated values in the regression procedure produces correlation 
between the errors, so use of a full weight matrix may be important. These problems are avoided 
if the observations are used directly in the regression.

Guideline 5: Use prior information carefully
Using prior information allows direct measurements of model input values to be included 

in the regression.  Prior information is treated differently than observations in this work because 
relevant observations generally can be measured more accurately than model-input values. Indeed, 
that is the most fundamental characteristic of the problems considered in this work.  If the measure-
ments of the model input values were accurate and applicable to the scale of the model, model cal-
ibration would be unnecessary or less important.  Thus, it is suggested that the generally more 
accurate observations be emphasized more than the relatively less accurate prior information. Prior 
information takes on an important, but less central role in the suggested methodology. For prob-
lems with more accurate prior information, the prior information might be treated more like the ob-
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servation data are treated here.

Initially omitting prior information on parameters from the regression encourages under-
standing of the information directly available from the observations. Two reasons generally would 
motivate the use of prior information. First, if the sensitivity for a parameter is low, as indicated by 
a small composite scaled sensitivity, regression including the parameter often will not converge. 
Two possibilities generally exist:  specify prior information on the parameter or set the parameter 
value so that it is not changed during the regression (which is roughly equivalent to prior informa-
tion with a very large weight). Specifying prior information usually will result in a parameter esti-
mate that is close to the value specified in the prior information, so that the estimate will be equal 
or close to the prior value regardless of which option is chosen. Execution time is less when the 
parameter value is set because this eliminates the need to calculate sensitivities for the parameter, 
so it is suggested that this option be followed for model calibration. This will continue to be the 
best option as long as the parameter remains insensitive, which can be checked during calibration 
by occasionally calculating composite scaled sensitivities for the estimated parameters and the pa-
rameter in question. An exception to this guideline occurs when the user purposely defines more 
parameters than can be directly supported by the data to represent suspected system complexity, 
and this generally requires substantial use of prior information to obtain a well-posed regression 
problem. An example of this use of prior information and its effect on model accuracy is presented 
in a synthetic test case by Hill and others (1998).

The other common reason for using prior information on parameters is when the parameter 
value estimated by the regression is unreasonable. This problem is discussed in the previous sec-
tion of this report titled "Lack of Limits on Estimated Parameter Values." As noted there, the most 
productive response to this problem depends on the amount of information the observations pro-
vide on the parameter in question. If little information is provided, the problem falls into the cate-
gory of insensitive parameters, and the guidelines discussed in the paragraph above apply. If 
substantial information is provided, the unrealistic estimated parameter value is likely to indicate 
problems with the model or the data, as discussed by Anderman and others (1996) and Poeter and 
Hill (1996). To determine whether enough information is provided by the observations such that 
the unrealistic estimated parameter value indicates a problem with the model or the observations, 
the linear confidence interval on the parameter can be considered. If the confidence interval in-
cludes no realistic parameter values, the unrealistic estimate is likely to indicate problems with the 
model or the observations. If the confidence interval includes realistic parameter values, it is not 
clear whether there is a problem with the model or the data. Examples of the first circumstance are 
described by Anderman and others (1996), Poeter and Hill (1996), and Hill and others (1998). An 
example of the latter circumstance is described by Christiansen and others (1995) and Barlebo and 
others (in press) for a problem in which only hydraulic-head observations are used. In that appli-
cation, addition of concentration observations produced more realistic parameter values, indicating 
that the problem was primarily due to inadequate data. UCODE and MODFLOWP prints linear 
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confidence intervals on the parameter values (eq. 28). 

 Guideline 6: Assign weights that reflect measurement errors
 The weights are an important part of the regression, and assigning appropriate values can 
be confusing. The guideline presented here has a solid statistical basis and provides substantial 
guidance in most circumstances. For regression methods to produce parameter estimates with the 
smallest possible variance, the weighting needs to be proportional to the inverse of the variance-
covariance matrix of the measurement errors (Appendix C). For a diagonal weight matrix, this 
means that the weights need to be proportional to one divided by the variance of the measurement 
errors. This definition of the weights results in two consequences that have substantial intuitive ap-
peal: (a) Relatively accurate measurements are weighted more heavily than relatively inaccurate 
measurements, and (b) although different observations may have different units, weighted quanti-
ties have the same units and can, therefore, be summed in equation 1 or 2. Based on this guideline, 
information independent of the model is used to determine the weights, so that issues related to the 
weights are less likely to obscure model error or problems related to the data. 

For problems with observations of a simgle type and measured with apparently equal error, 
on average, it generally is easiest to set all weights equal to 1.0, as was done for the Theis problem 
of figure 2. In this situation, the calculated error variance has the units of the observations.

 For problems with more than one kind of observation, as well as prior information on the 
parameters, it is more convenient to define the weighting to equal the inverse of the variance-co-
variance matrix of the measurement errors instead of being proportional to it (Hill and others, 
1998). This guideline encourages the user to compare the weights used to what the weights should 
be theoretically. If it is suspected that another weighting is needed to achieve, for example, ran-
domly weighted residuals at optimal parameter values, this can be tested and placed in context rel-
ative to the assumed measurement error statistics. In addition, the assumed statistics of the 
measurement errors can be compared with the fit to the data achieved by the regression to provide 
a check on the weights used, as discussed under guideline 8.

UCODE and MODFLOWP read statistics from which the variances of the observation er-
rors and then the weights are calculated. The statistics can equal the variance, standard deviation, 
or coefficient of variation of the measurement error of the observations or prior information. Val-
ues for these statistics rarely are known in practice. Although assignment of values for the statis-
tics, therefore, is subjective, in most circumstances the estimated parameter values and calculated 
statistics are not very sensitive to moderate changes in the weights used. Several examples of using 
commonly available data to determine weights are described in the following paragraphs. MOD-
FLOWP also allows a full weight matrix, with covariances as well as variances, to be used. The 
following examplesfocus primarily on determining the more commonly used diagonal weighting, 
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but one example of determining covariances is presented.

The statistics used to calculate the weights often can be determined using readily available 
information and a simple statistical framework. For example, in a ground-water problem, consider 
an observation well for which the elevation was determined by an altimeter and is considered to be 
accurate to within 3 ft. To estimate the variance of the measurement error, this statement needs to 
be quantified to, for example, the probability is 95 percent that the true elevation is within 3 ft of 
the measured elevation. If the measurement errors are assumed to be normally distributed, a table 
of the cumulative distribution of a standardized normal distribution (Cooley and Naff, 1990, p. 44, 
or any basic statistical text, such as Davis, 1986) can be used to determine the desired statistics as 
follows. 
1. Use the table to determine that a 95-percent confidence interval for a normally distributed 

variable is constructed as the measured value plus and minus 1.96 times the standard deviation 
of the value. 

2. As applied to the situation here, the 95-percent confidence interval is thought to be plus and 
minus 3 ft, so that 1.96 x  = 3.0 ft, or  = 1.53, where  is the estimated standard devi-

ation.
In UCODE and MODFLOWP, the standard deviation (1.53 ft) can be specified and the variance 
will be calculated, or the variance (2.34 ft2) can be specified. If elevations of wells are obtained 
from U.S. Geological Survey (USGS) topographic maps, the accuracy standards of the USGS can 
be used to quantify errors in elevation. The USGS (1980, p. 6) states that on their topographic 
maps, "...not more than ten percent of the elevations tested shall be in error more than one-half the 
contour interval." If this were thought to be the dominant measurement error, a 90-percent confi-
dence interval would be plus and minus one-half the contour interval. Assuming that the error is 
normally distributed, a 90-percent interval is constructed by adding and subtracting 1.65 times the 
standard deviation of the measurement error. Thus, the standard deviation of the measurement er-
ror can be calculated as one-half the contour interval divided by 1.65, or (contour interval)/(2 x 
1.65). The value of 1.65 was obtained from a normal probability table.

A similar procedure can be used for observations that are a sum or difference between mea-
sured values. For example, consider streamflow measurements between two gaging stations. In 
ground-water modeling, often it is the difference between the two flow measurements that is used 
as an observation in the regression, and these are called streamflow gain or loss observations. Con-
sider a situation in which the upstream and downstream streamflow measurements are 3.0 ft3/s and 
2.5 ft3/s, so that there is a 0.5 ft3/s loss in streamflow between the two measurement sites. Also 
assume that the measurements are each thought to be accurate to within 5 percent (using, for ex-
ample, Carter and Anderson, 1963), and the errors in the two measurements are considered to be 
independent. Stated quantitatively, perhaps the hydrologist is 90 percent certain that the first mea-
surement is within 0.15 ft3/s (5 percent) of the true value, and 95 percent certain that the second 

syi
syi

syi
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measurement is within 0.125 ft3/s (5 percent) of the true value. Assuming that the errors are inde-
pendent and normally distributed, the standard deviation of the first measurement is calculated us-
ing the method described above from 1.65  = 0.15 ft3/s, so  = 0.091. The standard deviation 

of the second measurement is calculated from 1.96 = 0.125 ft3/s, so  = 0.064. The uncer-

tainty of the difference between the two flows needs to be calculated using their variances, which 

can be calculated by squaring the standard deviations to produce = 0.0083 (ft3/s)2 and = 

0.0041 (ft3/s)2. The variance of the loss of 0.5 ft3/s equals  +  = 0.0124 (ft3/s)2. The coef-

ficient of variation (standard deviation, 0.01241/2, divided by the loss, 0.5 ft3/s) for the loss in 
streamflow is, therefore, 0.22, or 22 percent. In UCODE and MODFLOWP, the variance, standard 
deviation, or coefficient of variation could be specified by the user. The choice generally is based 
on convenience.

In some circumstances there is a series of measurements from which differences are calcu-
lated. For example, there may be three streamflow measurements, q1, q2, and q3, along the length 
of a stream with gains or losses produced by subtracting each measurement from the next down-
stream measurement, resulting in two gain/loss observations, q2-q1 and q3-q2. The errors in the 
two differences are not statistically independent because the error in q2 is included in both differ-
ences. Hill (1992) shows that in this circumstance the covariance between the two differences 
equals the negative of the variance of the q2 measurement. This covariance cannot be included in 
UCODE, which is restricted to a diagonal weight matrix that includes only the variances of the 
measurement errors. Christensen and others (in press) extended the results of Hill (1992, p. 43) to 
measurements along branching streams, and S. Christensen extended MODFLOWP to include full 
weight matrices. It was found, however, that inclusion of the off-diagonal covariance terms in the 
weight matrix had negligible effect on the regression or statistical analysis in the problem consid-
ered (S. Christensen, 1997, oral commun.). Ignoring the covariances as is required in UCODE, and 
as is often done in applications of MODFLOWP, is not expected to effect results substantially in 
many circumstances.

The methods presented above also can be used to determine weighting for prior informa-
tion, but there are two additional issues to consider. First, if the weighting is determined using the 
arguments presented above, the prior information fits into the framework of either classical or Bay-
sian statistics, the later being the framework from which the term prior information originates. 
Sometimes, however, larger weights (smaller statistics) are assigned to the prior information to 
achieve a stable regression, in which case the term regularization needs to be used instead of prior 
information (Hill and others, 1998; Backus, 1988). Setting parameter values to constants that are 
not changed by the regression can be thought of as an extreme case of regularization. When regu-
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larization is used, confidence intervals on parameters and predictions may not represent model un-
certainty accurately. Thus, classifying what is called prior information throughout this work as 
either prior information or regularization is very important.

The second issue unique to prior information occurs when the associated parameter is log-
transformed. In this situation, the statistic on the prior information needs to relate to the log of the 
parameter value. The methods discussed above are directly applicable, but an extra step is needed 
because it is easier to establish a range of plausible values for native than for transformed values. 
Thus, if the prior estimate for a hydraulic conductivity is 100 m/d, and the true value is expected 
to fall within a range of 80 to 120 m/d with a certainty of about 95 percent, a 95-percent confidence 
interval for the native value has approximate limits of 80 and 120. Taking the log (base 10) of these 
values produces limits of 1.90 and 2.08, about a prior estimate of 2.0. If it is assumed that the un-
certainty in the hydraulic conductivity can be approximated by a log-normal distribution, the log-
transformed value is normally distributed. Changing the limits 1.90 and 2.08 slightly to form a 
symmetric interval with limits 1.91 and 2.09, the methods described above can be used to deter-
mine that the standard deviation relevant to the log-transformed parameter equals 0.045, and this 
value would need to be used as the statistic. 

It generally is impossible to identify all measurment errors that contribute to an observation 
or prior information value, and the variances, standard deviation, and coefficients of variation cal-
culated by using the methods discussed in this section are clearly approximate. Indeed, a problem 
related to Guideline 6 as described above is what should be included in the so-called "measurement 
errors". While this point can be argued extensively, a definition that has proven to be useful for the 
purpose of determining weighting is that measurement error is error related to any aspect of the 
measurement not accounted for by the model considered. Unambiguous types of measurement er-
rors are errors in the measuring device and the location of the measurement in three-dimensional 
space. Ambiguous contributions include, for example, heads measured in wells that only partially 
penetrate the numerical layer to which they are assigned. This is more ambiguous because the mod-
el could be refined to accommodate this, and it could be debated whether this is model error or mea-
surement error. Despite such ambiguities, the above definition for measurement error works 
relatively well in practice, partly because the regression often is not very sensitive to the weighting 
used, and the definition is sufficient to produce weighting based on common sense that is at least 
approximately correct.

A final useful aspect of defining the weighting as described here was discussed previously 
in the section “Calculated Error Variance and Standard Error.” Stated briefly, if the model fit is con-
sistent with the assigned weighting, the calculated error variance and the standard error are close 
to 1.0. Larger values, which are common in practice, indicate that the model fits the data less well 
than would be accounted for by expected measurement error. Thus, if the standard error is 5.0, it 
can be said that the model fit was, on average, five times worse than was consistent with the pre-
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liminary analysis of measurement error. Possible sources of the additional error are neglected mea-
surement error, which would change the weighting, or model error. Hill and others (1998) show 
that some types of model error contribute to the calculated error variance but do not necessarily 
result in an inaccurate model.

Guideline 7: Encourage convergence by making the model more accurate
Nonlinear regression models of complex systems often do not converge. In general, con-

vergence is improved as the model becomes a better representation of the system that produced the 
observations being matched by the regression, so that the goal of achieving convergence and a val-
id regression and the goal of model calibration generally are identical. Substantial insight about the 
model can be obtained by using the information available from unconverged regressions, such as 
dimensionless and one-percent scaled sensitivities, composite scaled sensitivities, parameter cor-
relation coefficients, weighted and unweighted residuals, and parameter updates calculated by the 
regression. This information can be used to evaluate the parameters, observations, and fit of the 
existing model, and to detect inaccuracies in model construction. 

Possible model modifications resulting from this analysis include estimating fewer param-
eters, modifying the defined parameters, modifying other aspects of model construction, including 
additional data as observations in the regression, and, rarely, changing the weighting used.

Guideline 8: Evaluate model fit
The most basic attribute of nonlinear regression methods is that, given a well-posed prob-

lem, parameter values are calculated that produce the best fit between simulated and observed val-
ues. The model can then be evaluated without wondering whether a different set of parameter 
values would be better. 

Two common problems are strong indicators of model error: (1) the model does a poor job 
of matching observations, and (2) the optimized parameter values are unrealistic and confidence 
intervals on the optimized values do not include reasonable values. The first is discussed here under 
Guideline 8; the second indicator is discussed under Guideline 9. 

The match to observations achieved through the regression can be evaluated using the 
methods described in the sections "Statistical Measures of Model Fit" and "Graphical Analysis of 
Model Fit and Related Statistics." Evaluations using these methods have been presented in a num-
ber of publications, including Cooley and others (1986), Yager (1991, 1993), D’Agnese and others 
(1998), and Hill and others (1998), and example graphs of weighted residuals can be found there.

 Weighted residuals are indicative of model fit but, being dimensionless, can be confusing 
to interpret. Technically, they equal the ratio between the unweighted residual and the statistic used 
to define the weight. So, if the statistic was a standard deviation and the unweighted residual is 
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twice as large as the standard deviation, the value of the weighted residual is 2.0. To more clearly 
present model fit, often it is useful also to include maps of unweighted residuals in reports, as was 
done by D’Agnese and others (1998). Then very large residuals can be pointed out and discussed. 

Two example graphs are presented here. Figure 7 shows observed and simulated 
streamflow gains along the length of a river. Figure 8 shows the related residuals, which are a good 
indication of model fit if the observed gains are all about equally reliable, as is the case in this ex-
ample, but could be misleading if some of the measurements were known to be less accurate. 

Figure 7: Observed and simulated streamflow gains for model CAL3 of Hill and others (1998).

Figure 8: Residuals equal to the observed minus the simulated streamflow gains of figure 7. 

Trying to identify trends (lack of nonrandomness) by visual inspection is not always reli-
able. Often it is useful to evaluate randomness using formal methods to avoid false identification 
of trends and to avoid missing trends that exist. One such method is the runs tests, as discussed in 
the section “Graphs using independent variables and the runs test”. For example, Cooley and others 
(1986), use runs tests to evaluate spatially distributed weighted residuals. UCODE and MOD-
FLOWP perform a runs test on the weighted residuals using the sequence in which the observations 
are listed in the input file. Figure 9 displays the runs statistic information printed by MODFLOWP.
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Figure 9: Runs test output from MODFLOWP for test case 1 of Hill (1992).

If the model fit is unsatisfactory, three possible problems need to be considered. Listed in 
order of the frequency with which they occur, the three problems are: (1) model error, including 
how parameters are defined; (2) data errors such as data entry errors or mistakes in the definition 
of associated simulated values; and (3) errors in the weighting of the observations or prior infor-
mation. It is often difficult to identify the cause of a problem. In some circumstances,  influence 
statistics, such as DFBETAs (Cook and Weisberg, 1982) that indicate the importance of each ob-
servation to the estimation of each parameter can be useful (Anderman and others, 1996; Yager, in 
press). Additional methods described in guideline 10 also can be useful to evaluate individual mod-
els.

As discussed in the section “Calculated Error Variance and Standard Error” and under 
Guideline 6, if the weights reflect the measurement errors as suggested in this work, weighted re-
siduals that are, on average, larger than 1.0 indicate that the model is worse than would be expected 
given anticipated measurement error, and values smaller than 1.0 indicate that the model fits better 
than expected given anticipated measurement error.

If the model fit is unsatisfactory, the situation can be addressed as described at the end of 
Guideline 7.

Guideline 9: Evaluate optimized parameter values 
Evaluate optimized parameter values by comparing the optimized values and their confi-

dence intervals with independent information about the parameter values. The independent infor-

STATISTICS FOR ALL RESIDUALS :
AVERAGE WEIGHTED RESIDUAL : .100E+00
# RESIDUALS >= 0. : 18
# RESIDUALS < 0. : 17
NUMBER OF RUNS : 17 IN 35 OBSERVATIONS

INTERPRETTING THE CALCULATED RUNS STATISTIC VALUE OF -.339
NOTE: THE FOLLOWING APPLIES ONLY IF

# RESIDUALS >= 0 . IS GREATER THAN 10 AND
# RESIDUALS < 0. IS GREATER THAN 10

THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:
IF THE VALUE IS LESS THAN -1.28, THERE IS LESS THAN A 10 PERCENT

CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.645, THERE IS LESS THAN A 5 PERCENT

CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.96, THERE IS LESS THAN A 2.5 PERCENT

CHANCE THE VALUES ARE RANDOM.
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mation may include ranges of expected values, and (or) a relative ordering of values. This simple 
test can be an unexpectedly powerful indicator of model error, as shown by Poeter and McKenna 
(1995), Poeter and Hill (1996), Anderman and others (1996), and Hill and others (1998).

Using  independent information on the parameters as suggested here is an alternative to us-
ing the information in the context of prior information values, and is discussed in this report in sec-
tion “Lack of Limits on Estimated Parameter Values” and under Guideline 5. As noted there, 
unreasonable optimized parameter values can be disconcerting to modelers, but provide important 
indicators of problems with model construction, the observations, or both. An example of a graph-
ical comparison of estimated hydraulic conductivities and ranges of expected values is shown in 
figure 10. In this example, the reasonable ranges are broad, but a number of conceptual models 
were rejected because optimized parameter values were outside these ranges.  Thus, even in this 
circumstance,  requiring reasonable optimized parameter values produced an important constraint 
to model development. 

Figure 10:  Optimized hydraulic-conductivity values, 95-percent linear confidence intervals, and 
the range of hydraulic-conductivity values derived from field and laboratory data. (from 
D’Agnese and others, 1998)
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 Consideration of confidence intervals on the optimized parameter values is needed to avoid 
concluding that there is a problem with the model when the real problem is insufficient data with 
which to estimate the defined parameters. Linear confidence intervals on unrealistic optimized pa-
rameter values that include or nearly include realistic values suggest that the data are insufficient 
for conclusive evaluation, and the problem producing the unrealistic values is less likely to be mod-
el error. An example of this circumstance is discussed by Barlebo and others (in press). Confidence 
intervals are discussed further in Guideline 9.

Guideline 10: Test alternative models
In most problems, there is more than one possible representation of the system involved, 

and this guideline encourages testing all alternative models. Such testing is a viable alternative 
when inverse modeling is used. Models that are more likely to be accurate tend to have three at-
tributes: better fit, weighted residuals that are more randomly distributed, and more realistic opti-
mal parameter values. These attributes are discussed in the following paragraphs. 

The first attribute is a better match to observed data, as indicated by smaller values of the 
calculated error variance (eq. 14), the standard error of the regression (the square-root of eq. 14), 
fitted error statistics, AIC and BIC statistics (eq. 16 and 17), or the maximum likelihood criteria 
(eq. 3), all of which are printed by UCODE and MODFLOWP. Other statistics, such as Kashyap’s 
measure (Medina and Carrera, 1996), also can be used, and generally can be easily calculated using 
the printed statistics. A graph of fitted standard deviations for hydraulic heads from seven models 
of Hill and others (1998) is shown in figure 11.

Figure 11:  Fitted standard deviations for hydraulic heads for seven models from a controlled ex-
periment in model calibration. (from Hill and others, 1998)
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Besides summary statistics, it is important to consider graphs of the observations, simulated 
values, residuals, and weighted residuals, as discussed in Guideline 8.

The second attribute of better models is that weighted residuals (defined after eq. 1and 2) 
are more randomly distributed. This generally is determined using the graphs and related statistics 
discussed in the section "Graphical Analysis of Model Fit and Related Statistics." Graphs of 
weighted residuals against weighted simulated values, adjusted to account for using coefficients of 
variation calculated using the observed values in the weighing as discussed by Hill (1994), are 
shown for two models in figure 12. The weighted residuals from model CAL0 tend to be larger 
than those of CAL3, as indicated by the greater spread about the 0.0 weighted residual line. In this 
example, the weighting changed somewhat, so the spread does not necessarily indicate a closer fit 
between simulated and observed values. Figure 11, however, shows that the CAL3 model does fit 
the hydraulic-head data better than the CAL0 model. The two sets of weighted residuals of figure 
12 are both reasonably random, although the grouping of positive CAL0 residuals in figure 12A 
for weighted simulated values between 15 and 30and the predominantly positive prior information 
weighted residuals for CAL3 may be of concern.

Figure 12: Weighted residuals versus weighted simulated values for models CAL0 and CAL3 of 
Hill and others (1998). 
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The third attribute of better models is that optimum parameter values will tend to be more 
reasonable, both in terms of the estimated values and their values relative to one another. Unreal-
istic optimized parameter values often are disconcerting to users, as mentioned in the section "Lack 
of Limits on Estimated Parameter Values" and under Guideline 9. 

In some cases the model evaluation may indicate that the data are insufficient to identify a 
best model from several possible alternatives, in which case any predictions of interest need to be 
simulated using all reasonable models.

Poeter and McKenna (1995) present an innovative method of using indicator kriging to 
generate possible models that differed in the zonation used for the hydraulic-conductivity field. 
They then estimated hydraulic conductivities using MODFLOWP. The synthetic test case used al-
lowed them to show that the additional analysis provided by nonlinear regression tended to produce 
more accurate transport predictions than could be attained without the use of regression. The addi-
tional analysis included determining the best-fit parameters for each model through regression, and 
then omitting models for which at least one of the following conditions occurred: (1) the best-fit 
parameter values were unrealistic in that obviously coarser deposits had lower hydraulic conduc-
tivities than finer grained deposits, (2) the best-fit parameter values were substantially different 
than expected, (3) the model fit was significantly worse than for other models, or (4) the regression 
did not converge. The dramatic improvement in the predictions produced by models screened using 
these criteria indicated that their application is likely to be useful for identifying more accurate 
models.

Guideline11: Evaluate potential new data
Potential new data can be evaluated in a number of ways using the methods discussed in 

this work. Here, dimensionless and one-percent scaled sensitivities and one-percent sensitivity 
maps are discussed as tools for evaluating potential new data. These statistics depend only on sen-
sitivities and not on measured values. Thus, the type, location, and weighting of potential new data 
are evaluated. 

The analysis is conducted by adding the potential data to the observation data sets of 
UCODE or MODFLOWP as if the data had already been collected. Specification of the statistic 
for the weighting can be used to represent the anticipated accuracy of the measurement. Any num-
ber can be specified for the observations because they do not affect the statistics being considered.

Anderman and others (1996) use composite scaled sensitivities and correlation coefficients 
(see figure 5 of this report) calculated for initial parameter values to evaluate the contribution to a 
ground-water flow model calibration of three types of data: hydraulic heads, an estimate of lake-
aquifer interaction, and subsurface transport as represented by advective travel derived from con-
centration measurements. Although, in this case, the data had already been collected, it is proposed 
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both here and by Anderman and others (1996) that such an analysis is useful before data collection. 

The example of Anderman and others (1996) demonstrates how model nonlinearity can 
produce misleading results. For the initial parameter values, the advective-transport path enters a 
lake near the source instead continuing on in the ground-water system, as is more probable given 
the concentration data. The short advective-travel path results in an underestimate of the impor-
tance of these data when evaluated using the composite scaled sensitivities and correlation coeffi-
cients calculated for the initial parameter values. Such model nonlinearity is common, and often it 
is useful to calculate the statistics for several combinations of parameter values to evaluate possible 
future data collection activities.

Dimensionless scaled sensitivities can be calculated for any potential observation, and they 
can be used to compare the likely importance of individual proposed data to the estimation of all 
of the parameters. Table 3 shows selected dimensionless scaled sensitivities from test case 1 of Hill 
(1992). Dimensionless scaled sensitivities that are larger in absolute value indicate greater likely 
importance. Here it can be seen that different observations are likely to be important to the estima-
tion of different parameters. In the simple steady-state ground-water flow system for which these 
sensitivities are calculated, the dimensionless scaled sensitivities can be explained easily. For ex-
ample, consider observation WELL1, which is a hydraulic head measured just beneath the river, 
which forms the only outflow boundary. Simulated hydraulic head at this location is dominated by 
the elevation of the water in the river, the characteristics of the riverbed, and the amount of water 
leaving the system. K1 and K2 are hydraulic conductivity parameters that apply along the entire 
length of the river and do not influence the spatial distribution of outflow to the river at steady-
state, so that they do not affect simulated hydraulic head at WELL1. KRB is the hydraulic condu-
citivity of the riverbed, which does influence the simulated hydraulic head beneath the river, re-
sulting in the reltivly large scaled sensitivity for observation WELL1. The composite scaled 
senstivities indicate that the four observations listed provide much more information for parameter 
K1 than for KRB, and an intermediate amount of information for K2. 

Dimensionless scaled sensitivities also can be plotted against independent variables such 
as time and location. The graph of dimensionless scaled sensitivities plotted against time shown in  
figure 13 indicates the relative importance of hydraulichead measurements before and during 
pumpage. Additional uses of scaled sensitivities are discussed under Guideline 14 and in the sec-
tion “Statistics for Sensitivity Analysis”.
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Dimensionless scaled sensitivities also can be plotted against independent variables such 
as time and location. The graph of dimensionless scaled sensitivities plotted against time shown in  
figure 13 indicates the relative importance of hydraulichead measurements before and during 
pumpage. Additional uses of scaled sensitivities are discussed under Guideline 14 and in the sec-
tion “Statistics for Sensitivity Analysis”.

Figure 13: Dimensionless scaled sensitivites plotted against time. The values are from well 2 of test 
case 1 of Hill (1992). Time zero has no pumpage; at subsequent times constant pumpage 
is applied. The K1 parameter represents the hydraulic conductivity in the top of two lay-
ers. The K2M parameter represents a multiplicative parameter that, combined with an 
assumed linear trend, defines the hydraulic conductivity of the bottom layer. S1 and S2 

Table 3: Selected dimensionless and composite scaled sensitivities 
from test case 1 of Hill (1992).

Parameter name

Observation 
name K1 K2 KRB

WELL1 -0.652x10-4 -0.289x10-4 1.17

WELL2 180 34.5 1.17

WELL3 351 115 1.17

RIVER 0.399x10-2 0.177x10-2 0.109x10-4

Composite Scaled Sensitivities (css)
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are storage coefficients of the top and bottom layers, respectively.

Guideline 12:  Evaluate the potential for additional estimated parameters
At any stage of model calibration, composite scaled sensitivities can be analyzed as de-

scribed in Guideline 3 to determine if the available data are likely to support additional detail in 
representing the system characteristics associated with the defined parameters. Parameters with 
large composite-scaled sensitivities can be subdivided in ways that are consistent with other data, 
such as geologic and hydrogeologic data in ground-water problems. The new set of defined param-
eters can then be evaluated using the methods of Guideline 3, and regression pursued if warranted.

Guideline 13: Use confidence and prediction intervals to indicate parameter and 
prediction uncertainty 

Confidence and prediction intervals can be constructed using the methods described in the 
sections “Parameter Statistics” and “Prediction Uncertainty” in the first part of this report. Thus, in-
stead of reporting a single predicted value, a predicted value and a confidence or prediction interval 
are reported. For example, linear confidence intervals for a set of parameter values were shown in 
figure 10 in Guideline 9. Ideally, confidence intervals are intervals in which the true parameter val-
ue or true predictive quantity is likely to occur with some specified probability. Prediction intervals 
differ from confidence intervals in that they include the effect of measurement error (see eq. 34 and 
related text). Prediction intervals need to be used if the intervals are to be compared to measured 
values and are most commonly constructed for simulated predictions.

Confidence intervals are for the true average value (Ott, 1993, p.519). Confidence intervals 
on average values depend not only on the variance of the original population, but also on the sam-
ple size used to calculate the estimated average.  This is confusing to many users, who are likely 
to look at, for example, the confidence intervals of figure 10 and conclude that they are too small. 
This judgment, however, needs to be made in the context of the confidence intervals being con-
structed for the average value. To demonstrate the significance of this, consider a simple example 
using a generated set of 300 normally distributed numbers. Figure 14 shows the range of the 300 
numbers. Also included are estimated means calculated as   

, (36)

and their associated confidence intervals, calculated as:

                                                                               (37)
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where s is the sample standard deviation and n is the sample size (300 for the example). From this 
simple example it can be seen how few samples are needed for the confidence interval for the av-
erage to be much smaller than the range of the population. 

Figure 14:  Confidence intervals for a population mean given different sample sizes. The popula-
tion is composed of 300 random normally distributed numbers with a range noted by the 
bar labeled “All” and a mean noted by the mark in the center of that bar. The other bars 
are labeled with the sample size used (3, 5, and 10). The marks in the center of these bars 
are the sample means, and the lengths of the bars display the associated confidence in-
terval.

In figure 10, the range of hydraulic conductivity within a selected volume is shown by the 
solid bars, as derived from measured values. This range is analogous to the entire range of the 300 
generated random values in figure 14. The situation in figure 10 differs from the simple example 
of figure 14 in two important ways. First, and most fundamentally, the situation in figure 10 as-
sumes that an effective hydraulic-conductivity value can be applied to a specified volume of sub-
surface material. The regression analysis is valid only in so far as this assumption is valid. 

The second difference between the situations represented in figures 10 and 14 is that in fig-
ure 10 estimates are derived through regression. Thus, most of the data used to estimate the mean 
are measurements of other quantities--here, hydraulic heads and spring  flows--which are used to 
estimate the effective hydraulic-conductivity value through nonlinear regression. In contrast, the 
data used in figure 14 are samples from the population for which the mean is being estimated. 

Despite these differences, the discrepancy between the full range of values and the confi-
dence intervals displayed both in figures 10 and 14 is important to remember when interpreting re-
sults such as these shown in figure 10.

As noted in the first part of this report, both linear and nonlinear confidence and prediction 
intervals can be calculated. Linear intervals take a minor computational effort; nonlinear intervals 
take substantial computational effort because each nonlinear confidence interval limit requires 
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computational effort equivalent to a full regression. The section “Testing for Linearity” discusses 
a test with which model nonlinearity can be evaluated.

 Linear intervals use the assumption of normality of the parameter estimates in their con-
struction. As discussed in the section “Normal Probability Graphs and Correlation Coefficient 
RN

2,” the weighted residuals are the only quantities that can be readily tested for normality. A sam-
ple normal probability graph is shown in figure 15, along with graphs showing normally distributed 
random numbers generated with and without regression-induced correlations, as described in the 
section “Determining Acceptable Deviations from Independent Normal Weighted Residuals.” Fig-
ure 15 shows that most aspects of the nonlinear pattern evident in the weighted residuals can be 
explained by the regression-induced correlations.
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Figure 15:  Normal probability graphs for the steady-state version of  test case 1 of Hill (1992), 
including (A) weighted residuals, (B) normally distributed, uncorrelated random num-
bers, and (C) normally distributed random numbers correlated as expected given the fit-
ting of the regression. In B and C, four sets of generated numbers are shown, each with 
a different symbol.

Christensen and Cooley (1996; in press) show that in nonlinear problems, nonlinear confi-
dence intervals can be very different than linear intervals for some quantities, while they can be 
very close for others. It appears that linear confidence intervals are useful as a general indication 
of uncertainty in many circumstances, but, if at all possible given computer resources, some non-
linear intervals need to be calculated if the model is nonlinear.

 Linear and nonlinear confidence intervals, along with any other method of uncertainty anal-
ysis, such as Monte Carlo methods and the methods presented by Sun (1994), are based on the as-
sumption that the model accurately represents the real system. In truth, all models are 
simplifications of real systems, and the accuracy of the uncertainty analysis is in question. Accu-
racy of uncertainty analyses is very difficult to evaluate definitively. Steen Christensen and R.L. 
Cooley (written commun., 1997) compared nonlinear prediction intervals to measured heads and 
flows indicating good correspondence between the expected and realized significance level of the 
intervals. If model fit to data indicates model bias, the theory suggests the calculated intervals do 
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not reflect all aspects of system uncertainty, and, conservatively, they might be best thought of as 
indicating the least amount of uncertainty. That is, actual uncertainty might be larger than indicated 
by the confidence intervals. If prediction intervals are dominated by the measurement error term, 
they are less likely to be prone to error. Unfortunately, in many circumstances the confidence in-
tervals are of more interest because they reflect model uncertainty most clearly. Cooley (1997) pro-
vides additional analysis of nonlinear confidence intervals.

Guideline 14: Formally reconsider the model calibration from the perspective of 
the desired predictions

It is important to evaluate the model relative to the desired predictions throughout model 
calibration, as discussed in the beginning of the section “Guidelines for Effective Model Calibra-
tions”. For reasonably accurate models, it also is useful to consider the predictions more formally, 
as described below. In this work it is suggested that formal analysis using uncalibrated models is 
likely to produce misleading results, given the nonlinearity of the models considered. It can be dif-
ficult to determine when a model is sufficiently accurate, but at the very least the obvious errors in 
system representation and the relation of the observations to simulated equivalents need to be re-
solved, and weighted residuals need to be approximately random. The analysis is divided into two 
approaches.

First, predictions and linear confidence intervals on the predictions can be calculated for all 
reasonably accurate models to evaluate how different sets of observations and conceptual models 
are likely to affect both the simulated predictions and their likely precision. Linear confidence in-
tervals are suggested instead of nonlinear confidence intervals or either kind of prediction interval 
because linear confidence intervals can be calculated quickly and represent the prediction uncer-
tainty contributed by the model and the parameter estimates.

Second, the model parameters and the simulated predictions can be evaluated to determine 
which parameters and what system features are likely to be most important to prediction accuracy. 
This is accomplished using sensitivities related to the regression observations and the predictions, 
and statistics calculated from these sensitivities, and can be used to guide subsequent field and 
model calibration efforts. The procedure for such an analysis is outlined in figure 16. 




