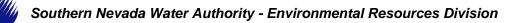


Environmental Resources Division

Spring Valley Stipulation Biological Monitoring Plan 2010 Annual Report

March 2011


Prepared by Southern Nevada Water Authority Water Resources Division P.O. Box 99956 Las Vegas, Nevada 89193-9956 Submitted to Nevada State Engineer and the Stipulation Executive Committee

This document's use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the Southern Nevada Water Authority. Although trademarked names are used, a trademark symbol does not appear after every occurrence of a trademarked name. Every attempt has been made to use proprietary trademarks in the capitalization style used by the manufacturer.

Suggested citation: Southern Nevada Water Authority. 2010. Spring Valley Stipulation Biological Monitoring Plan 2010 Annual Report. Southern Nevada Water Authority, Las Vegas, Nevada, USA.

CONTENTS

	•	v
		ms and Abbreviations
1.0	Introdu	ction
	1.1 1.2 1.3	Background1-1Major Activities Performed in 20101-2Purpose and Scope1-3
2.0	Biolog	cal Monitoring Program Status and Methods
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 	Physical Habitat Mapping.2-1Site Assessment2-3Water Quality2-3Springsnails.2-6Macroinvertebrates2-8Northern Leopard Frog (Rana pipiens)2-10Relict Dace (Relictus solitarius)2-122.7.1Keegan and Stonehouse Spring Complexes2.7.2Shoshone Ponds2.7.4Pahrump Poolfish (Empetrichthys latos)2.7.4Pig Springs Creek/Lake Creek Native Fish Community2.7.6Vegetation2.7.7Data Collection2.7.82-16Vegetation2-182.10.1Field Data Collection2.7.2Data Analysis2.7.3Collection2.7.4Station Photography2.7.5Collection2.7.6Collection2.7.7Collection2.7.8Collection2.7.9Collection2.7.1Station Photography2.7.2Collection2.7.2Collection2.7.3Collection2.7.4Collection2.7.5Collection2.7.6Collection2.7.7Collection2.7.8Collection2.7.9Collection2.7.0Collection2.7.2Collection2.7.2Collection2.7.2Collection2.7.2Collection2.7.2Collection2.7.2Collection2.7.2Collection2.7.3Collection2.7.4Collecti
3.0	Biolog	ical Monitoring Plan Results
	3.1 3.2 3.3	Physical Habitat Mapping.3-1Site Assessment3-5Water Quality3-83.3.1Standard Water Quality.3-83.3.1.1Water Temperature3-83.3.1.2Conductivity3-93.3.1.3pH3-113.3.1.4Dissolved Oxygen3-133.3.1.5Velocity3-143.3.1.6Turbidity3-153.3.1.7Standard Water Quality - Discussion3-163.3.2Nitrogen and Phosphorus3-173.3.3Temperature Loggers3-19Springsnails3-28

CONTENTS (CONTINUED)

	3.4.1	Springsnail Extent
	3.4.2	Springsnail Abundance and Distribution
	3.4.3	Springsnail Habitat
3.5	Macro	invertebrates
3.6	Northe	ern Leopard Frog (Rana pipiens) 3-42
	3.6.1	Presence/Absence Surveys
	3.6.2	Egg Mass Surveys
	3.6.3	Habitat Surveys
	3.6.4	Conclusion
3.7	Relict	Dace (Relictus solitarius)
	3.7.1	Keegan and Stonehouse Spring Complexes
		3.7.1.1 Keegan Spring Complex
		3.7.1.2 Stonehouse Spring Complex
		3.7.1.3 Discussion
	3.7.2	Shoshone Ponds
3.8	Pahru	mp Poolfish (<i>Empetrichthys latos</i>)
3.9		prings Creek/Lake Creek Native Fish Community
	3.9.1	Results by Reach
	3.9.2	Relative Abundance Comparisons
	3.9.3	Fish Lengths
	3.9.4	Reach Habitat Comparisons
	3.9.5	Conclusion
3.10	Veget	ation
	3.10.1	Aquatic (Spring) Transects
		3.10.1.1 Stonehouse Spring Complex
		3.10.1.2 Willow-NV Spring
		3.10.1.3 Keegan Spring Complex North
		3.10.1.4 West Spring Valley Complex 1
		3.10.1.5 South Millick Spring
		3.10.1.6 Unnamed 5 Spring 3-88
		3.10.1.7 Four Wheel Drive Spring
		3.10.1.8 Willard Spring
		3.10.1.9 Minerva Spring Complex (North and Middle) 3-94
		3.10.1.10 Swallow Spring
		3.10.1.11 North Little Spring
		3.10.1.12 Big Springs
		3.10.1.13 Unnamed 1 Spring North of Big
		3.10.1.14 Stateline Springs
	3.10.2	Wetland/Meadow Transects
		3.10.2.1 Stonehouse Spring Complex
		3.10.2.2 Keegan Spring Complex North
		3.10.2.3 West Spring Valley Complex 1
		3.10.2.4 Minerva Spring Complex (North and Middle) 3-121

CONTENTS (CONTINUED)

		3.10.2.5	Shoshone Ponds
		3.10.2.6	The Seep
		3.10.2.7	Blind Spring
		3.10.2.8	Burbank Meadows
		3.10.3 Phreatopl	nytic Shrubland Transects
		3.10.3.1	Greasewood Spring Valley North
		3.10.3.2	Greasewood Spring Valley Middle
		3.10.3.3	Greasewood Spring Valley South
		3.10.3.4	Greasewood Hamlin Valley North
		3.10.3.5	Greasewood Snake Valley South
		3.10.4 VFRM Ju	iniper Transects
		3.10.4.1	Swamp Cedar North Wet Sites
		3.10.4.2	Swamp Cedar North Dry Sites
		3.10.4.3	Swamp Cedar South Wet Sites
		3.10.4.4	Swamp Cedar South Dry Sites
	3.11	Valley Floor Roo	cky Mountain (VFRM) Juniper (Juniperus scopulorum)3-158
	3.12	Fixed Station Ph	otography
4.0	Antici	pated Biological M	Monitoring Plan-Related Activities for 2011
5.0	Refere	nces	
Apper	ndix A -	Macroinvertebrat	e Metric Results (as provided by Rhithron Laboratories)
Apper	ndix B -	•	Maps and Associated Data for Aquatic Sites and Creek Reaches)
Apper	ndix C -	-	ent of Wildlife 2010 Native Fish and I Trip Report for Shoshone Ponds
Apper	ndix D -	Distribution of Sp	pringsnail Counts along Springsnail Extents,

- Spring and Fall 2009 and 2010
- Appendix E Vegetation Cover and Composition Result Tables

This Page Left Intentionally Blank

FIGURES

NUMBE	R TITLE	PAGE
1-1	Locations of Biological Monitoring Sites within the IBMA	1-4
2-1	Locations of Physical Habitat Mapping Monitoring Sites within the IBMA	2-2
2-2	Locations of Site Assessment Monitoring Sites within the IBMA	2-4
2-3	Locations of Water Quality Monitoring Sites within the IBMA	2-5
2-4	Locations of Springsnail Monitoring Sites within the IBMA	2-7
2-5	Locations of Macroinvertebrate Monitoring Sites within the IBMA	2-9
2-6	Locations of Northern Leopard Frog Monitoring Sites within the IBMA	2-11
2-7	Locations of Relict Dace Monitoring Sites within the IBMA	2-13
2-8	Locations of Pahrump Poolfish Monitoring Sites within the IBMA	2-15
2-9	Locations of Creek Native Fish Community Monitoring Reaches within the IBMA.	2-17
2-10	Locations of Vegetation Monitoring Sites within the IBMA	2-19
2-11	Locations of VFRM Juniper Monitoring Sites within the IBMA	2-23
2-12	Locations of Fixed Station Photography Monitoring Sites within the IBMA	2-25
3-1	Total Aquatic Area by Site for Spring and Fall 2010	3-3
3-2	Diurnal and Seasonal Variations in Temperature Logger Data from West Spring Valley Complex 1 (Springhead A)	3-17
3-3	Temperature Logger Data from Stonehouse Spring Complex (Springhead E)	3-19
3-4	Temperature Logger Data from Willow-NV Spring (Springhead A)	3-20
3-5	Temperature Logger Data from Keegan Spring Complex North (Springhead A).	3-20
3-6	Temperature Logger Data from South Millick Spring (Springhead A)	3-21
3-7	Temperature Logger Data from West Spring Valley Complex 1 (Springhead A).	3-21
3-8	Temperature Logger Data from Unnamed 5 Spring (Springhead A)	

FIGUF Numbe	RES (CONTINUED) R TITLE PAG	E
3-9	Temperature Logger Data from Swallow Spring (Springhead A) 3-2	2
3-10	Temperature Logger Data from Minerva Spring Complex North (Springhead A) 3-2	:3
3-11	Temperature Logger Data from Minerva Spring Complex Middle (Springhead A) 3-2	4
3-12	Temperature Logger Data from Clay Spring North (Springhead A)	4
3-13	Temperature Logger Data from Stateline Springs (Springhead A) 3-2	5
3-14	Temperature Logger Data from Unnamed 1 Spring North of Big (Springhead A) 3-2	:5
3-15	Temperature Logger Data from Big Springs (Springhead B)	6
3-16	Temperature Logger Data from North Little Spring (Springhead A)	7
3-17	Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Spring Valley 2009 and 2010	4
3-18	Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Snake Valley 2009 and 2010	6
3-19	Scatterplot of Number of Northern Leopard Frog Egg Masses by Percent Emergent Vegetation	.9
3-20	Daily Water Temperature Data for Northern Leopard FrogBreeding Pools at Keegan and Unnamed 53-5	0
3-21	The Length Frequency of Relict Dace Measured at Keegan Spring Complex North in the Spring (n=198) and Fall (n=236) of 2010	4
3-22	The Length Frequency of Relict Dace Measured at Keegan Spring Complex North by Habitat Mapping Unit (Pool, Channel) in the Spring (Channel n=10, Pool=188) and Fall (Channel n=145, Pool n=128) of 2010	5
3-23	The Length Frequency of Relict Dace Measured at Stonehouse Spring Complex in the Spring (n=164) and Fall (n=266) of 2010	57
3-24	The Length Frequency of Relict Dace Measured at Stonehouse Spring Complex by Habitat Mapping Unit (Pool, Channel) in the Spring (Channel n=66, Pool n=96) and Fall (Channel n=96, Pool n=70) of 2010	58

FIGURES (CONTINUED)
-----------	------------

NUMBE	R TITLE	PAGE
3-25	Relict Dace CPUE by Season and Year for Keegan Spring Complex North and Stonehouse Spring Complex	3-59
3-26	Relict Dace CPUE by Year, Season, and Habitat for Keegan Spring Complex North	3-60
3-27	Relict Dace CPUE by Year, Season, and Habitat for Stonehouse	
3-28	Fish Species Composition in Big Springs Creek/Lake Creek Reaches 1 to 6 in 2009 and 2010	3-64
3-29	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 1 in 2009 and 2010	3-65
3-30	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 2 in 2009 and 2010	3-65
3-31	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 3 in 2009 and 2010	3-66
3-32	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 4 in 2009 and 2010	3-68
3-33	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 5 in 2009 and 2010	3-68
3-34	The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/ Lake Creek Reach 6 in 2009 and 2010	3-69
3-35	A Comparison of the CPUE, Relative Abundance, of Combined Fish Species Catch by Big Springs Creek/Lake Creek Reach and Year	3-70
3-36	Total Number of Native Fish by Mean Percent Vegetation (Emergent and Submergent Combined) for Big Springs Creek/Lake Creek Reaches (1-6)	3-72
3-37	Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for Aquatic Sites	3-76
3-38	Mean Live Cover First Hits (FH) in 2009 and 2010 for Aquatic Sites	3-77
3-39	Total Number of Taxa in 2009 and 2010 for Aquatic Sites	3-77
3-40	Mean Number of Taxa (Number of Taxa Divided by Transect length, Averaged across Transects) in 2009 and 2010 for Aquatic Sites	3-78

FIGURES (CONTINUED) NUMBER TITLE PAGE 3-41 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for 3-42 Mean Live Cover First Hits (FH) in 2009 and 2010 for Wetland/Meadow Sites 3-108 3-43 3-44 3-45 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for Phreatophytic 3-46 Mean Live Cover First Hits (FH) in 2009 and 2010 for Phreatophytic 3-47 Total Number of Taxa in 2009 and 2010 for Phreatophytic Shrubland Sites 3-138 3-48 Mean Number of Taxa in 2009 and 2010 for Phreatophytic Shrubland Sites 3-138 3-49 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for VFRM Juniper 3-50 Total Number of Taxa in 2009 and 2010 for VFRM Juniper Woodland Sites 3-148 3-51 Mean Number of Taxa in 2009 and 2010 for VFRM Juniper Woodland Sites 3-149 3-52 3-53 3-54 3-55 3-56 A-1 Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/ Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/ A-2

FIGURES	(CONTINUED)
---------	-------------

NUMBE	R TITLE	PAGE
A-3	Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/Lake Creek Reach 3	A-9
A-4	Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/ Lake Creek Reach 4	A-10
A-5	Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/ Lake Creek Reach 5	A-11
A-6	Fall 2010 Macroinvertebrate Metric Results for Big Springs Creek/Lake Creek Reach 6	A-12
A-7	Spring 2010 Macroinvertebrate Metric Results for Big Springs	A-13
A-8	Fall 2010 Macroinvertebrate Metric Results for Big Springs	A-14
A-9	Spring 2010 Macroinvertebrate Metric Results for Keegan	A-15
A-10	Fall 2010 Macroinvertebrate Metric Results for Keegan	A-16
A-11	Spring 2010 Macroinvertebrate Metric Results for Minerva Middle	A-17
A-12	Fall 2010 Macroinvertebrate Metric Results for Minerva Middle	A-18
A-13	Spring 2010 Macroinvertebrate Metric Results for Minerva North	A-19
A-14	Fall 2010 Macroinvertebrate Metric Results for Minerva North	A-20
A-15	Spring 2010 Macroinvertebrate Metric Results for South Millick	A-21
A-16	Fall 2010 Macroinvertebrate Metric Results for South Millick	A-22
A-17	Spring 2010 Macroinvertebrate Metric Results for Stateline	A-23
A-18	Fall 2010 Macroinvertebrate Metric Results for Stateline	A-24
A-19	Spring 2010 Macroinvertebrate Metric Results for Stonehouse	A-25
A-20	Fall 2010 Macroinvertebrate Metric Results for Stonehouse	A-26
A-21	Spring 2010 Macroinvertebrate Metric Results for Swallow	A-27
A-22	Fall 2010 Macroinvertebrate Metric Results for Swallow	A-28

FIGU Numbe	RES (CONTINUED) ER TITLE PAGE
A-23	Spring 2010 Macroinvertebrate Metric Results for Unnamed 1 North of Big
A-24	Fall 2010 Macroinvertebrate Metric Results for Unnamed 1 North of Big
A-25	Spring 2010 Macroinvertebrate Metric Results for Unnamed 5
A-26	Fall 2010 Macroinvertebrate Metric Results for Unnamed 5A-32
A-27	Spring 2010 Macroinvertebrate Metric Results for West Spring Valley Complex A-33
A-28	Fall 2010 Macroinvertebrate Metric Results for West Spring Valley ComplexA-34
A-29	Spring 2010 Macroinvertebrate Metric Results for WillowA-35
A-30	Fall 2010 Macroinvertebrate Metric Results for Willow A-36
B-1	Creek Reaches Physical Habitat Map Fall 2010B-2
B-2	Big Springs Physical Habitat Map for Spring 2010B-4
B-3	Big Springs Physical Habitat Map for Fall 2010B-5
B-4	Total Aquatic Area by Season for 2009 and 2010 at Big SpringsB-6
B-5	Clay Spring Physical Habitat Map for Spring 2010B-8
B-6	Clay Spring Physical Habitat Map for Fall 2010B-9
B-7	Four Wheel Drive Spring Physical Habitat Map for Spring 2010B-12
B- 8	Four Wheel Drive Spring Physical Habitat Map for Fall 2010B-13
B- 9	Total Aquatic Area by Season for 2009 and 2010 at Four Wheel DriveB-14
B-10	Keegan Spring Complex North Physical Habitat Map for Spring 2010B-16
B-11	Keegan Spring Complex North Physical Habitat Map for Fall 2010B-17
B-12	Total Aquatic Area by Season for 2009 and 2010 at Keegan SpringComplex NorthB-18
B-13	Minerva Spring Complex Middle Physical Habitat Map for Spring 2010B-20

FIGUI Numbe	RES (CONTINUED) R TITLE PAGE
B-14	Minerva Spring Complex Middle Physical Habitat Map for Fall 2010B-21
B-15	Total Aquatic Area by Season for 2009 and 2010 at Minerva Spring Complex MiddleB-22
B- 16	Minerva Spring Complex North Physical Habitat Map for Spring 2010B-24
B-17	Minerva Spring Complex North Physical Habitat Map for Fall 2010B-25
B-18	Total Aquatic Area by Season for 2009 and 2010 at Minerva Spring Complex NorthB-26
B- 19	North Little Physical Habitat Map for Spring 2010B-28
B-20	North Little Physical Habitat Map for Fall 2010B-29
B-21	Total Aquatic Area by Season for 2009 and 2010 at North Little SpringB-30
B-22	Shoshone Ponds Physical Habitat Map for Spring 2010B-32
B-23	Shoshone Ponds Physical Habitat Map for Fall 2010B-33
B-24	Total Aquatic Area by Season for 2009 and 2010 at Shoshone PondsB-34
B-25	South Millick Physical Habitat Map for Spring 2010B-36
B-26	South Millick Physical Habitat Map for Fall 2010B-37
B-27	Total Aquatic Area by Season for 2009 and 2010 at South Millick SpringB-38
B-28	Stateline Springs Physical Habitat Map for Spring 2010B-40
B-29	Stateline Springs Physical Habitat Map for Fall 2010B-41
B-30	Total Aquatic Area by Season for 2009 and 2010 at Stateline Springs
B-31	Stonehouse Physical Habitat Map for Spring 2010B-44
B-32	Stonehouse Physical Habitat Map for Fall 2010B-45
B-33	Total Aquatic Area by Season for 2009 and 2010 at StonehouseB-46
B-34	Swallow Creek Physical Habitat Map for Spring 2010B-48

_

FIGURES (CONTINUED) NUMBER TITLE PAGE **B-35** Swallow Creek Physical Habitat Map for Fall 2010B-49 **B-36** Total Aquatic Area by Season for 2009 and 2010 at Swallow Spring......B-50 **B-37** Unnamed 1 Spring North of Big Physical Habitat Map for Spring 2010B-52 **B-38** Unnamed 1 Spring North of Big Physical Habitat Map for Fall 2010.....B-53 **B-39** Total Aquatic Area by Season for 2009 and 2010 at Unnamed 1 Spring North of BigB-54 **B-40** Unnamed 5 Physical Habitat Map for Spring 2010B-56 **B-41** Unnamed 5 Physical Habitat Map for Fall 2010B-57 **B-42** Total Aquatic Area by Season for 2009 and 2010 at Unnamed 5B-58 **B-43** West Spring Valley Complex 1 Physical Habitat Map for Spring 2010B-60 **B-44** West Spring Valley Complex 1 Physical Habitat Map for Fall 2010B-61 **B-45** Total Aquatic Area by Season for 2009 and 2010 at West Spring Valley Complex 1.....B-62 **B-46 B-47** Willard Physical Habitat Map for Spring 2010B-64 **B-48** Willow Spring Physical Habitat Map for Spring 2010B-66 **B-49** Willow Spring Physical Habitat Map for Fall 2010.....B-67 **B-50** Total Aquatic Area by Season for 2009 and 2010 at Willow Spring......B-68 D-1 Springsnail Distribution at Big Springs - Channels A and B 2009 and 2010D-2 **D-2** Springsnail Distribution at Minerva Spring Complex Middle -**D-3** Channels A and B, 2009 and 2010......D-4

FIGUF	FIGURES (CONTINUED)		
NUMBE	R TITLE	PAGE	
D-4	Springsnail Distribution at Minerva Spring Complex North - Channel A, 2009 and 2010	D-5	
D-5	Springsnail Distribution at Stateline Springs - Channel A, 2009 and 2010	D-6	
D-6	Springsnail Distribution at Stateline Springs - Channels B and C, 2009 and 2010	D-7	
D-7	Springsnail Distribution at Stonehouse Spring Complex - Channel E, 2009 and 2010	D-8	
D-8	Springsnail Distribution at Unnamed 1 Spring North of Big - Channels A and B, 2009 and 2010	D-9	
D-9	Springsnail Distribution at West Spring Valley Complex 1 - Channel A, 2009 and 2010	.D-10	
D-10	Springsnail Distribution at Willow-NV Spring - Channel A, 2009 and 2010	. D -10	

This Page Left Intentionally Blank

TAB Nume	-
3-1	Total Aquatic Area by Site and Hydromorphological Unit (Pools, Channels), 2010 3-2
3-2	Percent Change in Total Aquatic Area from 2009 to 2010
3-3	Site Assessment Summary for 2010
3-4	Overall Site Assessment Ratings for 2009 and 2010
3-5	Water Temperature (°F) in Spring Valley Monitoring Sites for 2009 and 2010 3-9
3-6	Water Temperature (°F) in Snake Valley Monitoring Sites for 2009 and 2010 3-9
3-7	Specific Conductivity (µS/cm) in Spring Valley Monitoring Sites for 2009 and 2010
3-8	Specific Conductivity (µS/cm) in Snake Valley Monitoring Sites for 2009 and 2010
3-9	pH in Spring Valley Monitoring Sites for 2009 and 2010
3-10	pH in Snake Valley Monitoring Sites for 2009 and 2010
3-11	Dissolved Oxygen Levels (mg/L) in Spring Valley Monitoring Sites for 2009 and 2010
3-12	Dissolved Oxygen Levels (mg/L) in Snake Valley Monitoring Sites for 2009 and 2010
3-13	Springbrook Velocity (ft/sec) in Spring Valley Monitoring Sites for 2009 and 2010
3-14	Springbrook Velocity (ft/sec) in Snake Valley Monitoring Sites for 2009 and 2010 3-15
3-15	Turbidity Levels (NTU) in Spring Valley Monitoring Sites for 2009 and 2010 3-15
3-16	Turbidity Levels (NTU) in Snake Valley Monitoring Sites for 2009 and 2010
3-17	Nutrient Concentrations (mg/L) in Spring Valley Monitoring Sites for 2009 and 2010
3-18	Nutrient Concentrations (mg/L) in Snake Valley Monitoring Sites for 2009 and 2010

TABLES (CONTINUED)NumberTitle	
3-19	Descriptive Statistics: Springsnail Extents, Transects and Sampling Points, and Total and Mean Counts for 2009 and 2010
3-20	Linear Mixed Model Results Comparing Springsnail Counts across Years and Seasons for Spring and Fall 2009 and 2010
3-21	Descriptive Statistics: Springsnail Habitat Mean Values for 2009 and 2010
3-22	Percent Relative Abundance of Macroinvertebrates in Spring Valley Monitoring Sites for 2009 and 2010
3-23	Percent Relative Abundance of Macroinvertebrates in Snake Valley Monitoring Sites for 2009 and 2010
3-24	Macroinvertebrate Taxa Richness and EPT Richness for 2009 and 2010 3-41
3-25	Northern Leopard Frog Survey Locations by Survey Type, and General Results for 2009 and 2010
3-26	Northern Leopard Frog Egg Mass Survey Results for 2009 and 2010
3-27	Summary of Visits to Unnamed 5 Spring with the Number and Age Class (AC) of New Egg Masses Documented and Tadpoles Observed
3-28	Summary of Visits to Keegan Spring Complex North with the Number of Age Class (AC) of New Egg Masses Documented and Tadpoles Observed
3-29	Summary of Visits to Minerva Spring Complex North with the Number of Age Class (AC) of New Egg Masses Documented and Tadpoles Observed
3-30	2009 and 2010 Northern Leopard Frog Egg Mass Habitat Comparison
3-31	Water Quality Measurements for Each Northern Leopard Frog Breeding Pool 3-49
3-32	Keegan Spring Complex North: Relict Dace CPUE Values for the 2010 Spring and Fall Sampling
3-33	Keegan Spring Complex North: Relict Dace CPUE Values for the 2010 Spring and Fall Sampling by Habitat Type
3-34	Water Quality Measurements taken at Relict Dace Sampling Area at Keegan Spring Complex North

TABLES	(Continued)
Numer	

NUMB	ER TITLE	PAGE
3-35	Stonehouse Spring Complex: Relict Dace CPUE Values for 2010 Spring and Fall Sampling	3-56
3-36	Stonehouse Spring Complex: Relict Dace CPUE Values for 2010 Spring and Fall Sampling by Habitat Type	3-56
3-37	Water Quality Measurements taken at Relict Dace Sampling Area at Stonehouse Spring Complex	3-58
3-38	Length Data for Each Native Fish Species at Big Springs Creek/Lake Creek Reaches in 2010	3-71
3-39	Water Quality Measurements for Big Springs Creek/Lake Creek Reaches for 2010.	3-73
3-40	Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH Total Number of Taxa and Mean Taxa Richness on the Aquatic Transects in Spring and Snake Valleys for 2009 and 2010	
3-41	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Aquatic Transects at the Stonehouse Complex for 2009 and 2010.	3-79
3-42	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willow Spring for 2009 and 2010	3-81
3-43	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Keegan Spring Complex for 2009 and 2010.	3-83
3-44	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at West Spring Valley Complex for 2009 and 2010	3-85
3-45	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at South Millick Spring for 2009 and 2010	3-87
3-46	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 5 Spring for 2009 and 2010	3-89

TABLES (CONTINUED) NUMBER TITLE PAGE 3-47 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Four Wheel Drive Spring for 3-48 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willard Spring for 2009 and 2010 3-93 3-49 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Minerva Spring Complex 3-50 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Swallow Spring for 2009 and 2010 3-97 3-51 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at North Little Spring for Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and 3-52 3-53 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 1 Spring North of Big 3-54 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Stateline Springs for Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH), 3-55 Total Number of Taxa and Mean Taxa Richness on the Wetland/Meadow Transects 3-56 Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at the Stonehouse Complex Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and 3-57 Total Live Cover for Wetland/Meadow Transects at Keegan Spring Complex

TABLES (CONTINUED)

NUMB	ER TITLE	PAGE
3-58	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at West Spring Valley for 2009 and 2010.	. 3-118
3-59	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010	. 3-121
3-60	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Shoshone Ponds for 2009 and 2010	. 3-125
3-61	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at The Seep for 2009 and 2010	. 3-128
3-62	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Blind Spring for 2009 and 2010.	. 3-130
3-63	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Burbank Meadows for 2009 and 2010.	. 3-133
3-64	Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH) Total Number of Taxa and Mean Taxa Richness on the Phreatophytic Shrubland Transects in Spring and Snake Valleys for 2009 and 2010	
3-65	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley North, for 2009 and 2010	. 3-139
3-66	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley Middle, for 2009 and 2010	. 3-141
3-67	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley South, for 2009 and 2010	. 3-142
3-68	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Hamlin Valley North, for 2009 and 2010	. 3-144

TABLES (CONTINUED) NUMBER

NUME	ER TITLE	PAGE
3-69	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Snake Valley South, for 2009 and 2010	3-145
3-70	Summary of Mean Live Cover Multiple Hits (MH), Total Number of Taxa and Mean Taxa Richness on the VFRM Woodland Belt Transects in Spring Valley for 2009 and 2010	3-147
3-71	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Wet Sites, 2009 and 2010	
3-72	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Dry Sites, 2009 and 2010	3-152
3-73	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar South Wet Sites, 2009 and 2010	3-154
3-74	Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar South Dry Sites, 2009 and 2010	3-156
3-75	VFRM Juniper Summary Table	3-159
B-1	Fall 2010 Mapped Area at Creek Reaches Summarized by Physical Habitat Type	B-1
B-2	Spring 2010 Mapped Area at Big Springs Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	B-3
B-3	Fall 2010 Mapped Area at Big Springs Summarized by Physical Habitat Type,HMU Type, and Total Aquatic Mapped Area	B-3
B -4	Spring 2010 Mapped Area at Clay Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	B-7
B-5	Fall 2010 Mapped Area at Clay Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	B-7
B-6	Spring 2010 Mapped Area at Four Wheel Drive Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	B -11

TABLES (CONTINUED)NumberTitle	
B-7	Fall 2010 Mapped Area at Four Wheel Drive Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B- 8	Spring 2010 Mapped Area at Keegan Spring Complex North Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-9	Fall 2010 Mapped Area at Keegan Spring Complex North Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-10	Spring 2010 Mapped Area at Minerva Spring Complex (Middle) Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-11	Fall 2010 Mapped Area at Minerva Spring Complex (Middle) Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-12	Spring 2010 Mapped Area at Minerva Spring Complex (North) Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-13	Fall 2010 Mapped Area at Minerva Spring Complex (North) Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-14	Spring 2010 Mapped Area at North Little Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-27
B-15	Fall 2010 Mapped Area at North Little Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-16	Spring 2010 Mapped Area at Shoshone Ponds Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-17	Fall 2010 Mapped Area at Shoshone Ponds Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-18	Spring 2010 Mapped Area at South Millick Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-19	Fall 2010 Mapped Area at South Millick Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area
B-20	Spring 2010 Mapped Area at Stateline Springs Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

TABLES (CONTINUED)NUMBERTITLEPA		E
B-21	Fall 2010 Mapped Area at Stateline Springs Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-39	9
B-22	Spring 2010 Mapped Area at Stonehouse Spring Complex Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-43	3
B-23	Fall 2010 Mapped Area at Stonehouse Spring Complex Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-43	3
B-24	Spring 2010 Mapped Area at Swallow Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-47	7
B-25	Fall 2010 Mapped Area at Swallow Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-47	7
B-26	Spring 2010 Mapped Area at Unnamed 1 Spring North of Big Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	1
B-27	Fall 2010 Mapped Area at Unnamed 1 Spring North of Big Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	1
B-28	Spring 2010 Mapped Area at Unnamed 5 Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	5
B-29	Fall 2010 Mapped Area at Unnamed 5 Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	5
B-30	Spring 2010 Mapped Area at West Spring Valley Complex 1 Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	9
B-31	Fall 2010 Mapped Area at West Spring Valley Complex 1 Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	9
B-32	Spring 2010 Mapped Area at Willard Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaB-63	3
B-33	Spring 2010 Mapped Area at Willow Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	5
B-34	Fall 2010 Mapped Area at Willow Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	5

TABLES (CONTINUED)NUMBERTITLE		PAGE
E-1	Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on the Vegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In	E-2
E-2	Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of Transects Where Present along Aquatic Transects in Spring and Snake Valleys for 2009 and 2010	E-9
E-3	Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010	.E-13
E-4	Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of Transects Where Present on the Phreatophytic Shrubland Sites for 2009 and 2010	.E-18
E-5	Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010 at the 14 Aquatic Sites in Spring and Snake Valleys	.E-20
E-6	Mean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010 at the Eight Wetland/Meadow Sites in Spring and Snake Valleys	.E-26
E-7	Mean Percent Cover (MH) of Dominant Plant Taxa along Greasewood - Dominated Phreatophytic Shrubland Transects for 2009 and 2010 within the Five IBMA Zones in Spring, Hamlin and Snake Valleys	.E-32
E-8	Mean Percent Cover (MH) of Dominant Plant Taxa on Valley-Floor Rocky Mountain (VFRM) Juniper Woodland Belt Transects for 2009 and 2010 at Two Populations in Spring Valley	.E-34

_

This Page Left Intentionally Blank

ACRONYMS

AC	age class
ANOVA	analysis of variance
BLM	Bureau of Land Management
BWG	Biological Work Group
CPUE	catch-per-unit effort
DEM	digital elevation model
DOI	U.S. Department of the Interior
EC	Executive Committee
GPS	Global Positioning System
HMU	hydro morphological unit
IBMA	Initial Biological Monitoring Area
N/A	not applicable
NDOW	Nevada Department of Wildlife
NSE	Nevada State Engineer
NTU	nephelometric turbidity units
QA	quality assurance
QC	quality control
SNWA	Southern Nevada Water Authority
TRP	Technical Review Panel
UDWR	Utah Division of Wildlife Resources
USFWS	U.S. Fish and Wildlife Service
UTM	Universal Transverse Mercator
VFRM	Valley-floor Rocky Mountain

ABBREVIATIONS

°F	degrees Fahrenheit
cfs	cubic feet per second
cm	centimeter
$\rm cm^2$	square centimeter
fps	feet per second
ft	foot
km	kilometer
L	liter
m	meter

ABBREVIATIONS (CONTINUED)

mg	milligram
mi ²	square mile
mm	millimeter
mS	millisiemens
μS	microsiemen
sec	second

1.0 INTRODUCTION

This report satisfies a requirement of the Stipulation for Withdrawal of Protests signed by the U.S. Department of the Interior (DOI) and SNWA on September 8, 2006. Specifically, the Southern Nevada Water Authority (SNWA) prepared this report to satisfy the requirements of the Biological Monitoring Plan for the Spring Valley Stipulation (Plan) (Biological Work Group, 2009), which was approved by the Stipulation Executive Committee (EC) in January 2009. The biological data contained in this report were submitted to the Biological Work Group (BWG) under the Stipulation.

This plan had also been approved by the Nevada State Engineer (NSE) on January 23, 2009 under the recently-vacated NSE Ruling 5726.

1.1 Background

Under the recently-vacated NSE Ruling 5726 (issued April 16, 2007), SNWA had been granted groundwater rights in Spring Valley Hydrographic Basin 184 for municipal and domestic purposes under permits 54003 through 54015, inclusive, as well as 54019 and 54020. The Ruling required the development of biologic and hydrologic monitoring plans, which were approved by the NSE on January 23, 2009.

On September 8, 2006, prior to the NSE hearing for applications 54003-54020, a Stipulation for Withdrawal of Protests (Stipulation) was established between SNWA and DOI on behalf of the Bureau of Indian Affairs, Bureau of Land Management (BLM), National Park Service, and U.S. Fish and Wildlife Service (USFWS) (collectively known as the DOI Bureaus). Exhibits A and B of the Stipulation require the development of biologic and hydrologic monitoring plans. As part of the Stipulation, an EC was established to oversee the implementation of the agreement. The BWG and hydrologic Technical Review Panel (TRP), composed of representatives of parties to the stipulation, were established to develop and oversee implementation of biological and hydrologic monitoring and mitigation plans, review program data, and modify the monitoring plans, if necessary.

Since the issuance of Ruling 5726, an opinion by the Nevada Supreme Court concluded that the NSE must re-notice SNWA's original groundwater applications and reopen the protest period (Great Basin Water Network, et. al. v. NSE, et. al., June 17, 2010). The NSE subsequently released an interpretation of the opinion on July 7, 2010, indicating that once the applications are re-noticed, the hearing process will be completed within one year from the deadline for filing protests.

The Stipulation, which is specific to SNWA's water rights applications 54003-54020 in Spring Valley Hydrographic Basin, remains valid and binding. SNWA submits this annual report to the BWG and EC as required by the Stipulation, and to the NSE.

1.2 Major Activities Performed in 2010

Major activities associated with the Biological Monitoring Plan performed in 2010 were as follows:

- Submitted the Spring Valley Stipulation Biological Monitoring Plan 2009 Annual Report to the BWG, EC and NSE (March 2010).
- Completed spring, summer, and fall monitoring as required by the Plan, in conjunction with BIO-WEST, Inc., and KS2 Ecological Field Services, LLC:
 - Conducted aquatic monitoring in spring and fall 2010.
 - Conducted vegetation monitoring in summer 2010.
 - Conducted Big Springs Creek/Lake Creek monitoring in fall 2010.
- Applied for and received Nevada Department of Wildlife (NDOW) Scientific Collection Permits and Utah Division of Wildlife Resources (UDWR) Certificates of Registration for Collect/Possess/Release.
- Invited the BWG Federal parties and State participants to participate in field activities.
- Pursued property access for biological monitoring on private land. In 2009, property access was granted for all private lands identified in the Plan, with the exception of one spring site. In 2010, access was granted for all private lands identified in the Plan.
- Submitted the 2009 Annual Report to private landowners of monitoring sites, as requested.
- Finished development of a Relational Database Management System to ensure data integrity, security, and transparency.
- Uploaded 2009 and 2010 datasets into the secure Relational Database Management System.
- Submitted data via the data-exchange web site accessible by the NSE, EC, TRP, and BWG.
- Presented 2009 data collection efforts at the BWG annual meeting (January 11-12, 2010).
- Implemented activities outlined in Section 4.0 of the Spring Valley Stipulation Biological Monitoring Plan 2009 Annual Report (SNWA, 2010; Section 4.0, Anticipated Biological Monitoring Plan-Related Activities in 2010).
- Implemented methods changes agreed upon in the BWG annual meeting (January 11-12, 2010) during the 2010 field season.

1.3 Purpose and Scope

This report provides the NSE, EC, and BWG with a summary of data collected in 2010 from biological monitoring sites as outlined in the Plan. The locations of the monitoring sites within the Initial Biological Monitoring Area (IBMA) are presented in Figure 1-1. Included in this report are summaries of data collection efforts concerning physical habitat mapping, site assessment, water quality, springsnail, macroinvertebrate, northern leopard frog (*Rana pipiens*), relict dace (*Relictus solitarius*), Big Springs Creek/Lake Creek native fish community, Pahrump poolfish (*Empetrichthys latos*), vegetation, Valley-floor Rocky Mountain juniper (VFRM juniper, *Juniperus scopulorum*; i.e., swamp cedar), and fixed station photography survey efforts.

Section 2.0 presents the status and methods for data collected under the Biological Monitoring Plan. Section 3.0 presents the results of the 2009 data collection. Section 4.0 discusses the planned activities for 2010, and Section 5.0 provides a list of references. Lastly, Appendix A through Appendix E present images, tables, and graphs of the various data discussed in the report.

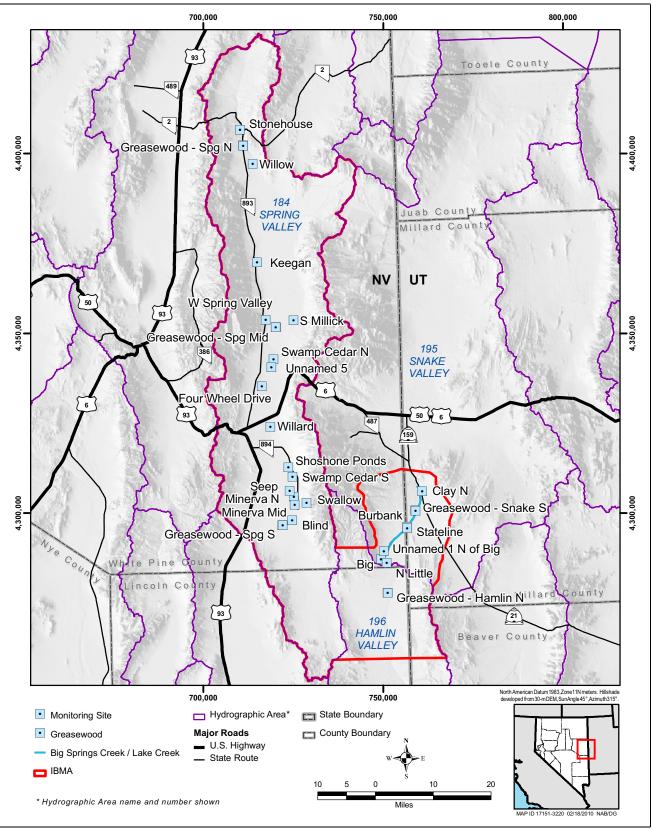
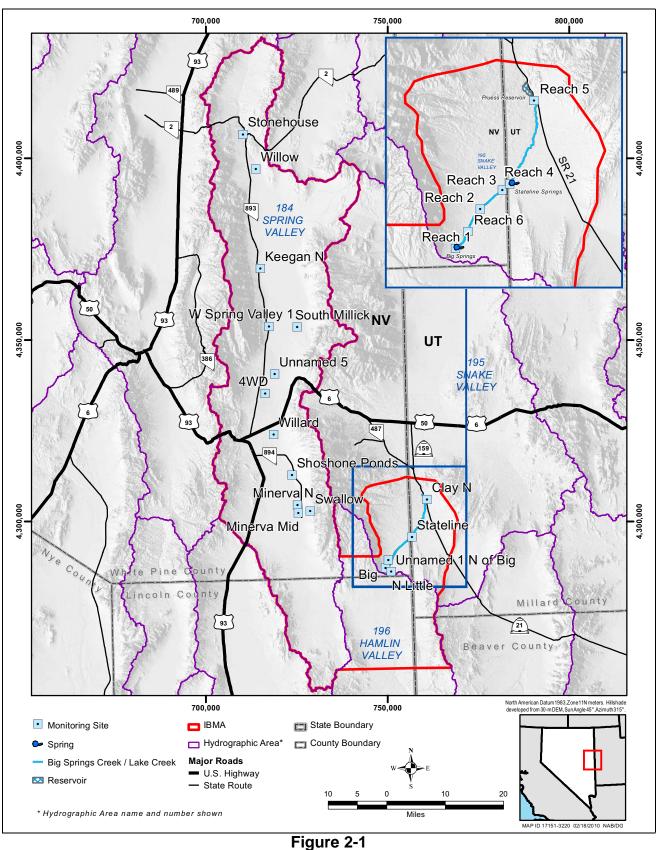


Figure 1-1 Locations of Biological Monitoring Sites within the IBMA

2.0 BIOLOGICAL MONITORING PROGRAM STATUS AND METHODS

This section presents the status and methods for data collected in 2010 under the Biological Monitoring Plan for the Spring Valley Stipulation (Plan) (Biological Work Group, 2009). Survey sites and methods described in the Plan and the Spring Valley Stipulation Biological Monitoring Plan 2009 Annual Report (SNWA, 2010) were followed, along with methods changes agreed upon in the BWG annual meeting on January 11-12, 2010. Detailed standard operating and chain-of-custody procedures were used in the collection and maintenance of the laboratory samples and field data. Protocols were followed to prevent the translocation of hazardous nuisance and invasive species among monitoring sites. Statistics were conducted in SYSTAT version 13.00.05.


Data were collected during the following time periods in 2010:

- March 9 through April 21: Northern leopard frog surveys
- May 3 through May 20: Spring aquatic surveys
- June 28 through August 13: Summer vegetation cover and composition survey
- August 5 and 11: Summer NDOW Pahrump poolfish survey at Shoshone Ponds
- August 3 through August 17: Summer VFRM Juniper tree survey
- August 30 through September 22: Fall aquatic surveys

2.1 Physical Habitat Mapping

Physical habitat mapping was conducted at all spring and pond sites during spring (May 3-12) and fall (August 30 - September 13) 2010, and at all creek reaches during fall (September 15) 2010, in accordance with the Plan. Physical-habitat-mapping monitoring sites are presented in Figure 2-1.

Physical habitat mapping was based on four categories that were combined to define habitat types: (1) hydro morphological unit (HMU: pool or channel); (2) depth (range); (3) velocity (range); and, (4) percent emergent vegetation (range). The percent emergent vegetation and velocity ranges modified for the fall 2009 survey were used (emergent vegetation: 0-30%, 30-90%, 90-100%); velocity [m/s]: 0-0.01, 0.01-0.1, 0.1-0.5, >0.5). The perimeter of each physical habitat type was recorded using a Trimble GeoXH Global Positioning System (GPS) Unit. In areas where a distinct boundaries were difficult to define (e.g., pool or channel areas that transitioned into diffuse wetlands), GPS points were taken to identify them as soft boundaries that have a greater margin of error. Areas within mapped pools and channels were used to define the number of sample points per HMU for macroinvertebrate and fish surveys.

Locations of Physical Habitat Mapping Monitoring Sites within the IBMA

2.2 Site Assessment

Qualitative site assessments were conducted at all spring and pond sites during spring (May 3-12) and fall (August 30 - September 13) 2010, and at all creek reaches during fall (September 15) 2010, in accordance with the Plan. Site assessment monitoring sites are presented in Figure 2-2. The assessments were conducted according to Sada and Pohlmann (2006). Overall disturbance ratings are reported for each site: (1) undisturbed, (2) slightly disturbed, (3) moderately disturbed, or (4) highly disturbed.

2.3 Water Quality

Water-quality measurements were made at all spring sites during spring (May 10-19) and fall (September 13-22) 2010, and at all creek reaches during fall (September 20) 2010, in accordance with the Plan. All water quality monitoring sites are presented in Figure 2-3. Water-quality measurements were taken at the springhead, a designated midpoint in the springbrook, and a designated endpoint in the springbrook (as established in 2009). Additional water-quality measurements taken for the springsnail, northern leopard frog, relict dace, and Big Springs Creek/Lake Creek native fish community surveys are reported in those respective sections.

Water quality parameters measured were temperature, specific conductivity, pH, dissolved oxygen, turbidity, and velocity. Temperature, conductivity, pH, and dissolved oxygen were measured using a Hydrolab MS5 Multiprobe fitted with a Hydrolab Surveyor 4a readout. Turbidity was measured using a Hach 2100P Portable Turbidimeter. Both instruments were calibrated every morning before the field survey according to manufacturer's specifications. Water velocities were measured with a Marsh-McBirney Flo-Mate 2000 Portable Flowmeter fitted with a standard wading rod. For each parameter, means are reported and paired *t*-tests were conducted to compare years for each season.

Total nitrogen and total phosphorus samples were collected in the springhead of each spring in accordance with the Plan. Samples were collected in sterile containers provided by Weck Laboratories (CA) and stored on ice. The samples were sent via FedEx to Weck Laboratories upon return to Las Vegas from the field. For each parameter, means are reported and paired *t*-tests were conducted to compare years for each season.

One HOBO Water Temp Pro v2 temperature logger was installed in a springhead of each spring site in spring 2009, in accordance with the Plan. Five of the seven temperature loggers that were not located in fall 2009 were recovered in 2010, with the exception of Four Wheel Drive Spring and Willard Spring. Willard Spring was essentially dry in fall 2009 and was abandoned as a temperature logger site. At Four Wheel Drive Spring a second temperature logger was installed in fall 2009, but again was not recovered. Four Wheel Drive Spring was subsequently abandoned as a temperature logger site. Each logger was initially wired to a cinder half-block and placed under the block to prevent the influence of direct sunlight. In 2010, modifications were made to increase recovery and data precision, as agreed upon in the January 11-12, 2010 BWG annual meeting: (1) cinder blocks were replaced with less obvious and smaller red bricks; (2) rebar with orange caps were installed landward of difficult-to-locate loggers; and (3) effort was made to position the loggers to minimize any direct exposure to sunlight. Each logger was programmed to record once per hour, and data were downloaded to a HOBO shuttle during the spring and fall 2010 surveys.

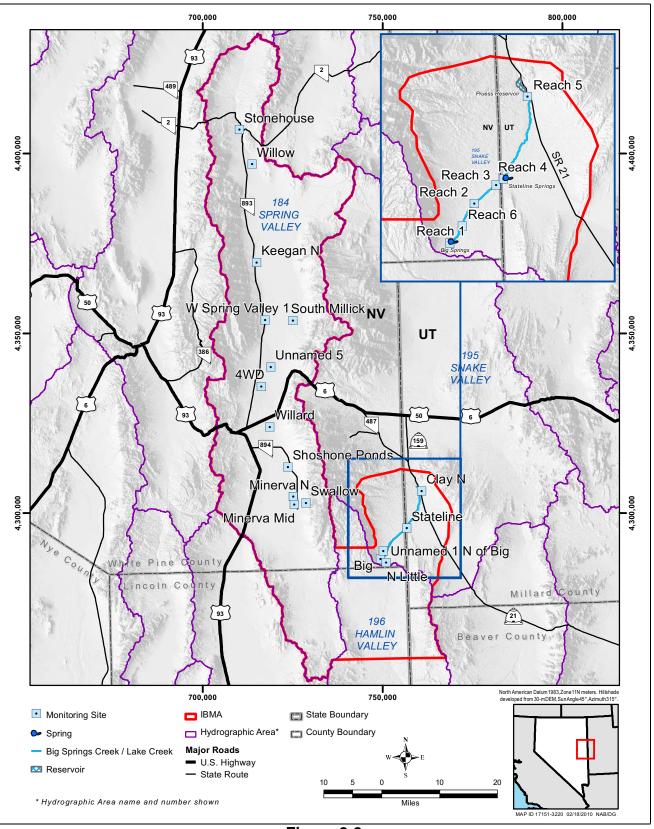


Figure 2-2 Locations of Site Assessment Monitoring Sites within the IBMA

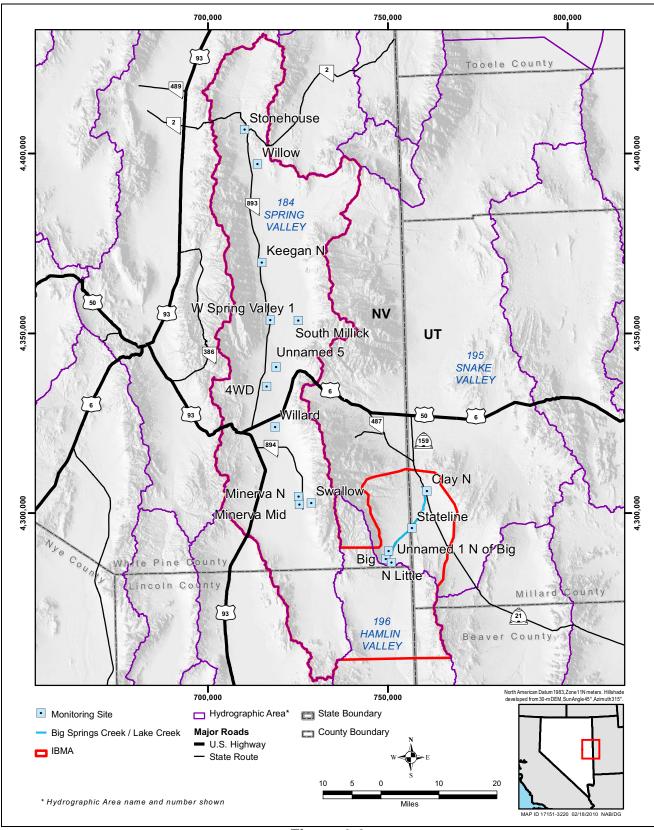


Figure 2-3 Locations of Water Quality Monitoring Sites within the IBMA

2.4 Springsnails

Nine springs were surveyed for springsnails during spring (May 10-19) and fall (September 13-22) 2010, in accordance with the Plan. Within the nine spring sites, a total of 14 channels were surveyed. Springsnail monitoring sites are presented in Figure 2-4.

Surveys at each site began with a systematic search along the channel for springsnail presence. Once the springsnail extent was determined, up to 20 transects ≥ 2.5 m apart were placed approximately equidistant from the spring source to the end of the springsnail extent, and quadrats were placed at five evenly spaced points along each transect. In springbrooks that were too narrow to accommodate five points, a minimum of three quadrats within the narrow transect were placed. A maximum of 100 points along any given springsnail extent were sampled, with one to two channels sampled per site (established in 2009). Starting downstream, springsnails were counted in each 25.0 cm² quadrat using a modified Surber sampler with a 5.0×5.0 cm frame opening and 700-micron mesh netting.

Habitat data (substrate type, presence/absence of filamentous algae and submerged vegetation, percent emergent vegetation cover, water velocity, and water depth) were collected at each quadrat. Because of dense vegetation, muddy conditions, shallow water, and rocky substrates, velocity was not measurable at some quadrats. Water quality parameters (temperature, conductivity, pH, and dissolved oxygen) were also measured at each transect. Wetted width and Universal Transverse Mercator (UTM) coordinates were also recorded at each springsnail transect.

For locations where springsnails did not occur along a linear extent (Unnamed 5 Spring and a portion of Stonehouse Spring Complex [springheads A-D]), presence/absence surveys were conducted in lieu of springsnail counts, as agreed upon in the BWG annual meeting on January 11-12, 2010. The presence/absence survey protocol established by the BWG on September 9, 2010 was followed.

Descriptive statistics are reported for springsnail extent, transects and sampling points, total and mean springsnail counts, and habitat values (water temperature, dissolved oxygen, conductivity, pH, water velocity, water depth and percent emergent vegetation cover). Mean springsnail count per sampling point (quadrat) and standard error of the mean were calculated to provide a standard way to compare springsnail count across channels and time. Because transects did not help explain variation in the linear mixed model analysis, means were calculated across quadrats.

Linear Mixed Model analysis was conducted to compare years and seasons by channel (Model: Springsnail Count = Year Season Year*Season). Restricted maximum likelihood estimation was used to fit the model. The variables *year* (categorical values 2009, 2010), *season* (categorical values spring, fall) and *year*season* were fixed effects. The variable *transect* was initially included in the first mixed model run as a random variable, but because it did not help to explain variation and reduced power it was subsequently removed from the model.

The distribution of springsnail counts along each springsnail extent in spring and fall 2009 and 2010 is shown in graphical format. Distribution is the mean springsnail count/quadrat calculated for each transect, charted from the springhead to the end of the springsnail extent. For graphing purposes, transects are assumed to be absolutely equidistant, and the first and last transect are assumed to be at the absolute start and end of the springsnail extent.

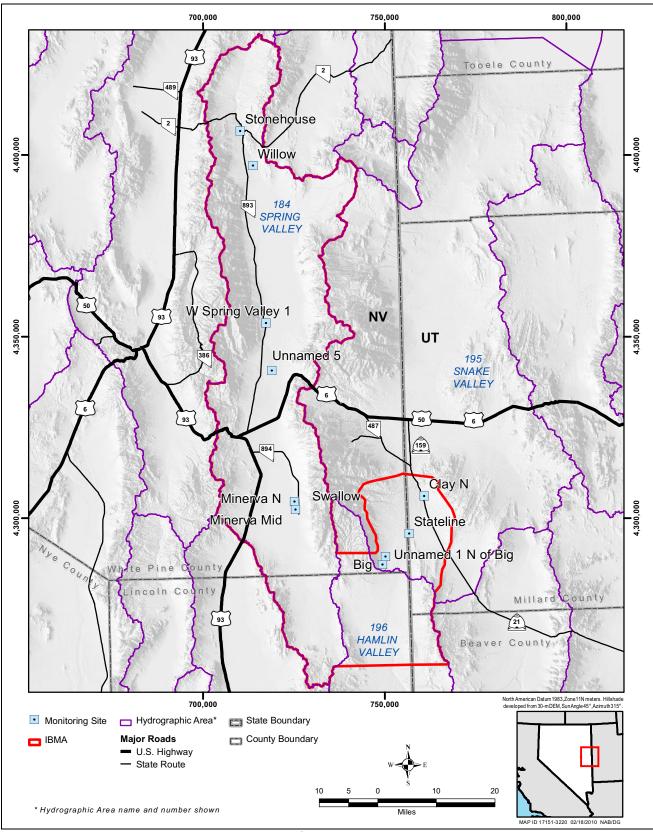


Figure 2-4 Locations of Springsnail Monitoring Sites within the IBMA

2.5 Macroinvertebrates

Thirteen springs were surveyed for macroinvertebrates during spring (May 10-19) and fall (September 13-22) 2010, and at all creek reaches during fall (September 20) 2010, in accordance with the Plan. Macroinvertebrate monitoring sites are presented in Figure 2-5.

Sampling followed the U.S. Environmental Protection Agency rapid bioassessment protocol, which involves 20 total samples combined into one composite sample (Barbour et al., 1999), as described in the Plan. Sampling locations were first stratified across HMUs (pools and channels) as determined by the physical habitat mapping (as described in the Plan), and within those HMUs the sampling locations were then stratified across space and micro-habitats by biologists in the field (as agreed upon in the BWG annual meeting on January 11-12, 2010). Macroinvertebrate collection began at the downstream end of the reach, and samples were collected in the form of kicks/roils, sweeps, or jabs using a D-frame net with a 250-micron mesh. Composite samples were transferred to a sample container(s) and preserved in 95% ethanol.

Labeled samples were shipped to Rhithron Associates, Inc., of Missoula, Montana (Rhithron), for identification and analysis. At the Rhithron laboratory, standard sorting protocols were applied to achieve representative subsamples of a minimum of 300 organisms. Caton subsampling devices, divided into 30 grids each approximately 5×6 cm, were used. Each individual sample was thoroughly mixed in its jar, poured out, and evenly spread into the Caton tray, and individual grids were randomly selected. The contents of each grid were examined under stereoscopic microscopes. Grid selection and examination continued until at least 300 organisms were counted and identified, with the final grid counted and identified in totality. Detailed laboratory methods are included in Appendix A.

Given the composite nature of the data collection, one set of results was provided per spring site per season, as described in the Plan. Taxa composition (taxonomic, dominant and functional), taxa richness (number of taxa), abundance (number of individuals per taxa in sample), and percent relative abundance (relative abundance of taxa within sample), and scores for various standard bioassessment metrics are included in the laboratory Metrics Reports in Appendix A.

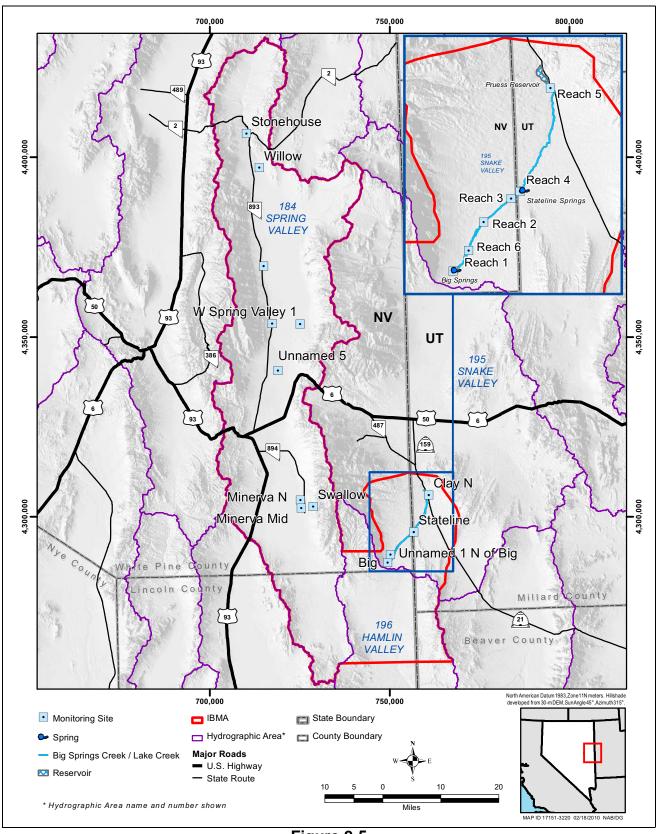
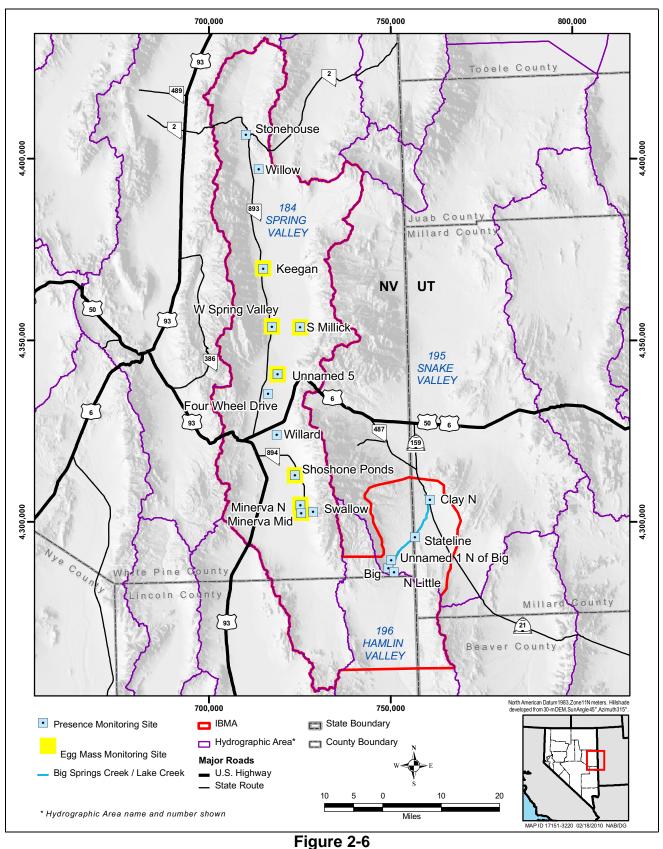


Figure 2-5 Locations of Macroinvertebrate Monitoring Sites within the IBMA

2.6 Northern Leopard Frog (Rana pipiens)


Northern leopard frog sampling was conducted at each Stipulation spring and pond site, as well as along the Big Springs Creek/Lake Creek reaches, during spring 2010 as described in the Plan. This sampling occurred in two phases. Phase one surveys were conducted to determine the presence or absence of northern leopard frogs at Stipulation sites. Phase two surveys were conducted at Stipulation sites with the confirmed presence of northern leopard frogs and focused on counting frog egg masses within the defined sampling. Northern leopard frog presence and egg mass monitoring sites are presented in Figure 2-6.

Both phase one and phase two surveys were conducted during the northern leopard frog breeding season in Spring Valley. The onset of the breeding season was determined by monitoring two sentinel sites (Unnamed 5 Spring and Shoshone Ponds) for the presence of egg masses. The sentinel sites were visited every two weeks starting on March 10, and once egg masses were documented on April 19, presence/absence surveys and egg mass surveys began at the other Stipulation sites.

Phase one surveys were conducted at Stipulation sites with no previous northern leopard frog documentation from April 21 to May 6, 2010. Surveys consisted of two to four biologists walking at a speed no greater than 20 m per minute, around and through the sampling area, including aquatic areas and immediately adjacent wetland areas, to observe northern leopard frogs, tadpoles, egg masses, or to hear calling males. The surveys' begin time and end time was noted.

Phase two surveys were conducted at seven sites with confirmed northern leopard frog presence (Keegan Spring Complex North, West Spring Valley Complex 1, Shoshone Ponds, South Millick Spring, Unnamed 5 Spring, Minerva Spring Complex Middle, and Minerva Spring Complex North) from March 10 to May 18, 2010. The surveys consisted of two to four biologists walking around and through the sampling area and immediately adjacent wetlands at a speed no greater than 20 m per minute. The surveys' begin time and end time was noted. Once an egg mass was located, it was given a unique number, marked with GPS, and flagged. If the egg mass occurred in a cluster (egg masses within one foot of each other), only one GPS point was taken at the center of the cluster. Using UDWR protocol, each egg mass was classed by age (AC 1= small, circular ova; AC 2 = kidney shaped ova; AC 3 = tailed embryos close to hatching; AC+3/hatched = hatched tadpoles; and dead = white embryos, fungus on egg mass). Once an egg mass survey was conducted at a particular site, the site was visited at 2-week intervals until at least three egg mass surveys had been conducted at the site. During subsequent visits, previously flagged egg masses were checked for development, and any new egg masses were documented.

Habitat data (water depth, distance from shoreline, and percent emergent vegetation) were collected at each egg mass upon first documentation. Percent emergent vegetation was estimated for a 0.5 m radius circle around each egg mass, as agreed upon in the BWG annual meeting on January 11-12, 2010. Water quality data (conductivity, pH, temperature, and dissolved oxygen) were collected at each breeding pool near the end of the breeding season (May 10 to May 13, 2010).

Locations of Northern Leopard Frog Monitoring Sites within the IBMA

2.7 Relict Dace (Relictus solitarius)

Relict dace were sampled at Stonehouse Spring Complex and Keegan Spring Complex North during spring (May 11-13) and fall (September 21–23) 2010, in accordance with the Plan. Relict dace were also sampled at Shoshone Ponds by NDOW in summer 2010. All three relict dace monitoring sites are presented in Figure 2-7.

2.7.1 Keegan and Stonehouse Spring Complexes

In spring, the pool and channel habitats of the designated sampling areas at Keegan and Stonehouse Spring Complexes were mapped (Appendix B). Sampling locations were first stratified across HMUs (pools and channels) as determined by the physical habitat mapping (as described in the Plan), and within those HMUs the sampling locations were then stratified across space and micro-habitats by biologists in the field (as agreed upon in the BWG annual meeting on January 11-12, 2010). Within each HMU, two-thirds of the minnow traps were standard 6-mm mesh (large mesh) traps and one-third were 3-mm mesh (small mesh) traps, in accordance with the Plan. Twenty-six large mesh and 13 small mesh traps were placed at Keegan Spring Complex. The small mesh traps were used to capture a full range of fish size classes for measuring fish length, as the larger mesh traps may not hold smaller fish.

At each relict dace sampling point, a Gee minnow trap baited with dry dog food was placed in water deep enough to submerge the trap entrances. All sampling points were recorded by GPS. These same points were used in the fall 2010 sampling effort. Traps were set in the afternoon, no later than three hours before sunset, and checked the next morning, no earlier than three hours after sunrise. The habitat, mesh size of the trap (small or large), time of trap placement and removal, and the weather conditions (cloud cover, wind, and air temperature) were recorded. Upon retrieval of a trap, captured relict dace were placed in a bucket and counted. Fish removed from small mesh traps were measured (in millimeters) for total length, with at least 25 randomly selected fish from each habitat type measured. To prevent recaptures, fish were not released until all traps in the immediate vicinity had been collected.

Relative abundance and age class structure were evaluated using catch-per-unit effort (CPUE) and fish lengths. General Linear Model analysis was conducted to compare seasons and HMUs (pool vs. channel) by site and year (Model: CPUE or fish length = Season HMU Season*HMU). A Tukey's Pairwise Comparisons analysis followed to conduct a multiple comparison of HMUs within and across seasons, by site and year. General Linear Model analysis was also conducted to compare years and HMUs by site and season (Model: CPUE or fish length = Year HMU Year*HMU).

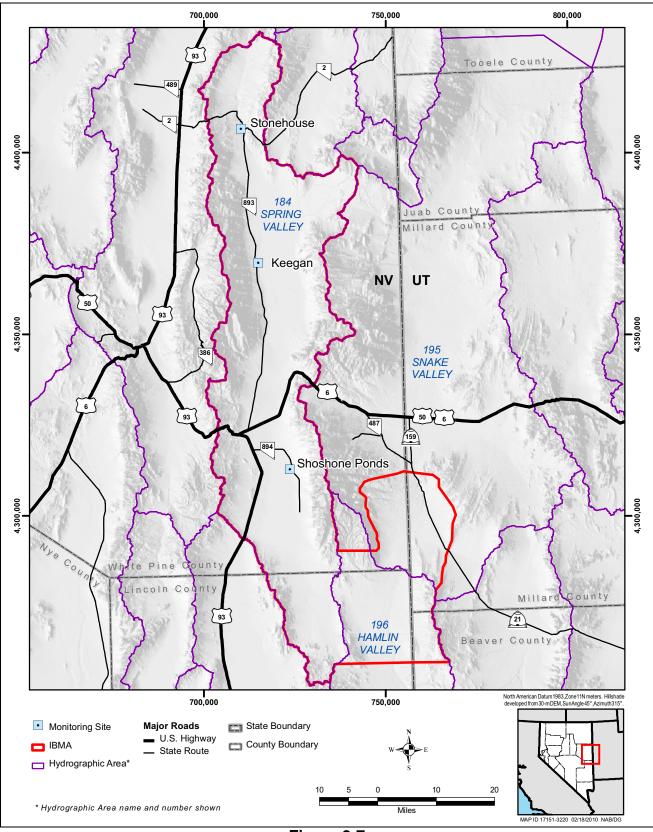


Figure 2-7 Locations of Relict Dace Monitoring Sites within the IBMA

2.7.2 Shoshone Ponds

NDOW leads an annual sampling effort of relict dace at Shoshone Ponds, which was integrated into the Plan. SNWA supported this effort in summer 2010. The sample area is the Fish Refugia Pond 3 (South Pond).

On August 5, 2010, relict dace were captured, measured, and marked at the Shoshone South Pond using minnow traps. On August 11, 2010, relict dace were again captured at the pond, and all marked and unmarked fish were counted. Using the mark-recapture data, a population estimate for South Pond was derived. For detailed methods, see the complete 2010 NDOW field trip report in Appendix C.

2.8 Pahrump Poolfish (Empetrichthys latos)

NDOW leads an annual sampling effort of Pahrump poolfish at Shoshone Ponds, which was integrated into the Plan. SNWA supported this effort in summer 2010. The Shoshone Pahrump poolfish monitoring site is presented in Figure 2-8. The sample area includes the Fish Refugia Ponds 1 and 2 (North and Middle Ponds) and a large stock pond.

On August 5, 2010, Pahrump poolfish were captured, measured, and marked at the Shoshone Middle, North, and Stock Ponds using minnow traps. On August 11, 2010, Pahrump poolfish were again captured at these three ponds, and all marked and unmarked fish were counted. Using the mark-recapture data, population estimates for each pond were derived. For detailed methods, see the complete 2010 NDOW field trip report in Appendix C.

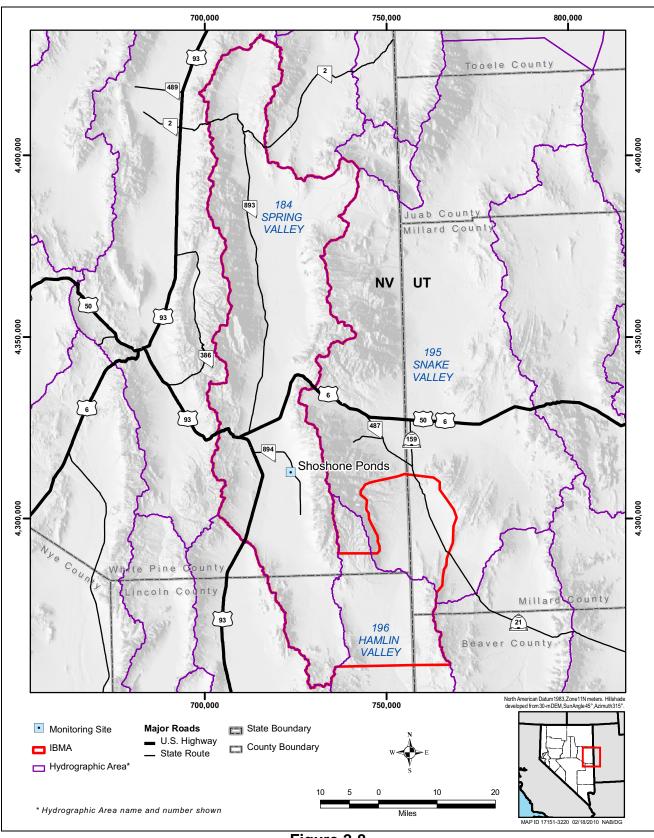


Figure 2-8 Locations of Pahrump Poolfish Monitoring Sites within the IBMA

2.9 Big Springs Creek/Lake Creek Native Fish Community

Fish inhabiting the Big Springs Creek/Lake Creek system were sampled by electrofishing along six permanent 100-m reaches August 31-September 1, 2010, in accordance with the Plan. The reaches include the creek outflow of Big Springs, three stretches of Big Springs Creek on BLM land, a stretch of Lake Creek along Stateline Springs, and the Lake Creek inflow to Pruess Lake.

- Reach 1 is approximately 200 m downstream from the Big Springs springhead (the Plan designated Reach 1 to originate at the springhead, but wire fencing necessitated positioning the reach 200 m downstream).
- Reach 2 is approximately 7 km downstream of Big Springs;
- Reach 3 is approximately 1.2 km upstream of Stateline Springs;
- Reach 4 is at Stateline Springs;
- Reach 5 is approximately 800 m upstream of Pruess Reservoir;
- Reach 6 is between Reaches 1 and 2. As agreed to in the January 11-12, 2010 BWG annual meeting, Reach 6 was added in an effort determine the best placement of reaches between Big Springs and Stateline Springs.

Reaches 1, 2, 3, and 6 were sampled on August 31, 2010, and Reaches 4 and 5 were sampled on September 1, 2010. The start and endpoints of each reach were marked by GPS in 2009 (reaches 1-5) and 2010 (reach 6). Creek monitoring reaches are presented in Figure 2-9.

Fish were sampled by placing a block net at the begin and endpoints of each reach to restrict fish movements into or out of the reach. A three-pass depletion survey was conducted along each reach with a backpack electrofisher (Smith Root LR-24) while three netters captured stunned fish with dip nets. After each pass, the seconds of electrofisher use were recorded, and all captured fish were identified to species and counted. Over the course of the three passes, up to 25 individuals of each fish species were measured to total length in millimeters. The fish were released below the downstream block net immediately after counting and measuring.

Upon completion of the fish sampling at each reach, habitat data were collected along five line-point transects to characterize the general habitat of the reach. The transects were placed at the 0-, 20-, 40-, 60-, and 80-m marks along each 100-m reach and ran the width of the channel. For each transect, the total transect length in centimeters (from bank to bank) was recorded, and the substrate was characterized by a presence of silt, sand, gravel, cobble, and boulder. At each transect centimeter mark, the habitat was classified as no vegetation, emergent vegetation, or submergent vegetation. Water-quality measurements (temperature, specific conductivity, pH, dissolved oxygen, turbidity, and velocity) were also taken at the middle point of each reach at the time of the water quality survey (September 20, 2010).

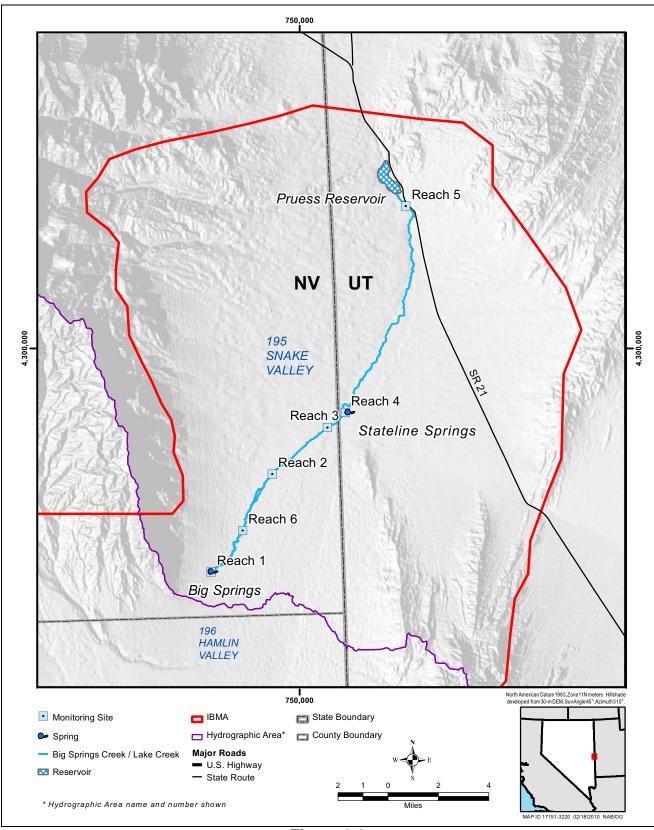


Figure 2-9

Locations of Creek Native Fish Community Monitoring Reaches within the IBMA

2.10 Vegetation

2.10.1 Field Data Collection

Vegetation cover and composition surveys were conducted at spring, wetland/meadow, phreatophytic shrubland, and valley floor Rocky Mountain (VFRM) Juniper (swamp cedar, *Juniperus scopulorum*) transects in summer (June 28 - August 13) 2010, in accordance with the Plan. Vegetation monitoring sites are presented in Figure 2-10.

Specifically, vegetation data were collected along the 158 permanent line transects and 32 permanent belt transects established in 2009, in accordance with the Plan. The 158 line transects include 70 aquatic transects (14 sites), 63 wetland/meadow transects (8 sites), and 25 phreatophytic shrubland transects (5 sites). Four of the aquatic transects are included within the lengths of longer wetland/meadow transects. Overall, the line transects varied in length from 4 to 130 m. The 32 belt transects were split between the two VFRM juniper (swamp cedar) woodlands (woodlands), and each 5×20 m belt transect contained three parallel 20-m long line transects.

- Aquatic transects are positioned across or along springheads and spring brooks (Spring and Snake valleys);
- Wetland/meadow transects are in the vicinity of springs, seeps, ponds and creeks (Spring and Snake valleys);
- Phreatophytic shrubland transects are located in greasewood (*Sarcobatus vermiculatus*)dominated communities, stratified across five IBMA regions (Spring Valley North, Spring Valley Middle, Spring Valley South, Hamlin Valley North, and Snake Valley South);
- Woodland transects are located in the two VFRM juniper-dominated communities in Spring Valley.

Data were collected using the line intercept method, with counts taken at each 1-cm mark along the transect line and recorded, by species or taxa, for each 1-m interval. Data were taken on a multiple-hit basis where all species occurring at each 1-cm mark were counted. Multiple occurrences of the same species (i.e., different strata) at each 1-cm mark were not recorded. Open water was recorded whenever present; if vegetation, bare ground or litter could be seen beneath the water, it was also recorded. If the water was too deep to view the ground surface, litter was assumed to cover the bottom and was recorded (this occurred on productive sites with high vegetation cover, making detritus at ground surface likely). If no live plant material was present, the occurrence of bare ground or litter was recorded. A qualitative measure of soil moisture was also taken at 1-m intervals along the VFRM juniper transects. Methods for collecting VFRM juniper tree data within the belt transects are discussed in Section 2.11.

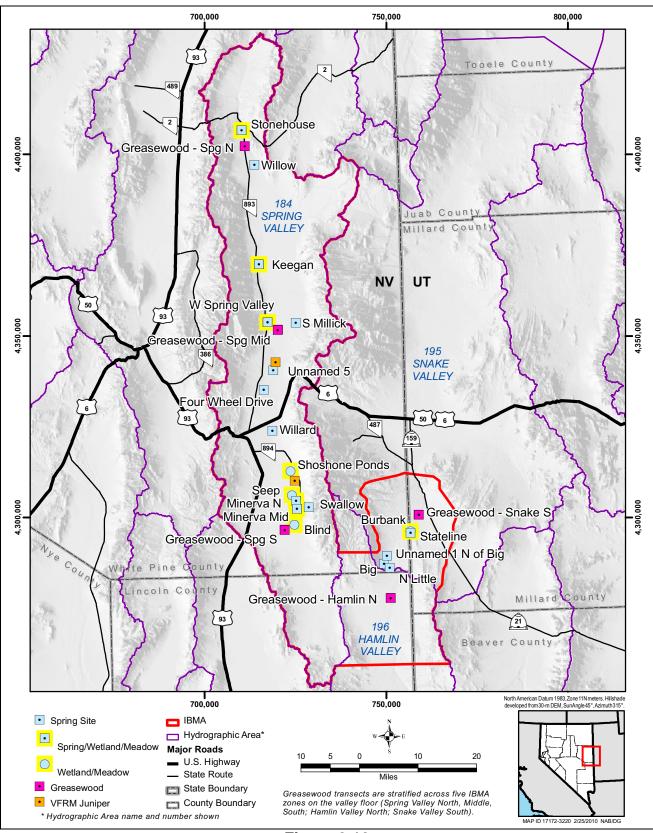


Figure 2-10 Locations of Vegetation Monitoring Sites within the IBMA

2.10.2 Data Analysis

Vegetation Cover - First Hits and Multiple Hits

Mean live cover multiple hits (MH) is the mean of the live cover values of all species averaged over the number of transects per site, and includes multiple hits per 1-cm mark per meter interval. Multiple hits per 1-cm mark include vegetative cover encountered from all layers (canopy, understory, ground cover) stratified, and with overlap, where the total percent cover for a given species for a 1-m interval can be greater than 100.

Mean live cover first hits (FH) is the mean of the percent of the length of each transect where live vegetation was present, averaged over the number of transects per site (i.e., first-hit counts of live vegetation, not species, only). First-hits are hits where live vegetation is the first hit encountered per 1-cm interval when viewed from above. For example, 18% mean live cover (FH) indicates a birds-eye-view would reveal 18% of the surface area as live vegetative material with the remaining 82% comprised of bare ground, litter, water, dead understory and/or dead canopy.

Although first hit was not recorded in the field, it was determined from the dataset whether live vegetation was the first hit. For each meter, first hit live vegetation was calculated by subtracting the sum of bare ground, litter, water, dead vegetation (i.e., dead during the survey but alive during the 2010 growing season), and/or dead canopy from 100 (the maximum number of first hits possible per meter interval). For transect intervals where dead vegetation or dead canopy was documented, a deduction was made on whether the dead material occurred above or below live vegetation based on the species present and/or information obtained from the field sampling team (for example, in aquatic and wetland meadow transects dead canopy occurred largely as an overstory species with vegetation understory, and therefore for most cases was assumed to be the first hit). Because it was impossible to determine what portion of the dead canopy was above or below live VFRM juniper tree vegetation, mean live cover (FH) was not calculated for the VFRM juniper (swamp cedar) transects.

Number of Taxa and Mean Taxa Richness

Total number of taxa and mean taxa richness are both reported. Total number of taxa is not independent of transect length, which varies considerably across the aquatic (spring) and wetland/meadow transects (ranging from 5-100 m). Therefore, while total number of taxa are reported, mean taxa richness was used for comparing richness across sites for the aquatic and wetland/meadow transects. Because transect lengths are equal across phreatophytic shrubland transects and across VFRM juniper transects, both total number of taxa and mean taxa richness were used for comparing richness across sites.

Total number of taxa is the total number of taxa or species observed across all transects per site. Mean taxa richness for each transect was calculated by dividing the total number of taxa by transect length (m). Mean taxa richness for each site was calculated by averaging the mean taxa richness across transects (grand mean) for each transect type. The grand mean therefore takes into account the variation between transects, and that a species may occur on more than one transect.

Paired t-test

For each transect, between year differences for mean live cover (overall and for select species) was evaluated using paired *t*-tests. Species for each transect were selected for analysis based on the importance of the species to micro-communities along each transect as well as overall abundance. The most abundant or dominant species were selected based on the greatest percent mean live cover or total number of hits. Additional species with relatively low total percent mean live cover were also selected based on species dominance within micro-communities located along each transect. Both 2010 transect data and spatial heterogeneity schematic diagrams presented in the 2009 annual report (SNWA 2010, Section 3.8: Figures 3-2 through 3-47, showing distributions of dominant species along a hydrologic gradient along each transect) were used as a guide to identify which species were important to the overall and internal spatial heterogeneity (e.g., distribution patterns of micro-communities, including locally dominant species) for each transect.

For each transect, pairing was done by one meter intervals across the 2009 and 2010 datasets (e.g., transect 001, meter interval 000-001 m, 2009 and 2010 data paired; transect 001, meter interval 001-002 m, 2009 and 2010 data paired etc.). The sample size (N) for each species and total live cover was determined by the total length of the transects.

For VFRM juniper transects, means were calculated across the line transects within each belt transect, and analyses were done at the belt transect level.

2-Way ANOVA

Linear Mixed Model analysis was conducted to compare years by site (Model: Mean Live Cover (MH) = Year Transect). Restricted maximum likelihood estimation was used to fit the model. The variables *year* and *transect* were fixed effects.

For the aquatic and wetland/meadow transects, analyses were conducted by site. For the phreatophytic shrubland transects, analyses were conducted by IBMA region (ass identified in the Plan: Spring Valley North, Spring Valley Middle, Spring Valley South, Hamlin Valley North, and Snake Valley South). For the VFRM juniper woodland transects, analyses were conducted by population (Swamp Cedar North and Swamp Cedar South), as well as by Dry Sites and Wet Sites within each of these populations. Transects were categorized as Dry Site or Wet Site using the understory vegetation composition to deduce typical moisture conditions.

2.11 Valley Floor Rocky Mountain (VFRM) Juniper (Juniperus scopulorum)

Juvenile and mature VFRM Junipers (swamp cedars) were surveyed within two Spring Valley valley-floor populations during summer (August 3-17) 2010, in accordance with the Plan. VFRM Junipers monitoring sites are presented in Figure 2-11. Tree counts, heights, basal circumferences, and stem length data were collected within 32 permanent belt transects (5×20 m transects, 16 transects per population) that were established in 2009. Timing of sampling was designed to correspond to the height of the growing season and the period of greatest water stress.

Counts of juvenile trees (<1 m in height) and mature trees (\geq 1 m in height) within each of the belt transects were recorded. Heights were recorded to the nearest centimeter for up to 25 trees per age class within each transect, using either a meter stick or a leveling rod. In transects with greater than 25 trees per age class, the subsample of 25 trees was randomly selected. Height measurements were taken for trees up to 950 cm, and any trees above that height were recorded as "greater than 950 cm". In addition to height measurements, circumference measurements (basal at ground level in cm) were taken for the same mature trees. Mature trees that were randomly selected in 2010 were tagged so that the same trees will be used in the subsample in future years. Randomly selected juvenile trees were not tagged due to practical constraints regarding the size of the trees and the size of the tags, therefore a new subsample of juvenile trees will have to be randomly selected each year.

Stem elongation data was collected for the branches tagged in 2009 (4 trees per transect and 10 tags per tree for most transects). The distance from the juncture above the tag to the tip of the leader was measured to the nearest millimeter using a measuring tape or a ruler. Stem elongation for each branch was calculated by subtracting the 2009 length from the 2010 length. Out of the original 1,249 branches tagged in 2009, 1,096 were used in the analysis this year. This difference in branch numbers tagged versus analyzed was due to either a loss of a branch tag, data collection error or possible breakage of the branch. Thirty-five tags were lost between 2009 and 2010, of which 16 (maximum number of branches that could feasibly be re-tagged) were replaced on a new branch and the length was measured. Stem elongation data is not available for tags replaced in 2010 since there is not two years of data at this time.

Negative growth from 2009 to 2010 was recorded on 169 branches of which 98 were eliminated from the data analysis. An observed margin of error was used to determine whether to include branches with negative growth in the analysis. The margin of error was calculated in 2009 by measuring 40 branches twice on the same day. The average difference for the paired measurements was ± 4 mm and the greatest difference between the measurements was 11 mm. Any negative growth measurement for 2010 within the greatest margin of error (11 mm) is presumed to be within the greatest margin of error was presumed to be an error in data collection or a branch that broke off between 2009 and 2010, and was not included in the analysis. Branches were also eliminated from analysis if they had extremely large growth measurements (>100 mm) that appear to be outside the normal range of growth. Twenty branches were eliminated from analysis due to growth measurement exceeding 100 mm as they were presumed to be the result of data collection errors. Data not used in this analysis has been retained in the database and will be available for use in future analyses.

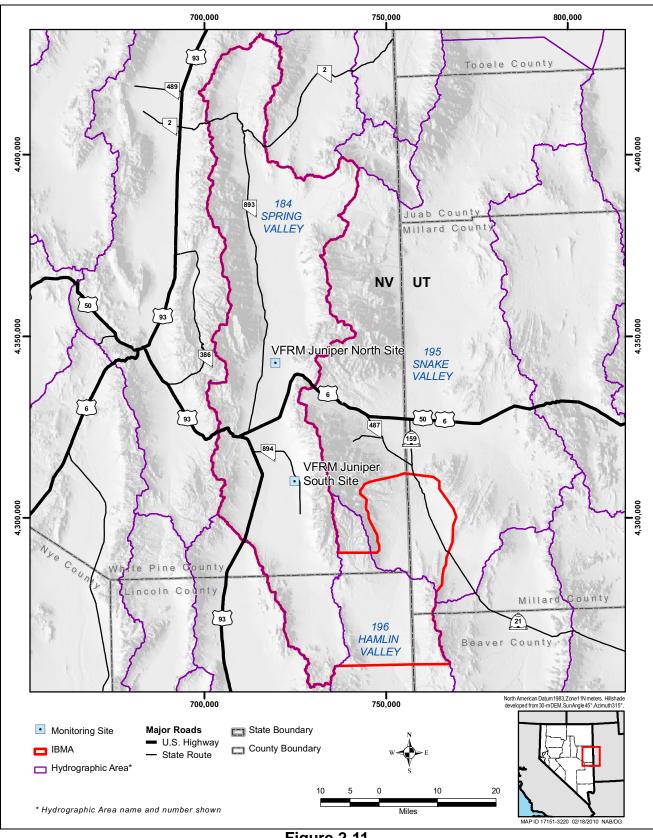


Figure 2-11 Locations of VFRM Juniper Monitoring Sites within the IBMA

2.12 Fixed Station Photography

Fixed station photography was conducted at all spring and pond sites during spring (May 3-12) and fall (August 30 - September 13) 2010, and at all wetland/meadow, phreatophytic shrubland, and VFRM Juniper transects during summer (June 28 - August 13) 2010, in accordance with the Plan. The fixed station photography monitoring sites are presented in Figure 2-12. At spring and pond sites, aquatic photograph stations were established in 2009 to capture representative aquatic areas where the biological surveys are being conducted. Endpoints of the vegetation transects described in Section 2.10 (spring, wetland/meadow, valley floor Rocky Mountain [VFRM] juniper [swamp cedar], and phreatophytic shrubland transects) also served as fixed photograph stations.

The number of fixed station photographs (photograph stations and directions of photographs within stations) were reduced from 2009 to increase efficiency while still capturing representative aquatic areas where the biological surveys are being conducted, as agreed upon in the January 11-12, 2010 BWG annual meeting. Permanent field markers for these stations were not removed, and all photographs taken in 2009 remain in the database. Additionally, a few new photograph stations were established in 2010. Locations of these stations were recorded with a Trimble GPS Unit (permanent markers have not been installed). The aquatic photograph stations employed in 2010 are shown in the physical habitat maps in Appendix B.

To increase repeatability of photographs across seasons, compass bearings (direction of photographs) and hard copies of photographs taken in the spring at aquatic photograph stations were used as references in the fall. At vegetation transects, photographs were taken at each transect endpoint in the direction of the opposite endpoint. Photographs were taken with a digital camera at a resolution of at least 6 mega pixels.

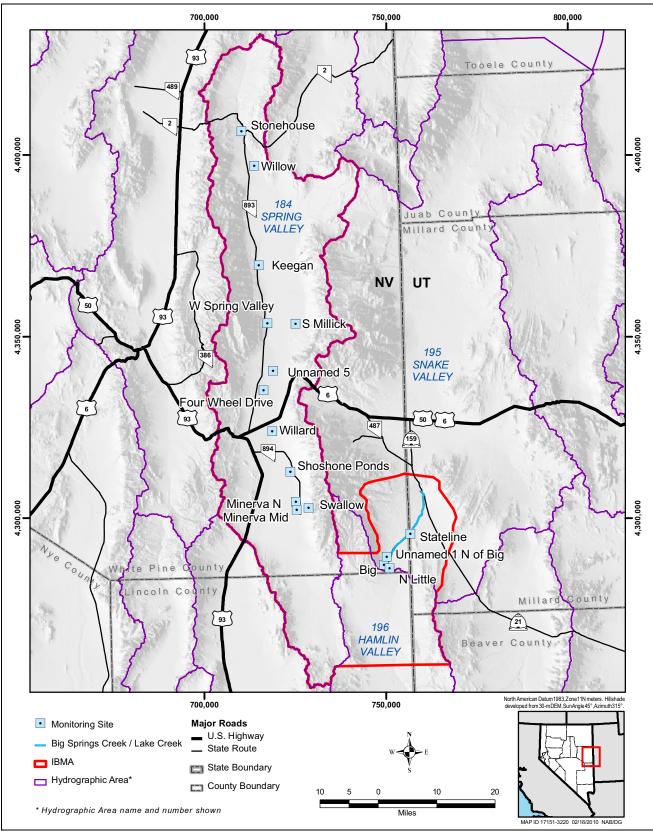


Figure 2-12

Locations of Fixed Station Photography Monitoring Sites within the IBMA

2.13 Data Management

A data management system was developed in 2009, in accordance with the Plan. A workflow process was designed to ensure data integrity (i.e., accuracy and consistency) from field data collection to data storage in a Relational Database Management System (Database) to data distribution. The focus was on data quality, transparency, traceability, and security.

The data management workflow is as follows:

- 1. Archival storage of all original data—both hardcopy data sheets and digital data files—in their original state.
- 2. Format all data collected in the field into standardized data sheets and geographic information system files.
- 3. Perform rigorous, multistep Quality Assurance/Quality Control (QA/QC) of all digital data.
- 4. Upload data into the Database, which requires data to pass validation rules.
- 5. Finalize data upon submission of the annual report each year, at which time final datasets will be provided to the NSE, EC, and BWG and made available to the public.

Archival storage is provided for all hardcopy data sheets, original and provisional digital data sheets, and provisional and final data within the database:

- Storage with limited access provides the secure storage for all hardcopy data sheets.
- A Secure Digital Repository (Repository) on a network provides storage for all original and provisional digital data files described in the data management workflow. Repository access is limited and is backed up on a regularly scheduled basis.
- An Enterprise Oracle10g Database provides secure storage for all data loaded from digital data sheets during the automated data-loading process, as well as all final data within the Database. Database access is limited and files are backed up on a regularly scheduled basis.

Provisional 2010 datasets were provided to the BWG for review. All 2009 and 2010 datasets have been finalized.

3.0 BIOLOGICAL MONITORING PLAN RESULTS

This section presents summary results of the Biological Monitoring Plan 2010 field effort. Final data is available upon request.

3.1 Physical Habitat Mapping

Physical habitat maps were created at aquatic sites (springs, ponds, and creek reaches) in spring (May 3-12), and fall (August 30–September 13), 2010. Maps for individual sites are presented in Appendix B (Figures B-1 through B-49).

Total aquatic area by site and by HMU type are summarized in Table 3-1. Analysis, interpretations, and conclusions made from these data need to take into consideration the margin of error associated with boundary delineation, particularly when comparing area measurements. Habitat boundary accuracy varies based on the GPS accuracy and user variability associated with delineating boundaries where there was not always a clear distinction between habitat types. Further, polygons created during habitat mapping are coarse characterizations that reflect the average habitat values observed and do not attempt to capture small-scale habitat differences.

Total aquatic area for all sites in spring and fall is shown in Table 3-1 and Figure 3-1, and area by habitat type for each site is presented in Appendix B (Figures B-1 through B-49). A comparison of total aquatic area from 2009 to 2010 is shown in Table 3-2.

The following changes between seasons and years are notable. Due to the methods revisions in 2009 and the margin of error associated with data collection, 2009-2010 data are not statistically analyzed.

- Willard Spring went dry in the fall season in both 2009 and 2010.
- Willow Spring mapping showed a 40% reduction in total aquatic habitat in fall 2010 compared to spring 2010.
- West Spring Valley Complex mapping showed a 30% reduction in pool habitat in fall 2010 compared to spring 2010.
- Minerva Spring Complex North mapping showed an 80% reduction in pool habitat in fall 2010 compared to spring 2010 The pool reduction in the Minerva Spring Complex North was due to land management actions associated with irrigation. This site is composed of man-made irrigation pools and channels utilized in ranching operations.

- Across almost all sites there also appears to have been an increase in vegetation in fall 2010 compared to spring 2010 (10 of the sites had at least one polygon with a higher percent emergent vegetation cover in the fall as compared to the spring).
- There does not appear to be any overall patterns among sites in changes of total aquatic area across years or seasons.

Table 3-1 Total Aquatic Area by Site and Hydromorphological Unit (Pools, Channels), 2010 Spring 2010

		Spring 201	0		Fall 2010	
Site	Channels	Pools	Total Area	Channels	Pools	Total Area
Big Springs/Lake Creek Reach 1	Not m	onitored in	spring	487	0	487
Big Springs/Lake Creek Reach 2	Not m	onitored in	spring	295	0	295
Big Springs/Lake Creek Reach 3	Not m	onitored in	spring	297	0	297
Big Springs/Lake Creek Reach 4	Not m	onitored in	spring	378	0	378
Big Springs/Lake Creek Reach 5	Not m	onitored in	spring	75	0	75
Big Springs/Lake Creek Reach 6	Not m	onitored in	spring	244	0	244
Big Springs	322	0	322	350	0	350
Clay Spring North	286	0	286	223	0	223
Four Wheel Drive Spring	181	171	352	149	205	354
Keegan Spring Complex North	3121	9000	12121	1764	11157	13921
Minerva Spring Complex Middle	478 158 636 577 169		746			
Minerva Spring Complex North			908	241	1149	
North Little Spring	79	71	150	100	57	157
Shoshone Ponds	0	621	621	0	623	623
South Millick Spring	1566	106	1672	1336	398	1734
Stateline Springs	168	0.0	168	137	10	147
Stonehouse Spring Complex	113	78	191	102	49	151
Swallow Spring	816	56	872	586	126	712
Unnamed 1 Spring North of Big	280	14	294	282	11	293
Unnamed 5 Spring	1078	1494	2572	1052	1567	2619
West Spring Valley Complex 1	640	344	4 984 1292		242	1534
Willard	0	0 45 45 0 0		0	0	
Willow-NV Spring	168	10	178	82	22	104

Areas are in square meters.

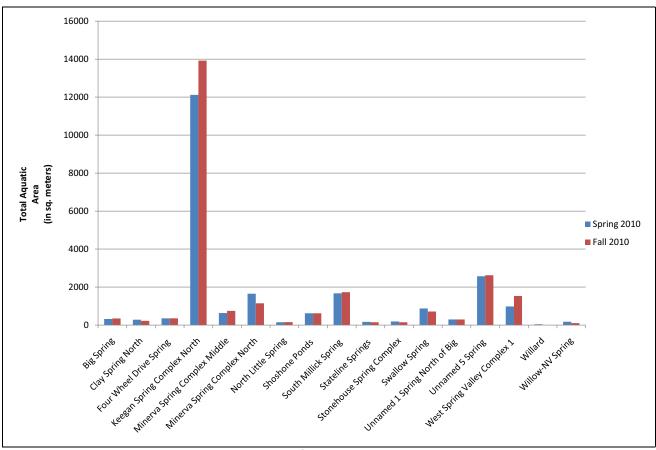


Figure 3-1 Total Aquatic Area by Site for Spring and Fall 2010

Table 3-2	
Percent Change in Total Aquatic Area from 2009 to 2010	

Site	Spring 2009	Spring 2010	Percent Change from 2009 to 2010	Fall 2009	Fall 2010	Percent Change from 2009 to 2010
Big Springs/Lake Creek Reach 1				458	487	
Big Springs/Lake Creek Reach 2				249	295	
Big Springs/Lake Creek Reach 3				245	297	
Big Springs/Lake Creek Reach 4				354	378	
Big Springs/Lake Creek Reach 5				204	75	
Big Springs/Lake Creek Reach 6					244	
Big Springs	410	322	-24	303	350	13
Clay Spring	~	286	~	~	223	~
Four Wheel Drive Spring	218	352	47	241	354	38
Keegan Spring Complex North	12184	12121	-1	10402	13921	28
Minerva Spring Complex Middle	578	636	10	537	746	32
Minerva Spring Complex North	1758	1653	-6	1560	1149	-31
North Little Spring	183	150	-20	100	157	45
Shoshone Ponds	679	621	-7	629	623	-1
South Millick Spring	1351	1672	21	1572	1734	10
Stateline Springs	131	168	25	131	147	9
Stonehouse Spring Complex	1879	191	-163	460	151	-102
Swallow Spring	902	872	-3	809	712	-13
Unnamed 1 Spring North of Big	206	294	35	130	293	77
Unnamed 5 Spring	2651	2572	-3	2757	2619	-5
West Spring Valley Complex 1	1274	984	-26	1047	1534	38
Willard	36	45	23	0	0	
Willow-NV Spring	382	178	-73	170	104	-48

3.2 Site Assessment

Qualitative site assessments were conducted at all spring and pond sites during spring (May 3-12) and fall (August 30 - September 13) 2010, and at Big Springs Creek/Lake Creek reaches during fall (September 15) 2010. Overall disturbance ratings and presence/absence of diversion, ungulate and recreational disturbances are shown in Table 3-3 (1 = undisturbed, 2 = slightly disturbed, 3 = moderately disturbed, and 4 = highly disturbed).

At the spring and pond sites during spring 2010, 0 of 17 sites were undisturbed, 2 were slightly disturbed, 10 were moderately disturbed, and 5 were highly disturbed. Slightly lower disturbance ratings were documented in fall 2010, with 0 of 17 sites undisturbed, 5 slightly disturbed, 10 moderately disturbed, and 2 highly disturbed. The lower disturbance ratings in the fall primarily were due to an increase in vegetation (percent of the banks covered by vegetation is a rating criterion; it is also possible that increased vegetative bank cover caused ungulate use to be less apparent). Across seasons, modifications for diversion were documented at 10-11 of the spring and pond sites, recreation disturbance was documented at 11-13 sites, and ungulate use was documented at all 17 sites.

At the creek reaches during fall 2010, 0 of 6 reaches were undisturbed, 0 were slightly disturbed, 4 were moderately disturbed, and 2 were highly disturbed. Modifications for diversion were documented at 1 reach (although it is noted that there are diversions in various portions of the creek at large), recreation disturbance was documented at 1 reach, and ungulate use was documented at all 6 reaches.

Because of the difference in seasonal disturbance ratings due to vegetation growth, and because site assessments were not conducted in spring 2009, comparisons across years can only be made between fall 2009 and fall 2010. Of the 16 spring and pond sites surveyed in both fall 2009 and fall 2010, 6 maintained the same disturbance rating, 6 had a higher disturbance rating in fall 2010, and 4 had a lower rating in fall 2010 (Table 3-4). Of the 5 creek reaches surveyed in both fall 2009 and fall 2010, 1 maintained the same disturbance rating, and 4 had a higher disturbance rating in fall 2010 (Table 3-4). Although these results show slight changes in disturbance ratings from 2009 to 2010, the only major documented change in disturbance occurred at the North Minerva Complex (see discussion in Section 3.1). As these are fairly broad qualitative ratings, comments recorded as part of the data collection process should be considered to understand the root of the disturbance ratings.

Table 3-3 Site Assessment Summary for 2010

		Sprin	Spring 2010			Fall	Fall 2010	
Sites	Overall Rating	Modification for Diversion	Ungulate Use	Recreation Disturbance	Overall Rating	Modification for Diversion	Ungulate Use	Recreation Disturbance
Big Springs/Lake Creek #1	N/A	N/A	N/A	N/A	4	Yes	Yes	No
Big Springs/Lake Creek #2	N/A	N/A	N/A	N/A	З	No	Yes	No
Big Springs/Lake Creek #3	N/A	N/A	N/A	N/A	3	No	Yes	No
Big Springs/Lake Cree #4	N/A	N/A	N/A	N/A	4	No	Yes	No
Big Springs/Lake Creek #5	N/A	N/A	N/A	N/A	3	No	Yes	Yes
Big Springs/Lake Creek #6	N/A	N/A	N/A	N/A	3	No	Yes	No
Big Springs 1888	ю	Yes	Yes	Yes	3	Yes	Yes	Yes
Four Wheel Drive Spring 12216	4	Yes	Yes	Yes	2	Yes	Yes	Yes
Keegan Spring Complex North 12217	ю	Yes	Yes	Yes	4	Yes	Yes	Yes
Minerva Spring Complex Middle 13560	4	Yes	Yes	Yes	3	Yes	Yes	No
Minerva Spring Complex North 13561	4	Yes	Yes	Yes	4	Yes	Yes	Yes
North Little Spring 10534	7	No	Yes	No	2	No	Yes	No
Shoshone Ponds 13566	ю	Yes	Yes	Yes	3	Yes	Yes	Yes
South Millick Spring 13577	ю	No	Yes	Yes	2	Yes	Yes	No
Stateline Springs 13562	ю	No	Yes	No	3	No	Yes	Yes
Stonehouse Spring Complex 12220	ю	No	Yes	Yes	2	No	Yes	Yes
Swallow Spring 12208	ю	Yes	Yes	Yes	3	Yes	Yes	Yes
Unnamed 1 Spring North of Big 13565	ю	Yes	Yes	Yes	3	No	Yes	Yes
Unnamed 5 Spring 12223	ю	No	Yes	No	3	Yes	Yes	No
West Spring Valley Complex 1 12222	ю	Yes	Yes	Yes	3	Yes	Yes	No
Willard Spring 10567	4	No	Yes	No	3	No	Yes	No
Willow-NV Spring 13563	7	No	Yes	Yes	2	No	Yes	Yes
Clay Spring North 11552	4	Yes	Yes	Yes	3	Yes	Yes	Yes
1=undisturbed, 2=slightly disturbed, 3=moderately disturbed, 4=highly disturbed; N/A = not applicable (creek reaches assessed only during fall around time of fish surveys)	disturbed, 4=	highly disturbed; N/	A = not applica	able (creek reache:	s assessed c	inly during fall aroun	d time of fish s	urveys).

	(Overall Ratin	Ig
Sites	Fall 2009	Spring 2010	Fall 2010
Big Springs/Lake Creek 1	3	N/A	4
Big Springs/Lake Creek 2	2	N/A	3
Big Springs/Lake Creek 3	2	N/A	3
Big Springs/Lake Creek 4	2	N/A	4
Big Springs/Lake Creek 5	3	N/A	3
Big Springs/Lake Creek 6	N/A	N/A	3
Big Springs	3	3	3
Clay Spring	N/A	4	3
4WD	2	4	2
Keegan	2	3	4
Middle Minerva	4	4	3
Minerva North	4	4	4
North Little	2	2	2
Shoshone Ponds	3	3	3
South Millick	3	3	2
Stateline	2	3	3
Stonehouse	3	3	2
Swallow	3	3	3
Unnamed 1	2	3	3
Unnamed 5	2	3	3
West Spring Valley	2	3	3
Willard Spring	2	4	3
Willow	3	2	2

Table 3-4Overall Site Assessment Ratings for 2009 and 2010

1=undisturbed, 2=slightly disturbed, 3=moderately disturbed, 4=highly disturbed. N/A = not applicable (creek reaches assessed only during fall around time of fish surveys, and access to Clay Spring was not granted until spring 2010). Site assessments were not conducted during spring 2009.

3.3 Water Quality

This section provides a general overview of water-quality conditions during spring and fall sampling events in 2009 and 2010 (spring 2009: May 5-14; fall 2009: September 14-25; spring 2010: May 10-19; fall 2010: September 13-22). Water-quality data taken as part of the springsnail, northern leopard frog and relict dace surveys are presented in their respective sections. Two spring systems are not included in this report because lack of water made it impossible to collect samples on a regular basis (Willard Spring and Four Wheel Drive Spring). All collected data is available in the final database.

3.3.1 Standard Water Quality

Temperature, conductivity, pH, dissolved oxygen, velocity, and turbidity data were taken at springheads, midpoints, and endpoints along monitored channels. Most endpoints do not represent actual endpoints of the spring systems, but instead endpoints of designated sample areas. Springheads, midpoints and endpoints designated in 2009 were revisited in 2010.

Paired *t*-tests were performed comparing springhead, midpoint, and endpoint values for stipulation springs in Spring Valley and Snake Valley between spring 2009/2010 sample sets and fall 2009/2010 sample sets, using SYSTAT versions 13.00.05 software.

3.3.1.1 Water Temperature

Water temperature in the Spring Valley monitoring sites was significantly higher in 2009 compared to 2010 for both spring and fall seasons (paired *t*-test: spring 2009 > spring 2010, p < 0.001; fall 2009 > 2010, p = 0.032) (Table 3-5). Temperatures were notably lower in the northern sites (Stonehouse, Willow, Keegan, and West Spring Valley) in spring 2010, compared to any other seasons or sites. Water temperatures ranged from the mid 40s to the upper 70s. On average, there was an increase in water temperatures with distance downstream from the springhead, during both seasons in both valleys, as would be expected as the result of solar heating during the day.

Water temperatures in Snake Valley springs also tended to be warmer in spring 2009 compared to spring of 2010, but this trend was not as apparent between the 2009 and 2010 fall seasons (paired *t*-test: spring 2009 > spring 2010, p <0.003; fall 2009 < 2010, p = 0.031) (Table 3-6). Water temperatures ranged from the mid 50s to the upper 60s. As in Spring Valley, on average there was an increase in water temperatures with distance downstream from the springhead as would be expected as the result of solar heating during the day.

Water temperatures emanating from the springhead are determined by a combination of the ultimate water source (e.g., snowpack or rainfall), groundwater residence time, and underground travel patterns (i.e., deeper waters tend to have higher temperatures). Water temperatures in springbrooks are primarily influenced by solar radiation and can be expected to vary with season, time of day, and weather conditions. Water depth, and/or spring flow rates can also influence water temperatures.

		Sp	ring 20	09	Sp	ring 20	10	F	all 2009	9	F	all 2010)	
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End	
Stonehouse Spring Complex	E	65.3	67.2	68.6	55.5	45.9	47.7	60.8	70.1	74.7	58.1	70.3	72.1	
Willow Spring	А	55.6	76.6	61.1	49.9	46.2	47.5	57.4	79.2	77.8	54.7	72.9	74.5	
Keegan Spring Complex	А	53.8	62.4	73.7	52.4	52.6	49.6	53.9	61.5	64.6	55.1	65.0	62.8	
West Spring Valley Spring 1	А	59.8	67.8	69.1	51.1	54.1	52.9	61.7	57.9	56.8	59.0	56.3	56.7	
South Millick Spring	А	65.4	62.4	65.3	53.6	58.4	58.9	59.5	59.8	61.9	55.7	51.6	50.6	
Unnamed 5 Spring	А	59.8	64.3	64.8	56.4	59.8	56.6	56.5	59.3	58.7	57.8	65.2	67.0	
Minerva North Spring	А				55.7	56.3	55.4	54.9	61.6	65.7	55.3	56.3	55.5	
Minerva North Spring	В				57.1	56.3	56.2	61.3	67.7	68.2	55.4	54.3	57.5	
Minerva Middle Spring	А	53.9	57.0	58.1	54.5	60.3	59.2	53.0	54.2	55.7	54.0	56.6	61.3	
Minerva Middle Spring	В	54.2	58.5	59.0	56.4	57.1	57.9	55.6	56.2	56.2	53.9	56.8	57.5	
Swallow Spring	А	48.4	49.3	54.7	49.9	52.9	61.1	50.7	51.6	55.2	50.6	51.9	53.4	
	Means	57.4	62.8	63.8	53.9	54.5	54.8	56.8	61.7	63.2	55.4	59.7	60.8	
Pairec	I <i>t</i> -test (P)			<0.	001		1	0.032						

 Table 3-5

 Water Temperature (°F) in Spring Valley Monitoring Sites for 2009 and 2010

Note: Water temperature was recorded at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

Table 3-6
Water Temperature (°F) in Snake Valley Monitoring Sites for 2009 and 2010

		Spi	ring 20	09	Spi	ring 20 [.]	10	F	all 200	9	F	all 201	D
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Clay Spring North	A				56.7	59.6	59.5				56.6	56.5	56.3
Stateline Springs	A	66.3	60.7	64.1	57.2	58.6	58.9	58.3	58.3	58.7	57.7	59.2	58.9
Unnamed 1 Spring North of Big	A	62.1	68.0	73.6	55.8	58.6	58.5	56.1	57.2	55.3	58.1	60.5	58.9
Unnamed 1 Spring North of Big	В	68.8	68.3	71.5	55.7	55.7	58.5	56.4	57.2	55.3	55.8	60.5	58.9
Big Springs	A	63.1	63.7	63.7	62.7	63.9	64.0	63.1	63.9	63.9	63.1	63.5	63.3
Big Springs	В	63.0	63.7	63.7	67.1	63.9	64.0	63.1	63.9	63.9	63.9	63.5	63.3
North Little Spring	A	55.9	60.8	65.4	55.3	59.9	60.1	57.9	56.0	57.1	56.6	59.4	57.9
	Means	63.2	64.2	67.0	59.0	60.1	60.7	59.2	59.4	59.0	59.2	61.1	60.2
Paireo	l <i>t</i> -test (P)	0.003 0.031											

Note: Water temperature was recorded at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

3.3.1.2 Conductivity

Conductivity levels in Spring Valley varied between years for individual sites, but there was no overall yearly difference across sites for spring or fall (Table 3-7). Conductivity ranged from a low of 68 μ S/cm at Keegan Spring Complex in spring 2010 to a high of 720 μ S/cm at Stonehouse Spring Complex in spring 2009. In both 2009 and 2010, conductivity was notably lower at Keegan Spring Complex compared to any other site by order of 2-3 magnitudes. There were no apparent trends in the spatial distribution of conductivity within any given spring system.

	Spr	ing 20	09	Spi	ring 20	10	Fa	all 2009	Ð	Fa	all 201	C	
Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End	
E	381	380	720	365	395	515	348	347	385	328	336	371	
А	433	420	440	406	431	430	431	590	473	418	449	457	
А	74	74	84	68	88	102	79	77	84	70	73	87	
А	364	307	327	640	306	297	155	290	290	388	305	307	
А	511	432	430	436	451	455	422	456	455	436	451	455	
А	328	308	308	249	245	256	313	300	327	249	245	256	
А				260	282	282	373	391	379	260	282	282	
В				253	259	262	247	245	262	294	281	287	
А	376	375	367	394	362	369	373	391	379	374	380	379	
В	404	372	367	373	368	371	609	377	380	368	382	387	
А	257	304	295	328	326	319	317	319	308	318	318	319	
Means	348	330	371	343	319	333	333	344	338	318	318	326	
t-test (P)	0.814						0.181						
	E A A A A A A B A B A B A B A B A B A B	Head E 381 A 333 A 433 A 74 A 511 A 328 A 257 Means 348	Head Mid E 381 380 A 433 420 A 433 420 A 74 74 A 364 307 A 364 307 A 364 307 A 314 432 A 364 307 A 314 432 A 511 432 A 328 308 A B A 376 375 B 404 372 A 257 304 Means 348 330	E 381 380 720 A 433 420 440 A 74 74 84 A 74 74 84 A 364 307 327 A 511 432 430 A 364 307 327 A 511 432 430 A 328 308 308 A B A 376 375 367 B 404 372 367 A 257 304 295 Means 348 330 371	Channel Head Mid End Head E 381 380 720 365 A 433 420 440 406 A 433 420 440 406 A 74 74 84 68 A 364 307 327 640 A 511 432 430 436 A 328 308 308 249 A 511 432 430 249 A 517 517 260 316 B 404 372 367 394 B 404 372 367 328 A 257 304 295 <td>Channel Head Mid End Head Mid E 381 380 720 365 395 A 433 420 440 406 431 A 433 420 440 406 431 A 74 74 84 68 88 A 364 307 327 640 306 A 364 307 327 640 306 A 511 432 430 436 451 A 511 432 430 249 245 A 328 308 308 249 245 A 260 282 B 253 259 A 376 375 367 373 368 A 257 304 295 328 326 A 257 304</td> <td>Channel Head Mid End Head Mid End E 381 380 720 365 395 515 A 433 420 440 406 431 430 A 433 420 440 406 431 430 A 74 74 84 68 88 102 A 364 307 327 640 306 297 A 364 307 327 640 306 297 A 364 307 327 640 306 297 A 511 432 430 436 451 455 A 328 308 308 249 245 256 A 260 282 262 B 367 364 364 371 A 376 375 367 373</td> <td>Channel Head Mid End Head Mid End Mid End End Mid End Head E 381 380 720 365 395 515 348 A 433 420 440 406 431 430 431 A 433 420 440 406 431 430 431 A 433 420 440 406 431 430 431 A 74 74 84 68 88 102 79 A 364 307 327 640 306 297 155 A 511 432 430 436 451 452 422 A 511 432 430 249 245 256 313 A 528 308 308 249 245 262 247 A 376 375 367<</td> <td>Channel Head Mid End Head Mid End Mid End Head Mid E 381 380 720 365 395 515 348 347 A 433 420 440 406 431 430 431 590 A 433 420 440 406 431 430 431 590 A 433 420 440 406 431 430 431 590 A 74 74 84 68 88 102 79 77 A 364 307 327 640 306 297 155 290 A 511 432 430 436 451 455 422 456 A 328 308 308 249 245 256 313 300 A 250 260 262 <td< td=""><td>Channel Head Mid End Head Mid End Head Mid End Head Mid End E 381 380 720 365 395 515 348 347 385 A 433 420 440 406 431 430 431 590 473 A 433 420 440 406 431 430 431 590 473 A 74 74 84 68 88 102 79 77 84 A 364 307 327 640 306 297 155 290 290 A 364 307 327 640 306 297 155 290 290 A 511 432 430 436 451 455 422 456 455 A 328 308 308 249 245 256 <</td><td>Channel Head Mid End Mid End Mid End Head Mid End Mid M</td><td>Channel Head Mid End Head Mid End Head Mid End Mad End Mad Mad Mid End Mid Mid End Mid <thm< td=""></thm<></td></td<></td>	Channel Head Mid End Head Mid E 381 380 720 365 395 A 433 420 440 406 431 A 433 420 440 406 431 A 74 74 84 68 88 A 364 307 327 640 306 A 364 307 327 640 306 A 511 432 430 436 451 A 511 432 430 249 245 A 328 308 308 249 245 A 260 282 B 253 259 A 376 375 367 373 368 A 257 304 295 328 326 A 257 304	Channel Head Mid End Head Mid End E 381 380 720 365 395 515 A 433 420 440 406 431 430 A 433 420 440 406 431 430 A 74 74 84 68 88 102 A 364 307 327 640 306 297 A 364 307 327 640 306 297 A 364 307 327 640 306 297 A 511 432 430 436 451 455 A 328 308 308 249 245 256 A 260 282 262 B 367 364 364 371 A 376 375 367 373	Channel Head Mid End Head Mid End Mid End End Mid End Head E 381 380 720 365 395 515 348 A 433 420 440 406 431 430 431 A 433 420 440 406 431 430 431 A 433 420 440 406 431 430 431 A 74 74 84 68 88 102 79 A 364 307 327 640 306 297 155 A 511 432 430 436 451 452 422 A 511 432 430 249 245 256 313 A 528 308 308 249 245 262 247 A 376 375 367<	Channel Head Mid End Head Mid End Mid End Head Mid E 381 380 720 365 395 515 348 347 A 433 420 440 406 431 430 431 590 A 433 420 440 406 431 430 431 590 A 433 420 440 406 431 430 431 590 A 74 74 84 68 88 102 79 77 A 364 307 327 640 306 297 155 290 A 511 432 430 436 451 455 422 456 A 328 308 308 249 245 256 313 300 A 250 260 262 <td< td=""><td>Channel Head Mid End Head Mid End Head Mid End Head Mid End E 381 380 720 365 395 515 348 347 385 A 433 420 440 406 431 430 431 590 473 A 433 420 440 406 431 430 431 590 473 A 74 74 84 68 88 102 79 77 84 A 364 307 327 640 306 297 155 290 290 A 364 307 327 640 306 297 155 290 290 A 511 432 430 436 451 455 422 456 455 A 328 308 308 249 245 256 <</td><td>Channel Head Mid End Mid End Mid End Head Mid End Mid M</td><td>Channel Head Mid End Head Mid End Head Mid End Mad End Mad Mad Mid End Mid Mid End Mid <thm< td=""></thm<></td></td<>	Channel Head Mid End Head Mid End Head Mid End Head Mid End E 381 380 720 365 395 515 348 347 385 A 433 420 440 406 431 430 431 590 473 A 433 420 440 406 431 430 431 590 473 A 74 74 84 68 88 102 79 77 84 A 364 307 327 640 306 297 155 290 290 A 364 307 327 640 306 297 155 290 290 A 511 432 430 436 451 455 422 456 455 A 328 308 308 249 245 256 <	Channel Head Mid End Mid End Mid End Head Mid End Mid M	Channel Head Mid End Head Mid End Head Mid End Mad End Mad Mad Mid End Mid Mid End Mid Mid <thm< td=""></thm<>	

Table 3-7 Specific Conductivity (µS/cm) in Spring Valley Monitoring Sites for 2009 and 2010

Note: Conductivity was recorded at various times of day across sites and seasons (times available in final database).

Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

Like Spring Valley, conductivity levels in Snake Valley varied between years for individual sites, but there was no overall yearly difference across sites for spring but there was a significant difference between the fall 2009 and 2010 (p=0.001) (Table 3-8). Conductivity levels in Snake Valley ranged from a low of 312 μ S/cm at North Little Spring in spring 2009 to a high of 630 μ S/cm at Clay Spring North in fall 2010. Like Spring Valley, there were no apparent trends in the spatial distribution of conductivity within any given spring system.

Conductivity in springbrooks is primarily determined by the amount of dissolved inorganic ions in solution. Geology of an area is mainly responsible for differences in inorganic ions in solution in groundwater and springs. Water in limestone areas is typically high in conductivity due to its characteristically high solubility rates for calcium and carbonate ions, whereas solubility in granite formations is typically low, since it is composed mostly of inert materials.

Conductivity is also influenced by a number of other factors: increasing temperature will result in increased conductivity; plant photosynthesis (i.e., nutrient and carbon dioxide utilization) can also affect conductivity in highly productivity systems. Thus, temperature and photosynthesis may result in diurnal changes in conductivity, especially during the summer months, when plant productivity and water temperatures are greatest.

		Spr	ing 20	09	Spr	ing 20	10	Fa	all 2009	9	Fa	all 2010	D		
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End		
Clay Spring North	A				603	601	604				630	629	629		
Stateline Springs	А	363	596	360	341	342	343	369	373	373	340	333	342		
Unnamed 1 Spring North of Big	А	420	402	419	408	434	457	444	478	494	458	446	462		
Unnamed 1 Spring North of Big	В	481	402	419	415	434	457	456	478	494	441	446	462		
Big Springs	А	360	361	361	366	368	367	390	392	391	362	365	366		
Big Springs	В	362	361	361	349	368	367	391	392	391	368	365	366		
North Little Spring	А	323	312	338	368	343	380	388	385	463	445	347	368		
Means wit	hout Clay	385	406	376	375	382	395	406	416	434	402	384	394		
Means	with Clay	385	406	376	407	413	425	406	416	434	435	419	428		
Paired	l t-test (P)			0.7	50	•				0.001					

Table 3-8 Specific Conductivity (µS/cm) in Snake Valley Monitoring Sites for 2009 and 2010

Note: Conductivity was recorded at various times of day across sites and seasons (times available in final database).

Because Clay Spring had relatively higher conductivity compared to any other Snake Valley site, and was not sampled in 2009, means and grand means across sites are shown with and without Clay Spring for 2010 to allow for comparison across years.

Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

3.3.1.3 рН

pH levels in the Spring Valley monitoring sites were significantly higher in 2009 compared to 2010 for both spring and fall seasons (paired *t*-test: spring 2009 > spring 2010, p 0.001; fall 2009 > 2010, p <0.001) (Table 3-9). Values ranged from a low of 6.17 at West Valley Spring complex in fall 2010 to a high of 9.45 at North Minerva Springs Channel B in fall 2009. On average, pH levels tended to increase between the springhead and the mid-point sampling station, and in a some cases between the mid-point and end-point sampling stations.

pH levels in the Snake Valley monitoring sites were significantly higher in spring 2009 compared to spring 2010 (paired *t*-test: p = 0.002), but did not differ between years for the fall season (paired *t*-test: p > 0.548) (Table 3-10). Values ranged from a low 6.69 in Big Springs (Channel A and Channel B) and North Little Spring in spring 2010 to a high of 8.51 at North Little Spring in fall 2010.

pH is indirectly affected by solar radiation in these springs as the result of aquatic photosynthesis (both aquatic vascular plants and algae) which consume carbon dioxide during photosynthesis, resulting in an increase in pH. pH levels are reduced during the nighttime hours when carbon dioxide is released into the water by both plant and animal respiration. Thus, there is often a pronounced diurnal cycle in pH levels in these spring systems.

		Sp	ring 20	09	Sp	ring 20	10	F	all 2009	9	F	all 2010)
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Stonehouse Spring Complex	E	7.63	8.30	8.85	7.72	7.22	6.45	7.26	7.07	7.08	6.98	6.92	7.05
Willow Spring	А	7.22	8.35	7.71	6.99	7.17	7.09	7.33	7.32	7.64	7.36	7.58	7.85
Keegan Spring Complex	А	6.63	7.38	7.49	6.84	7.47	6.90	6.25	7.47	7.21	6.89	7.02	6.84
West Spring Valley Spring 1	A	7.42	8.10	8.48	7.00	7.47	7.24	7.31	7.40	7.46	6.53	6.36	6.17
South Millick Spring	А	7.66	7.88	8.05	7.47	7.34	7.31	7.50	7.62	7.75	7.27	7.27	6.46
Unnamed 5 Spring	А	7.30	8.24	8.27	8.09	8.14	6.99	7.46	7.38	7.09	6.53	7.30	6.94
Minerva North Spring	А				7.77	8.00	6.90	8.45	8.54	8.57	7.57	7.44	6.97
Minerva North Spring	В				8.13	8.39	8.21	9.45	9.25	8.67	7.07	6.97	7.31
Minerva Middle Spring	А	7.59	7.70	7.78	7.22	7.48	7.61	8.08	7.71	8.09	6.53	6.95	6.43
Minerva Middle Spring	В	7.64	7.66	7.42	7.44	7.32	7.31	8.15	7.90	8.17	6.41	7.13	7.08
Swallow Spring	А	7.27	7.82	7.97	7.37	7.64	7.91	7.19	7.95	8.28	6.41	6.43	6.68
	Means	7.37	7.94	8.00	7.46	7.60	7.27	7.68	7.78	7.82	6.87	7.03	6.89
Pairec	l <i>t</i> -test (P)		•	0.0	001	•			•	<0.	001		

Table 3-9pH in Spring Valley Monitoring Sites for 2009 and 2010

Note: pH was recorded at various times of day across sites and seasons (times available in final database).

Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

рн іл	Snake	valle	y ivio	nitor	ing 5	ites	tor Z	009 a	na z	010			
		Spi	ing 20	09	Sp	ring 20	10	F	all 2009	9	F	all 2010)
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Clay Spring North	А				7.84	8.05	8.09				7.59	7.59	6.72
Stateline Springs	А	7.86	8.08	8.06	8.17	8.14	8.13	7.58	7.58	7.63	8.16	8.08	7.58
Unnamed 1 Spring North of Big	А	7.70	7.95	8.13	7.55	7.56	7.21	7.59	7.77	8.30	7.43	7.71	7.57
Unnamed 1 Spring North of Big	В	7.58	7.95	8.13	7.43	7.56	7.21	7.48	7.77	8.13	7.43	7.71	7.57
Big Springs	А	7.49	7.55	7.56	7.75	6.95	6.69	7.52	7.56	7.65	7.88	7.33	7.48
Big Springs	В	7.51	7.55	7.56	7.72	6.95	6.69	7.47	7.56	7.65	7.86	7.73	7.48
North Little Spring	А	7.49	8.12	8.06	6.87	7.20	6.69	7.43	7.76	7.31	7.11	8.51	8.29
	Means	7.61	7.87	7.92	7.58	7.39	7.10	7.51	7.67	7.78	7.54	7.85	7.66
Pairec	l <i>t</i> -test (P)	0.002					0.548						

Table 3-10pH in Snake Valley Monitoring Sites for 2009 and 2010

Note: pH was recorded at various times of day across sites and seasons (times available in final database).

Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

3.3.1.4 Dissolved Oxygen

Dissolved oxygen levels in the Spring Valley monitoring sites were significantly higher in fall 2010 compared to fall 2009 (paired *t*-test: p = 0.002). Dissolved oxygen was also generally higher at the midpoints and endpoints in spring 2010 compared to spring 2009, although there was no overall yearly difference for (paired *t*-test: p = 0.094) (Table 3-11). Levels ranged from a low of 1.43 mg/L in Middle Minerva Spring Channel B in fall 2009 to a high of 18.2 mg/L in Unnamed 5 Spring in fall 2010. There was a general trend toward increasing dissolved oxygen concentrations downstream of the springhead, except during the spring 2010 sampling period.

							-						
		Spring 2009			Spring 2010			F	all 2009)	Fall 2010		
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Stonehouse Spring Complex	E	6.08	11.2	14.6	9.37	8.90	12.7	4.53	4.63	2.43	12.3	12.0	15.7
Willow Spring	А	5.37	12.8	8.89	3.55	8.02	9.53	3.56	6.54	4.06	6.15	8.05	13.1
Keegan Spring Complex	А	11.5	16.6	13.7	6.94	11.4	9.97	5.93	11.2	8.23	7.58	11.5	7.94
West Spring Valley Spring 1	А	6.13	7.84	8.88	9.39	9.15	11.2	6.31	7.87	8.82	8.90	10.2	11.4
South Millick Spring	А	6.60	8.74	9.57	7.82	7.62	8.04	6.79	7.95	8.28	8.89	6.12	9.06
Unnamed 5 Spring	А	9.37	14.3	15.4	8.80	11.1	10.2	7.46	7.56	7.36	8.90	18.2	13.0
Minerva North Spring	А				8.48	9.19	9.48	8.01	7.52	7.28	9.35	9.50	9.33
Minerva North Spring	В				15.1	12.3	9.60	14.6	10.6	6.21	5.04	8.42	10.4
Minerva Middle Spring	А	10.2	10.2	12.3	9.87	9.97	10.4	8.04	7.15	10.4	9.81	10.4	10.5
Minerva Middle Spring	В	5.57	8.21	10.0	7.75	9.33	10.3	7.56	8.26	5.94	9.28	6.42	9.78
Swallow Spring	А	8.49	8.72	8.52	8.74	9.02	8.20	7.69	8.55	8.16	9.34	9.16	9.18
	Means	7.70	11.0	11.32	8.71	9.65	9.97	7.32	7.98	7.02	8.69	10.0	10.9
Paired	0.094						0.002						

 Table 3-11

 Dissolved Oxygen Levels (mg/L) in Spring Valley Monitoring Sites for 2009 and 2010

Note: Dissolved oxygen was recorded at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

Dissolved oxygen concentrations in Snake Valley stipulation springs (Table 3-12) were typically lower than Spring Valley springs and did not show a general trend of increasing concentrations with distance downstream of the springhead. Dissolved oxygen levels ranged from a low of 2.53 mg/L at North Clay Spring in fall 2010 to a high of 10.4 mg/L at North Little Spring in spring 2010. There were no statistically significant differences in dissolved oxygen concentration between 2009 and 2010 for spring or fall (paired *t*-test: p > 0.12).

Dissolved oxygen levels in these spring systems can be affected by several factors. Turbulence at the air-water interface affects dissolved oxygen levels, especially in shallow spring systems. Aquatic plant and algae photosynthesis will increase dissolved oxygen concentrations, while plant and animal respiration at night will reduce dissolved oxygen concentrations. The increase in dissolved oxygen as a result of photosynthesis during daylight hours, coupled with the nighttime decrease, can result in a marked diurnal cycle in these springs.

		Spring 2009			Spring 2010			Fall 2009			Fall 2010		
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Clay Spring North	A				3.71	6.28	6.47	6.47			2.53	7.7	7.93
Stateline Springs	А	4.49	5.87	5.88	5.34	6.6	6.78	6.78	5.57	5.91	6.21	7.88	8.11
Unnamed 1 Spring North of Big	А	6.47	8.22	7.38	8.51	8.89	8.5	8.5	7.18	7.58	7.46	8.49	8.61
Unnamed 1 Spring North of Big	В	5.5	7.16	6.83	7.42	8.89	8.5	8.5	7.18	7.58	8.69	8.49	8.61
Big Springs	А	5.05	5.42	5.52	5.4	5.57	5.8	5.8	5.48	5.78	6.65	6.83	6.99
Big Springs	В	5.19	5.48	5.52	4.81	5.57	5.8	5.8	5.48	5.78	6.8	6.83	6.99
North Little Spring	А	7.21	10	7.4	3.28	10.4	7.07	7.07	7.7	7.48	4.31	10.2	8.6
Means		5.65	7.03	6.42	5.50	7.46	6.99	6.99	6.43	6.69	6.09	8.06	7.98
Pairec	0.145						0.122						

Table 3-12Dissolved Oxygen Levels (mg/L) in Snake Valley Monitoring Sites for 2009 and 2010

Note: Dissolved oxygen was recorded at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

3.3.1.5 Velocity

Springbrook velocities varied between springs from <0.1 ft/sec in ponded sections (e.g., West Spring Complex 1, Unnamed 5 Spring, and Willow Spring) to a high of 3.0 ft/sec at Swallow Spring. It was not possible to measure velocity at a number of sites (N/A) because of extensive aquatic vegetation and/or shallowness of the water. An acoustic Doppler velocity meter (Flow Tracker 6300 ADV), in addition to the Marsh-McBirney Flo-Mate Model 2000, was tested in several stipulation springs in spring 2010 to determine if it better enabled velocity measurements under such conditions, but as reported to the BWG it did not. Results from 2009-2010 are shown in Tables 3-13 and 3-14.

Table 3-13Springbrook Velocity (ft/sec) in Spring Valley Monitoring Sites for 2009 and 2010

		Spring 2009			Spring 2010			Fall 2009			Fall 2010		
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Stonehouse Spring Complex	E	N/A			<0.1	<0.1	<0.1	N/A	N/A	<0.1	<0.1	N/A	N/A
Willow Spring	А	N/A	N/A	N/A	N/A	<0.1	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
Keegan Spring Complex	А	0.8	0.8	<0.1	3.0	2.8	1.6	0.4	0.4	0.2	0.6	0.6	0.2
West Spring Valley Spring 1	А	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
South Millick Spring	А	N/A	0.2	0.8	<0.1	1.5	1.4	N/A	0.2	0.9	N/A	0.9	0.1
Unnamed 5 Spring	А	<0.1	<0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	0.5	<0.1	<0.1	0.3
Minerva North Spring	А	^a			N/A	<0.1	0.1	0.7	<0.1	0.1	<0.1	0.2	0.1
Minerva North Spring	В				<0.1	<0.1	<0.1	<01.	N/A	N/A	<0.1	N/A	0.7
Minerva Middle Spring	А				<0.1	<0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
Minerva Middle Spring	В	N/A	N/A	<0.1	N/A	<0.1	<0.1	<0.1	0.1	<0.1	N/A	<0.1	<0.1
Swallow Spring	А	3.0	0.6	0.8	1.5	0.3	2.5	1.2	0.6	0.7	0.2	0.3	0.3

^aVelocity not measured

N/A = Unable to measure velocity due to vegetation/shallowness

Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

Springbrook veloc		ec) in	3110	ike v	aney		nom	ng Sit	es 10		09 an	iu 20	10
		Spr	ing 20	09	Spr	ing 20	10	Fa	all 2009	9	F	all 2010)
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Clay Spring North	A	^a			1.5	0.3	0.1						0.1
Stateline Springs	А	N/A	1.1	1.2	0.3	0.8	0.2	N/A	1.7	0.4	N/A	0.1	0.1
Unnamed 1 Spring North of Big	А	N/A	N/A	N/A	<0.1	0.3	0.2	N/A	0.2	N/A	N/A	<0.1	<0.1
Unnamed 1 Spring North of Big	В	N/A	N/A	N/A	N/A	0.3	0.2	N/A	0.2	N/A	N/A	<0.1	0.1
Big Springs	А	0.7			0.1	1.5	0.4	0.1		1.0	0.2	1.0	0.5
Big Springs	В	N/A			0.1	1.5	0.4	N/A		1.0	0.4	1.0	0.5
North Little Spring	А	<0.1	N/A	N/A	<0.1	N/A	N/A	<0.1	N/A	N/A	<0.1	N/A	N/A

Table 3-14 Springbrook Velocity (ft/sec) in Spake Valley Monitoring Sites for 2009 and 2010

^aVelocity not measured

N/A = Unable to measure velocity due to vegetation/shallowness.Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel

3.3.1.6 Turbidity

Turbidity levels in Spring Valley stipulation springs are shown in Table 3-15. Although the data show significantly higher turbidity in 2010 compared to 2009 for the fall season (paired *t*-test: p = 0.003), this result should be considered with caution. Many of the high values recorded were due to difficulties in obtaining representative samples in shallow water; i.e., sediments were disturbed and contaminated the sample. Thus, many of the values are not representative of existing conditions in these springs.

		Spr	ing 20	09	Sp	ring 20 [.]	10	F	all 2009	•	F	all 2010)
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Stonehouse Spring Complex	E	51.6	7.9	7.4	5.67	9.47	10.4	14.6	20.1	26.9	14.3	174	93.1
Willow Spring	A	3.3	6.8	6.2	1.0	258	25.5	21.5	40.1	65.8	131	25.5	75.2
Keegan Spring Complex	A	1.7	6.6	9.8	7.44	160	11.4	2.1	7.2	3.5	10.7	13.7	3.9
West Spring Valley Spring 1	A	7	6	5	11.4	5.8	25.7	5	1.1	1	89.1	3	7.5
South Millick Spring	A	12.6	4.9	6.1	10	9.25	7.12	2.9	8.2	10.2	3.7	4.1	5.1
Unnamed 5 Spring	A	78.9	6.9	3.5	4.58	3.36	1.24	23.7	7.1	4.3	4	33	18
Minerva North Spring	A				2.04	3.38	4.95	1.08	13.9	11.2	4.4	6.9	9
Minerva North Spring	В				23.4	5.92	6.05	6.15	23.7	8.7	7.7	13.8	11.5
Minerva Middle Spring	A	1.1	1.5	1	3.72	4.86	12.9	0.8	1.4	7.2	75.5	87.8	72.5
Minerva Middle Spring	В	1.2	3.2	1.2	7.66	5.83	13.3	1.43	2.19	5.94	18.7	45.4	
Swallow Spring	A	0.9	0.6	1.9	0.7	2.27	2.39	0.2	0.5	4.2	17.5	4.8	10.5
	Means	17.6	4.9	4.7	7.1	42.6	11.0	7.2	11.4	13.5	34.2	37.5	30.6
Paired	l <i>t</i> -test (P)		•	0.2	230	•			•	0.0	003		

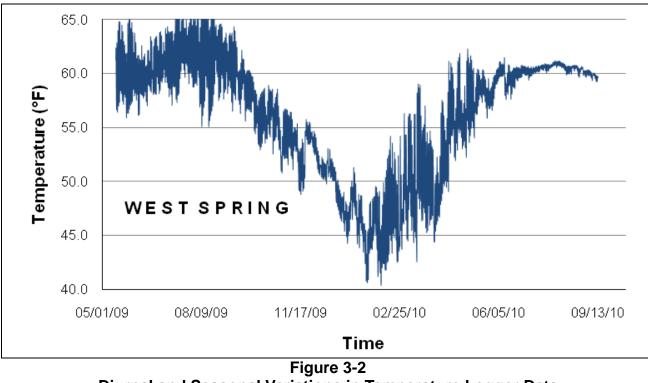
Table 3-15 Turbidity Levels (NTU) in Spring Valley Monitoring Sites for 2009 and 2010

Note: Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

Turbidity levels in Snake Valley stipulation springs (Table 3-16) demonstrated a general trend of increasing turbidity downstream of the springhead during three of the four seasonal sampling events. As with the values for Spring Valley springs, some turbidity values in the Snake Valley springs result from disturbance of bottom sediments when collecting samples and are not representative of actual conditions.

Turbidity levels in flowing water systems are typically influenced by two factors: (1) significant increases in flow during storm events that stir up existing bottom sediments and introduce entrained particulate matter from surface runoff; and (2) direct physical disturbance. As spring systems are fed directly by groundwater inputs, they are not particularly influenced by storm events, but they can be affected by direct disturbance, e.g., cattle or sheep. Observations during the two years of sampling suggest that turbidity in the stipulation springs is generally low and does not significantly affect these systems, except during periods of direct disturbance.

		Spr	ing 20	09	Spi	ring 20	10	F	all 2009)	F	all 201	0
Site	Channel	Head	Mid	End	Head	Mid	End	Head	Mid	End	Head	Mid	End
Clay Spring North	A				0.96	1	1.18				83.4	2.2	3.1
Stateline Springs	A	1.0	1.0	16	1.28	6.44	2.1	3.8	3.8	5.3	2.4	6.3	12.8
Unnamed 1 Spring North of Big	A	0.5	6.0	12.1	1.07	3.59	5.75	1.7	1.6	10.7	45.3	18.4	5.2
Unnamed 1 Spring North of Big	В	0.9	6.0	12.1	2.06	3.59	5.75	1.8	1.6	10.7	3.8	18.4	5.2
Big Springs	A	0.3	2.0	1.0	1.78	0.98	1.78	2.0	3.2	2.5	1.4	2.1	2.5
Big Springs	В	0.8	2.0	1.0	2.61	0.98	1.78	0.84	3.2	2.5	0.8	2.1	3.5
North Little Spring	A	4.1	2.1	34.3	6.48	19.7	171	6.3	12.4	172	29.6	4.3	
	Means	1.3	3.2	12.8	2.3	5.2	27.0	2.7	4.3	34.0	23.8	7.7	5.4
Pairec	l <i>t</i> -test (P)		•	0.:	344	•	•			0.1	33	•	•


Table 3-16Turbidity Levels (NTU) in Snake Valley Monitoring Sites for 2009 and 2010

Note: Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

3.3.1.7 Standard Water Quality - Discussion

The first two years of the stipulation monitoring program have focused on obtaining point samples at a number of sites during the spring and fall seasons to describe water quality conditions. The single exception to this sampling strategy is the continuous measurement of water temperatures at the springheads using temperature loggers. The results generated by the temperature loggers provide insights into processes that are influencing water quality in these springs over time. To wit: (1) diurnal variations in temperature are apparent to varying degrees in the stipulation springs; and (2) there are seasonal changes as well. An example of these variations can be seen in a time-series plot of temperature logger data from West Spring Valley Complex 1 (Springhead A) (Figure 3-2).

Per the Plan, temperature logger data is collected in the immediate vicinity of the springheads, where water temperatures are expected to be relatively constant over time. Thus, temperature fluctuations downstream are likely more pronounced. It is expected that the various water quality parameters

Diurnal and Seasonal Variations in Temperature Logger Data from West Spring Valley Complex 1 (Springhead A)

being collected under the Plan also exhibit diurnal fluctuations, also most likely more pronounced downstream of the springheads.

3.3.2 Nitrogen and Phosphorus

Nitrogen (N) and phosphorus (P) samples were taken at one springhead per spring site. For each site, the springhead location where the nitrogen and phosphorus samples were taken coincided with one of the springheads where standard water-quality data were taken, as with well as the springhead where the temperature logger was placed.

Total nitrogen and total phosphorus appeared notably higher in 2010 compared to 2009 in both Spring and Snake valleys; however, there was no significant yearly difference for either spring or fall (paired *t*-tests: p > 0.13) (Tables 3-17 and 3-18). Average nutrient concentrations in Spring Valley sites were relatively higher compared with Snake Valley sites, but were not limiting in any systems.

Nutrients, especially nitrogen and phosphorus moieties, are essential for plant photosynthesis, or primary productivity. Based on the concentrations in the stipulation springs, it is evident that phosphorus would represent the potential limiting plant nutrient entering these spring systems. However, it is unlikely that these spring systems experience nutrient limitation under normal circumstances as groundwater provides a fairly constant nutrient input. Further, the springbrook sediments store large amounts of both nitrogen and phosphorus that can be released back into the water column if the springbrooks become depleted (as evidenced by select samples that were contaminated by sediments).

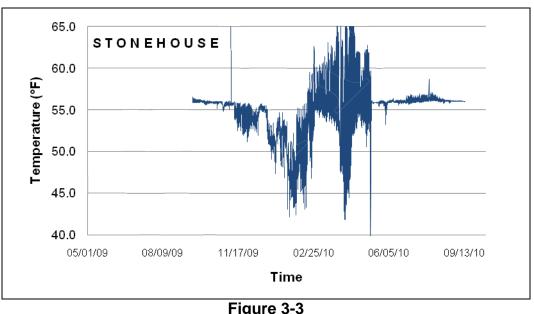
		Spring	g 2009	Spring	g 2010	Fall	2009	Fall	2010
Site	Springhead	Total N	Total P	Total N	Total P	Total N	Total P	Total N	Total P
Stonehouse Spring Complex	E			3100	64	1600	32	3800	150
Willow Spring	А	440	25	2300	14	1340	120	180	28
Keegan Spring Complex	А	320	28	500	48	420	35	2900	330
West Spring Valley Spring 1	А	510	100	3100	590	720	29	9400	1700
South Millick Spring	А	1630	40	2700	330	310	270	5600	700
Unnamed 5 Spring	А	1840	61	190	14	750	10	140	13
Minerva North Spring	А			390	<10	440	22	700	16
Minerva North Spring	В	620	<10	700	<10	630	10	720	25
Minerva Middle Spring	А			190	<10	3000	69	280	<10
	Means	893	43	1463	119	1023	66	2636	330
			Paired a	t-test (P)	•		Paired a	t-test (P)	
	Total N		0.3	312			0.2	209	
	Total P		0.2	221			0. 1	93	

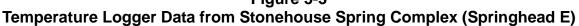
Table 3-17Nutrient Concentrations (mg/L) in Spring Valley Monitoring Sites for 2009 and 2010

Note: Nutrient samples were recorded at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.

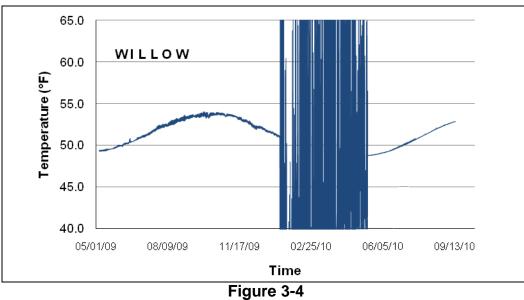
Table 3-18Nutrient Concentrations (mg/L) in Snake Valley Monitoring Sites for 2009 and 2010

		Spring	g 2009	Spring	g 2010	Fall	2009	Fall	2010
Site	Springhead	Total N	Total P	Total N	Total P	Total N	Total P	Total N	Total P
Clay Spring North	А			260	<10			820	100
Stateline Springs	А	580	12	550	21	680	16	1500	<10
Unnamed 1 Spring North of Big	А	210	<10	1100	43	240	<10	3000	180
Unnamed 1 Spring North of Big	В	520	<10	1900	18	670	22	1200	160
Big Springs	А			470	16	310	270	550	23
	Means	437	7	856	21	475	78	1414	116
			Paired a	t-test (P)	•		Paired a	t-test (P)	•
	Total N		0.2	213			0. 1	152	
	Total P		0. 1	158			0.8	395	

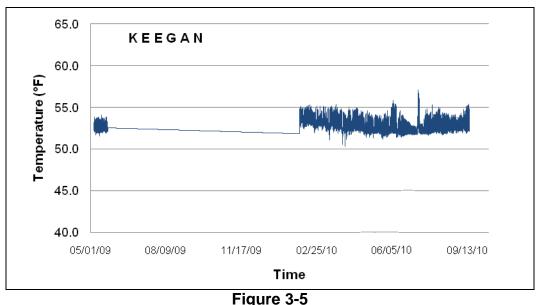

Note: Nutrient samples were collected at various times of day across sites and seasons (times available in final database). Head = springhead, Mid = sampling area midpoint along channel, End = sampling area endpoint along channel.


3.3.3 Temperature Loggers

Time-series plots of temperature logger recordings from May 2009 to September 2010 are shown for all spring sites. These time-series plots serve mainly to demonstrate the uniqueness of the temperature regimes in each springhead, as well of some of the difficulties encountered.


Spring Valley Springs

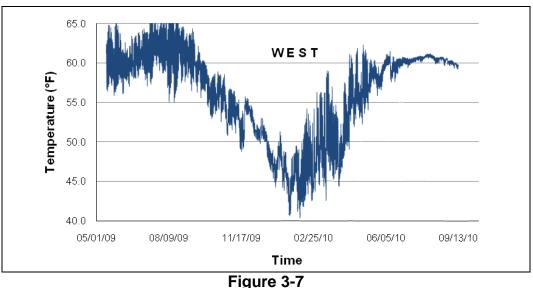
Stonehouse Spring Complex – Temperature logger data for Stonehouse Spring Complex (Springhead E) are shown in Figure 3-3. A temperature logger was originally placed in Springhead A during the spring 2009 sampling event and subsequently moved to Springhead E (the site of springsnail transect surveys) during the Fall (September) 2009 sampling event. The logger was somehow disturbed in early November 2009, probably by grazing cattle. Thereafter, the logger recorded air temperatures until the spring 2010 sampling event when it was re-secured in its underwater position. The water temperature at Springhead E appears to be fairly constant around 56°F; at least during the periods water, as opposed to air, temperatures were being measured.



Willow-NV Spring – Temperature logger data for Willow-NV Spring (Springhead A) are shown in Figure 3-4. Water temperatures show some seasonal variation from a high of about 54°F in September to a low of about 48°F during the late spring. Water temperatures showed little diurnal variation, but the logger was somehow disturbed in early January 2010 and thereafter recorded air temperatures until the spring (May) 2010 sampling event when it was re-positioned underwater.

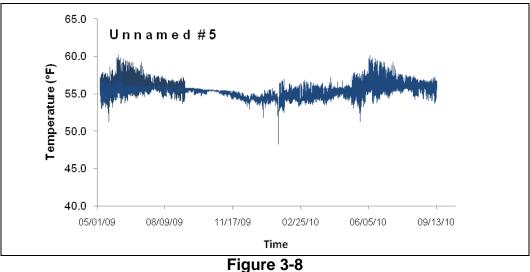

Temperature Logger Data from Willow-NV Spring (Springhead A)

Keegan Spring Complex North – Temperature logger data for Keegan Spring Complex North (Springhead A) are shown in Figure 3-5. This logger was placed in a riprap area just below a circular culvert that delivers the spring flow. The logger apparently became embedded in the sediments below the riprap where temperatures experience essentially no diurnal variations. The logger could not be located during the fall 2009 surveys due to heavy vegetation in this area of the spring. The logger was located during February 2010, at which time data were downloaded and the logger was repositioned in the same vicinity of the riprap area. This position appears similar to the original setting and diurnal variations in temperature became measurable once again. There appeared to be little seasonal variation in water temperatures at this site, probably because of the relatively fast flowing spring waters (2.8 - 3.0 fps).

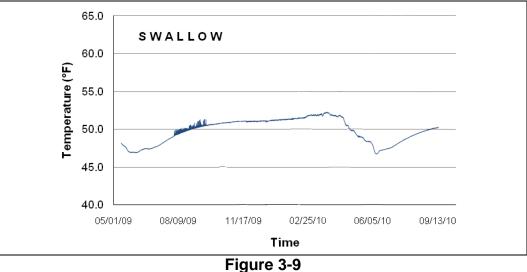

Temperature Logger Data from Keegan Spring Complex North (Springhead A)

South Millick Spring – Temperature logger data for South Millick Spring (Springhead A) are shown in Figure 3-6. The logger apparently was dislodged shortly after its deployment, measuring air temperatures from May 2009 to the fall (September) 2009 survey. Since then, water temperatures have demonstrated little 24-hour variation and a seasonal cycle ranging from a high of about 56°F in late October 2009 to a low of about 52°F in May 2010.

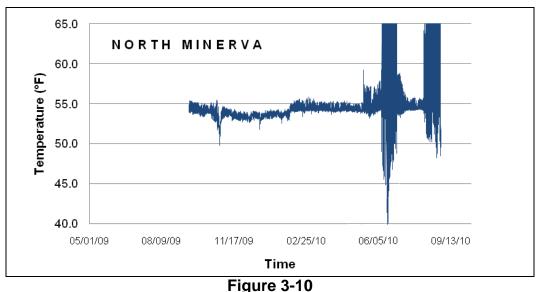
Temperature Logger Data from South Millick Spring (Springhead A)


West Spring Valley Complex 1 – Temperature logger data for West Spring Valley Complex 1 (Springhead A) are shown in Figure 3-7. There is considerable diurnal and seasonal variation in water temperatures at this site. Springhead A feeds directly into a relatively deep, slow-moving pool; the long retention time of water in this pool results in the observed notable diurnal and seasonal variations in water temperature. Average daily temperatures appear to range from about 62°F in the summer to a low of about 44°F in the winter.

Temperature Logger Data from West Spring Valley Complex 1 (Springhead A)



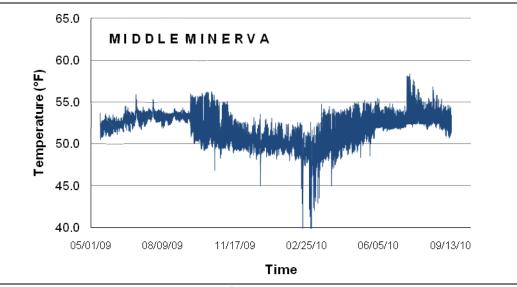
Unnamed 5 Spring – Temperature logger data for Unnamed 5 Spring (Springhead A) are shown in Figure 3-8. Springhead A discharges into a large pool with slowly circulating water. As a result, there are noticeable diurnal changes in temperature throughout much of the year at this site. On average, seasonal temperatures appear to vary from about 54°F during the winter to about 56°F during the summer.

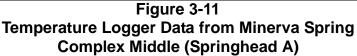

Temperature Logger Data from Unnamed 5 Spring (Springhead A)

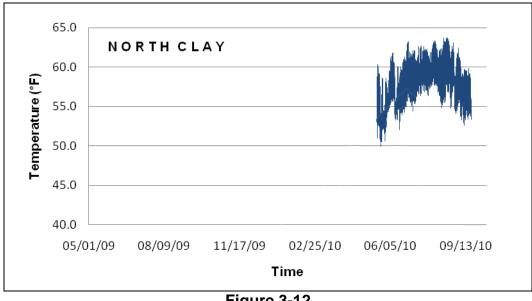
Swallow Spring – Temperature logger data for Swallow Spring (Springhead A) are shown in Figure 3-9. Flow in Springhead A is relatively swift, about 0.90 to 1.2 fps (documented during water velocity sampling), and is usually well shaded by an extensive canopy of riparian vegetation, willows and cottonwoods. These characteristics minimize the daily variation in water temperature, except between late July and early September. During this period, there is some heating of these waters from the effects of direct sunlight. Seasonal temperature variation ranges from a low of about 47°F in late spring 2010 to a high of about 52°F in March 2010.

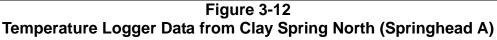
Temperature Logger Data from Swallow Spring (Springhead A)

Minerva Spring Complex North – Temperature logger data for Minerva Spring Complex North (Springhead A) are shown in Figure 3-10. The logger was not deployed until September 2009 (field error). The logger was placed in shallow water and displayed some diurnal temperature variation. In May 2010, shortly after the logger had been redeployed following data download, it was disturbed and began recording air temperatures. Readings suggest that the logger again became submerged for a several week period in July 2010 and then resurfaced, measuring air temperatures until the fall (September) 2010 field surveys when it was repositioned underwater.




Temperature Logger Data from Minerva Spring Complex North (Springhead A)


Minerva Spring Complex Middle – Temperature logger data from Minerva Spring Complex Middle (Springhead A) are shown in Figure 3-11. The logger is located in Springhead A where water flows into a fairly large, slow flowing pool. The May to September 2009 data show a much smaller diurnal variation compared with the subsequent values. This change occurred after repositioning the logger following data download during the fall (September) 2009 surveys. While the logger was relocated to the general area it had been retrieved from, it is apparent from the time-series plot that the logger was subjected to increased exposure to sunlight. This result demonstrates that it is very important to minimize logger exposure to sunlight.


Snake Valley Springs

Clay Spring North – Temperature logger data from Clay Spring North (Springhead A) are shown in Figure 3-12. Access was first granted to this private land in the spring of 2010. The data indicate that there is considerable diurnal variation in water temperatures in this spring.

Stateline Springs – Temperature logger data from Stateline Springs (Springhead A) are shown in Figure 3-13. Water temperatures typically demonstrated very little diurnal or seasonal variation. There appeared to be some disturbance to the logger starting in mid-October 2009, but it recovered by early December 2009. A second disturbance to the logger started around the third week of April 2010, and the logger eventually became completely exposed to the air. The logger was repositioned underwater upon its discovery during the spring (May) 2010 surveys.

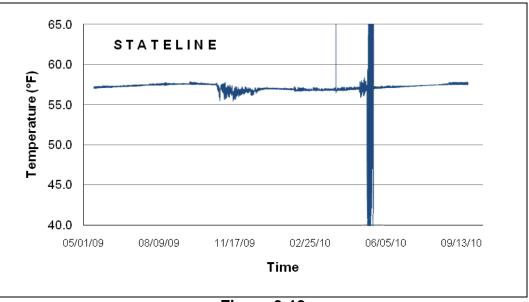


Figure 3-13 Temperature Logger Data from Stateline Springs (Springhead A)

Unnamed 1 Spring North of Big – Temperature logger data for Unnamed 1 Spring North of Big (Springhead A) are shown in Figure 3-14. This temperature logger appeared to be subject to air exposure both in May/June 2009 and again in March to May 2010; the logger was found out of water and resubmerged during the spring (May) 2010 surveys. Thereafter, the logger sank into the mud (where it was discovered during fall [September] 2010 surveys) and no longer measured diurnal variations in temperature. Average temperatures appeared to vary from a high of about 56°F in August 2009 to a low of about 50°F in January 2010.

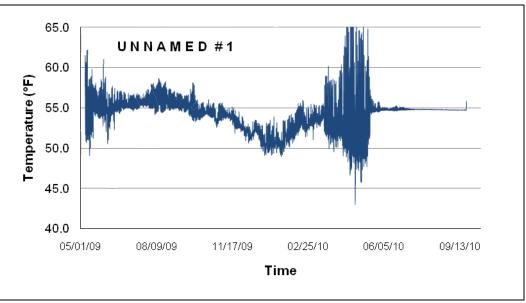


Figure 3-14 Temperature Logger Data from Unnamed 1 Spring North of Big (Springhead A)

Big Springs – Temperature logger data for Big Springs (Springhead B) are shown in Figure 3-15. Water temperatures are quite constant throughout much of the year and demonstrate very little diurnal variation. The lack of diurnal variation is largely due to the fast-flowing nature of the spring; up to 1.5 cfs were recorded during water velocity sampling. The diurnal variations that become apparent between September and November 2009 are likely due to increased exposure to sunlight due to the seasonal change in the solar angle of incidence.

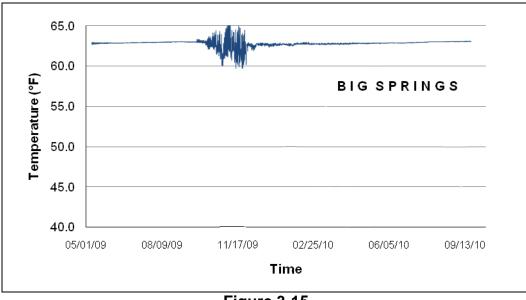
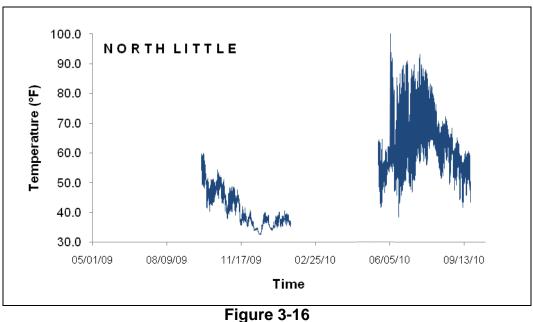



Figure 3-15 Temperature Logger Data from Big Springs (Springhead B)

North Little Spring – Temperature logger data for North Little Spring (Springhead A) are shown in Figure 3-16. The original temperature logger placed during the spring 2009 surveys was never recovered. A second logger was installed during fall (September) 2009 surveys and data from this logger were downloaded in February 2010. The second logger could not be located during the spring (May) 2010 surveys and was replaced with a third logger at that time. Average temperatures in North Little Spring vary from a low of about 32°F in December 2009 to a high of about 70°F in August 2010. It is apparent from the time-series plot that placement of the logger is critical in determining the real diurnal variation in temperature in this spring.

Temperature Logger Data from North Little Spring (Springhead A)

Temperature Logger Data - Discussion

It is clear from the results presented above that there are two problems that continue to influence the data produced by the temperature loggers: (1) disturbance of the logger, most likely by cattle; and (2) positioning of the logger such that it has minimum exposure to sunlight. Testing of several shield designs will be undertaken in an effort to eliminate these problems. Furthermore, the temperature loggers in West Spring Valley Complex 1 and Unnamed 1 Spring North of Big may be moved from the springhead pools and repositioned at the top of the spring brook to more accurately assess water temperatures directly affecting springsnails in the upper reaches of these two spring systems.

3.4 Springsnails

The objectives for springsnail sampling are to monitor the seasonal and annual variation in springsnail abundance, monitor the spatial distribution of springsnails within each monitoring site, and describe habitat associations that may be governing springsnail abundance and/or distribution (per the Plan, page 5-11). In accordance with the Plan, in 2010 springsnail and springsnail habitat sampling was conducted at nine spring sites in spring (May 10-19) and fall (September 13-22). Within the nine spring sites, a total of 14 channels were surveyed.

Previous surveys have identified *Pyrgulopsis anguina* (longitudinal gland pyrg) and *Pyrgulopsis peculiaris* (bifid duct pyrg) in Big Springs, and *Pyrgulopsis anguina* in Stateline Springs and Clay Spring North (Snake Valley; BIO-WEST 2007 and 2009; UDWR 2009). *Pyrgulopsis kolobensis* (Tocquerville pyrg) previously has been identified in all Spring Valley monitoring sites (BIO-WEST 2007 and 2009).

Table 3-19 shows the following summary data: length of springsnail extent, total springsnail count (summed across sampling points [quadrats]), range of springsnail counts per quadrat, mean springsnail count per quadrat, and standard error of the mean. Number of transects and sample points (quadrats) are also provided to enable appropriate interpretation of total springsnail count. Figures 3-17 and 3-18 show springsnail counts (mean/quadrat and total across quadrats) and springsnail extent graphed by year and season for each channel. Results from a Linear Mixed Model analysis on springsnail counts comparing years and seasons (Model: Springsnail Count = Year Season Year* Season) by channel are shown in Table 3-20, and significant results are noted in Figures 3-17 and 3-18. Springsnail habitat mean values are presented in Table 3-21.

Mean springsnail count per sampling point (quadrat) and standard error of the mean were calculated to provide a standard way to compare springsnail count across channels and time, as well as to examine within-channel variation in springsnail distribution. Total springsnail count should not be used alone for comparison across sites because it is influenced, in part, by the number of transects; and number of transects is influenced, in part, by the physical length of a channel. Although mean count provides a standard metric, at times it can represent density and distribution rather than overall abundance in a channel. Mean count, total count, and extent, as well as distribution of abundance across extent, considered together provide information on relative abundance and distribution across space and time. The distribution of springsnail counts along each springsnail extent (mean springsnail count/quadrat calculated for each transect, charted from the springhead to the end of the springsnail extent) is presented in Appendix D.

3.4.1 Springsnail Extent

Springsnail extent varied across sampling periods by 30-55% in five channels (Stateline Channels A and B, Stonehouse Channel E, West Spring Valley Channel A, and Willow Channel A), and were relatively constant in eight channels (Table 3-19, Figures 3-17 and 3-18). There were no patterns in the direction or magnitude of change across seasons, and there was no pattern of change across years among sites. The most notable change in extent occurred at West Spring Valley Channel A, where extent ranged from 25 to 54 m (Spring 2009 and Fall 2010 extents = 46-60% of Fall 2009 and Spring 2010 extents). In Stateline Springs Channel B, springsnails were searched for but not discovered in

Fall 2009 (no standing water) or Spring 2010 (water present); although it is possible that they were present at very low levels, most likely their extent would not have been measurable.

Variations in springsnail extent may have been due, in part, to habitat conditions and population status. For example, at Stateline Springs Channel A, springsnail extent varied from 5 m (Fall 2009) to 11 m (Fall 2010), although standing water extended 11 m during all four sampling periods. Likewise, at West Spring Valley Channel A, springsnail extent varied from 25 m (Fall 2010) to 54 m (Spring 2010), although standing water extended well past the springsnail extent during all sampling periods. These results suggest that the springsnail populations were more limited in their extent during some sampling periods than others.

Variation in springsnail extent can also be influenced by the physical length of a channel. For example, Stateline Springs Channel A converged with Lake Creek 11 m from springhead A1, which constrained the springsnail extent to a possible maximum of 11 m. In comparison, Minerva Springs Complex North Channel A ran approximately 130 m, nearly 12 times longer. Because of this large difference in physical channel lengths, springsnail extent at this point appears most applicable to within-channel analysis. After more years of data are collected, across-channel or across-site analyses may become more meaningful.

3.4.2 Springsnail Abundance and Distribution

Springsnail counts were significantly different across years and/or seasons in six ($p \le 0.05$) to eight ($p \le 0.1$) channels ($p \le 0.05$: Clay Channel A [2010 data]), Unnamed 1 North of Big Channels A and B, West Spring Valley Channel A, and Willow Channel A; $p \le 0.1$: Big Channel B and Minerva Middle Channel B) (Tables 3-19 and 3-20, Figures 3-17 and 3-18). Year*season interactions in four ($p \le 0.05$) to five ($p \le 0.1$) channels demonstrate that, like springsnail extent, there were no patterns in the direction or magnitude of change across seasons. There was also no pattern of change across years among sites. The most notable change in springsnail count occurred at West Spring Valley Complex Channel A, where mean count/quadrat ranged from 9.8 to 28.7, with Fall 2010 mean count reaching only 34% of Spring 2009 mean count; and in Unnamed 1 North of Big Channel A, where mean count/ quadrat ranged from 8.62 to 28.5, with Spring 2009 mean count reaching only 30% of Fall 2009 mean count. In Stateline Springs Channel B, springsnails were searched for but not discovered in Fall 2009 (no standing water) and Spring 2010 (water present), although it is possible that they were present at low levels but not detected.

Variations in mean springsnail count may have been due, in part, to habitat conditions and population status. For example, at Unnamed 1 North of Big Channel B, mean springsnail count/quadrat ranged from 22.4-55.2 and total count across quadrats ranged from 2235-5230, but springsnail extent was relatively constant across all four sampling periods (extent range: 48 to 52 m). These results suggest that the springsnail population was more limited in abundance during some sampling periods than others.

Mean count, total count, and extent, as well as distribution of abundance across extent, considered together provide information on relative abundance and distribution across space and time. This is well demonstrated at West Spring Valley Channel A. At this site, mean springsnail count/quadrat in Spring 2009 was nearly twice that of Spring 2010, but total springsnail count across quadrats in

Spring 2009 was 73% that of Spring 2010 (Tables 3-19 and 3-20, Figures 3-17 and 3-18). The distribution graph of mean springsnail counts along the extents (Appendix D) demonstrates that the greater mean count in Spring 2009 was due, in part, to a high density of springsnails close to the springhead (mean count = 127 at the upstream transect and 99 at the second transect 5 m downstream) coupled with a relatively short extent (29 m). In comparison, in Spring 2010 the springsnails were more evenly distributed across approximately 19 m of the extent (mean count = 53 at the upstream transect and 37 at the eighth transect 19 m downstream), the extent was nearly twice as long (54 m), and 77% of the transects >21 m downstream had relatively low mean counts (\leq 5). These results suggest that the springsnails in Spring 2009 were more limited in their total extent, but conditions within 5 m of the springsnails in both seasons were limited in abundance in the downstream portion of their extent.

Low counts in the downstream portion of springsnail extents were documented across almost all channels during all sampling periods (Appendix D). This suggests that springsnails in general are limited in abundance in the downstream portion of their extents. Low counts also might result in low detection rates, which can affect relative abundance and distribution results. If springsnails are present at low levels in the downstream portion of their extent but are not detected, mean count could increase and extent could decrease considerably, although total count probably would not appreciably change. Strictly following the protocol designed by the BWG (September 2010) when searching for springsnail presence and extent will decrease chance for error.

3.4.3 Springsnail Habitat

Water temperature, dissolved oxygen, conductivity and pH were taken at each springsnail transect, and water velocity, water depth, and percent emergent vegetation cover were collected at each springsnail sample point. Mean springsnail habitat values by channel and sampling period are shown in Table 3-21. Presence/absence data for submergent vegetation, filamentous algae and substrates (fines, sand, gravel, cobble and boulder) are included in the database.

Table 3-19	Descriptive Statistics: Springsnail Extents, Transects and	Sampling Points, and Total and Mean Counts for 2009 and 2010
------------	--	--

			-													
			Springsnail	snail			Number of	er of	. ۲ ر	Total	Sprin	Springsnail	1		č	L -
Hvdrographic Basin			Extent (m) ^a	ent a	Number of Transects	er of octs	Sample Points (quadrats)	Points rats)	Sprin	Springsnail Count	Count qua	Count Range/ quadrat	Mean (qua	Mean Count/ quadrat	standa of N	Standard Error of Mean
Site	Channel	Year	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Spring Valley	<	2009	33	30	13	14	65	70	213	245	0-46	0-19	3.3	3.5	0.8	0.6
Minerva Middle	٢	2010	30	30	13	14	65	70	202	134	0-22	0-17	3.1	1.9	0.6	0.4
Minorato Middlo	0	2009	33	33	14	14	54	62	396	480	0-74	0-94	7.3	7.7	1.8	1.8
	۵	2010	37	36	18	18	82	88	303	539	0-28	66-0	3.7	6.1	0.6	1.3
Miscario Mosth	<	2009	ပ	110	υ	20	ы	89	U	4470	с	0-304	υ	50.2	ပ	5.1
	٢	2010	111	115	17	22	77	101	3978	4232	0-362	0-268	51.7	41.9	7.4	4.9
Cton ob our of	Ľ	2009	22	21	6	ი	45	45	397	395	0-71	0-62	8.8	8.8	1.9	1.7
	Ц	2010	31	30	15	13	70	63	648	169	0-56	0-33	9.3	2.7	1.5	9.0
Mont Carian Mallon	<	2009	29	48	12	15	37	68	1061	973	0-163	0-147	28.7	14.3	6.7	3.5
west opining valley	٢	2010	54	25	21	12	95	60	1448	585	0-148	0-80	15.2	9.8	2.7	1.5
	<	2009	21	22	10	10	50	41	191	566	0-26	0-62	3.8	13.8	0.7	2.4
VUIIOW	٢	2010	25	30	11	13	44	57	373	582	0-57	0-48	8.5	10.2	1.9	1.5
Snake Valley	٩v	2009	16	14	7	7	35	35	192	257	0-26	0-71	5.5	2.3	1.1	2.4
Big	٢	2010	16	17	7	7	35	35	137	213	0-55	0-71	3.9	6.1	1.6	2.1
	٥	2009	18d	15d	10	8	50	40	165	321	0-15	0-71	3.3	8.0	0.5	2.0
ыq	C	2010	18d	18d	8	10	39	50	434	49	0-104	0-5	11.1	1.0	2.6	0.2
	~	2009	с	υ	υ	υ	U	c	С	U	U	c	υ	С	С	C
Cidy	٢	2010	61	56	20	20	100	67	6273	3286	0-468	0-198	57.8	33.9	7.7	4.7
Ctataling	q۷	2009	8	5	3	3	15	15	48	17	0-25	0-21	3.2	5.1	1.6	1.8
OlaleIII IE	¢	2010	7	11	4	5	20	25	143	26	0-53	0-4	7.2	1.0	3.0	0.3
Ctatolino	۵	2009	6	0e	4	е	13	е	3	0e	0-2	0e	0.2	0e	0.2	e
OldIEIII IE	٥	2010	0e	8	е	5	е	24	0e	6	0e	0-3	0e	0.4	e	0.2
Ctatolino	c	2009	f	f	f	f	f	f	f	f	f	f	f	f	f	f
	>	2010	f	6f	f	3f	f	15f	f	26f	f	0-7f	f	1.7f	f	0.6f
Innamed 1 N of Big	ЧÅ	2009	59	57	20	20	100	100	862	2846	0-114	0-244	8.62	28.5	1.6	4.6
	¢	2010	67	60	20	22	100	108	1853	2899	0-133	0-134	18.5	26.8	2.7	3.3
Innamod 1 N of Big	۵	2009	52	48	20	20	100	100	2235	3085	0-167	0-227	22.4	30.9	3.7	4.1
	ב	2010	52	52	20	18	100	90	5230	4968	0-383	0-275	52.3	55.2	6.9	7.2
^a Extents were reported incorrectly in Table 3-10 of the 2009 annual report (SNWA, 2010). ^b Big and Unnamed 1: Channels A and B converge: soringsnails in the convergence included in Channel A. Stateline: Springhead A1 and Channel A.	incorrectly i	n Table 3- ind B conv	-10 of the 2 verge: sprir	2009 ann nasnails	iual report in the con	(SNWA	, 2010). te included	in Chan	nel A. Sta	teline: Sp	rinahead	A1 and Ch	annel A.			

^dExtent approximated from physical habitat map and transect UTM coordinates (not measured consistently in the field). •Springsnails not discovered (Fall 2009: no water and no springsnails discovered; Spring 2010: water present but springsnails not discovered). •Not surveyed in a consistent enough fashion to allow comparison across seasons. Fall 2010 data collection focused on the major path of water flow.

"Not surveyed (Clay Spring: access not granted; Minerva Spring Complex North: field error).

across Years and Seasons for Spring and Fall 2009 and 2010 Linear Mixed Model Results Comparing Springsnail Counts Table 3-20

Model: Springsnail count = Year Season Year*Season. Restricted maximum likelihood estimation was used to fit the linear mixed model. The variables year (2009, 2010), season (spring, fall) and year*season interaction were fixed effects.

			J≥d	Significance p≤0.05 (*), p<0.1 (^)	nce :0.1 (^)		p value			F value		Δ	DF
Site	Channel	z	Year	Season	Yr*Seas	Year	Season	Yr*Seas	Year	Season	Yr*Seas	Num.	Den.
Spring Valley Minerva Middle	A	270				0.13	0.4	0.2	2.31	0.71	1.50	-	266
Minerva Middle	В	286	<			0.06	0.3	0.5	3.73	1.09	0.55	٢	282
Minerva North	A	267				0.3	0.2	q	1.13	1.44	q	٢	264
Stonehouse	ш	223	<	*	*	0.06	0.03	0.03	3.63	4.96	4.83	٢	219
West Spring Valley	A	260	*	*		0.012	0.006	0.2	6.40	7.79	1.56	٢	256
Willow	A	192		*	*	0.8	0.001	0.014	0.10	12.39	6.15	٢	188
Snake Valley	<	110				2	0		0.67	7 7 6	500	•	301
ыд	¥	140				0.0	0.3	0.3	10.0	01.10	0.01	_	130
Big	В	179		٧	*	0.8	0.07	0.0001	0.07	3.28	24.65	L	175
Clay	A	197		*		ø	0.009	ø	а	6.94	ŋ	٢	195
Stateline	A	75		1	*	0.9	0.3	0.04	0.001	1.16	4.31	-	71
Stateline	В	39	U	U	U	0.9	0.9	0.6	0.02	0.02	0.34	-	35
Stateline	ပ	σ	σ	q	q	σ	σ	q	d	q	σ	σ	σ
Unnamed 1 N of Big	A	408		*	<	0.2	0.0001	0.08	1.61	18.59	3.12	٢	404
Unnamed 1 N of Big	В	390	*			0.0001	0.3	0.6	23.30	1.03	0.25	٦	386
^a Not surveyed in 2009 (access not granted).	cess not gran	ted).											

b Not surveyed in 2009 (access not granted).

^cSpringsnail count = 0 in Fall 2009 and Spring 2010. Lack of significance likely due to low power and statistical difficulties in handling zero counts. ^dNot surveyed in a consistent enough fashion to allow comparison across seasons. Fall 2010 data collection focused on the major path of water flow.

			Water Temperature	er ature	Conductivity	tivity			Dissolved Oxygen	ved en	Water Velocity	it v	Emergent Vegetation	ent tion	Water Depth	epth
Hydrographic Basis			(°F)	~	(ms/cm)	(E	Hq		e(%)	B	(fps) ^a	a.	(%)		(cm)	_
Site	Channel	Year	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Spring Valley	<	2009	55	54	375	367	7.67	8.14	80	98	0.3	0.2	q	59	7	11
Minerva Middle	٢	2010	56	55	377	373	7.27	6.70	120	103	0.1	0.1	33	31	6	14
Miscence Middle	٥	2009	56	56	397	396	7.71	8.22	65	87	0.01	0.1	σ	54	4	5
	۵	2010	57	56	377	375	7.39	6.61	106	94	0.1	0.1	55	37	5	9
Minerya North	V	2009	U	61	υ	283	υ	8.57	υ	96	υ	0.1	U	75	υ	9
	c	2010	26	56	264	279	7.88	7.33	108	103	0.2	0.2	50	46	4	4
Ctonobolico	ц	2009	65	99	411	333	7.60	7.26	63	82	q	σ	р	85	9	6
	J	2010	53	29	463	370	7.14	6.92	85	101	0.02	р	40	27	8	4
Most Carias Valley	<	2009	68	59	384	338	7.35	7.29	32	69	0.1	0.04	σ	67	9	5
west optillig valley	ſ	2010	54	58	345	370	7.18	6.63	76	99	0.2	0.1	20	71	9	ю
	۷	2009	61	62	617	401	7.68	7.61	81	82	q	р	q	85	2	2
	C	2010	51	60	418	419	7.32	7.50	62	82	0.02	σ	59	41	2	-
Snake Valley	٩v	2009	63	63	361	390	7.50	7.54	45	69	1.0	0.6	σ	99	8	11
Big	٢	2010	63	63	366	363	7.79	7.69	70	76	0.6	0.6	61	49	15	10
, Sig	۵	2009	63	63	362	392	7.51	7.49	44	68	0.4	0.4	q	89	10	6
ĥn	ב	2010	64	64	365	373	7.65	77.77	68	78	0.3	0.4	95	48	10	5
	V	2009	С	С	С	С	c	ပ	c	ပ	c	c	c	c	c	U
Ciay	¢	2010	58	22	567	629	7.91	7.61	67	69	0.4	0.1	13	47	10	12
Statalina	q۷	2009	63	58	488	371	8.02	7.65	47	62	0.5	0.2	p	75	4	5
Orardinie	C	2010	28	58	343	339	8.31	7.90	70	62	0.2	0.2	54	32	5	9
Stataline	۵	2009	60	е	409	е	7.93	е	53	е	0.4	е	q	е	3	е
Otation to	נ	2010	е	59	е	343	е	7.6	е	80	е	0.05	ө	50	е	4
Statalina	Ċ	2009	f	f	f	f	f	f	f	f	f	f	f	f	f	f
Oldiciii IC	>	2010	f	57	f	342	f	7.4	f	76	f	0.3	f	29	f	8
Innamed 1 N of Big	q۷	2009	65	56	408	455	7.84	7.76	55	83	q	р	p	95	3	3
	c	2010	57	09	415	453	7.59	7.79	96	93	0.2	р	95	65	3	З
Innamed 1 N of Big	Ч	2009	62	58	492	475	7.87	7.66	53	81	q	р	p	97	4	5
	ב	2010	58	61	430	446	7.57	7.71	98	103	0.04	0.1	88	55	3	4
^a Dissolved oxygen >100% = supersaturated conditions. Velocity: means of recorded values (missing values - unrecordable due to field conditions). ^b Big and Unnamed 1: Channels A and B converge; springsnails in the convergence included in Channel A. Stateline: Springhead A1 and Channel A. ^c Not surveyed (Clay Spring: access not granted; Minerva Spring Complex North: field error).	 supersaturate nels A and B c access not grave 	ed conditions. onverge; sprir anted; Minerva	Velocity: me igsnails in the a Spring Com	ans of rec e converge plex Nortl	corded values ence included h: field error).	s (missing id in Chanr	l values - un nel A. State	irecordat eline: Spr	unrecordable due to fie ateline: Springhead A1	field conditions) v1 and Channel	tions). annel A.					
^d Velocity: not recordable due to field conditions. Per Plan, % Springsnails not discovered (Fall 2009: no water and no spri	e to field condi d (Fall 2009: no	tions. Per Pla o water and no	n, % shaded r springsnails	recorded in S s discovered;	in Spring 20 ed; Spring 20	09; chang 010: water	n Spring 2009; changed to % emergent vegetation in Fall 200; d; Spring 2010: water present but springsnails not discovered)	ergent ve t springs	egetation in nails not dis	in Fall 2009. discovered).	റ് പ്					
¹ Not surveyed in a consistent enough fashion to allow comparison across seasons. Fall 2010 data collection focused on the major path of water flow	nt enough fashi	ion to allow co	mparison ac	ross seaso	ons. Fall 20	10 data cc	ollection focu	used on t	he major pa	th of wa	ter flow.					

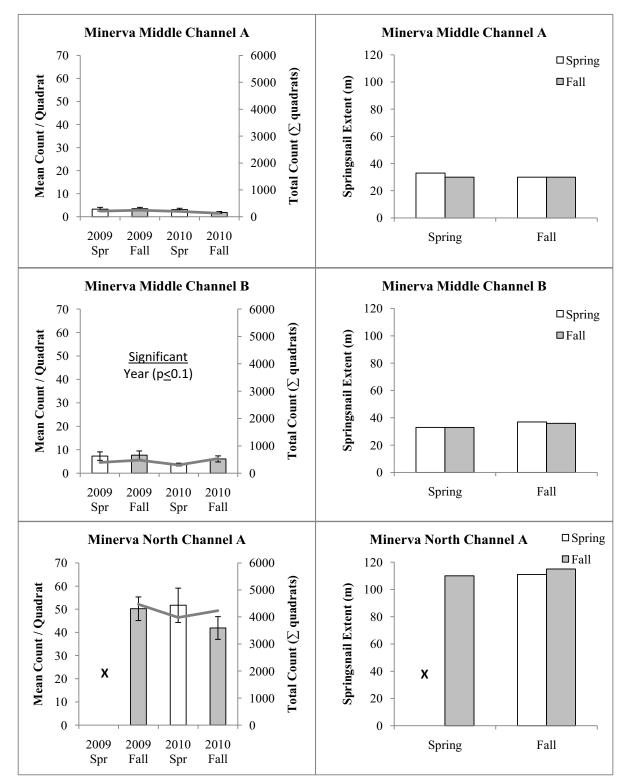
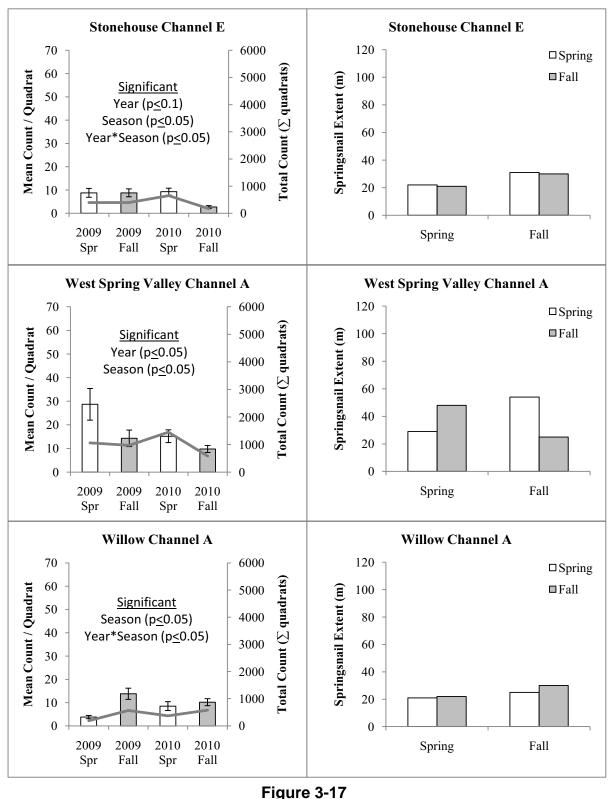
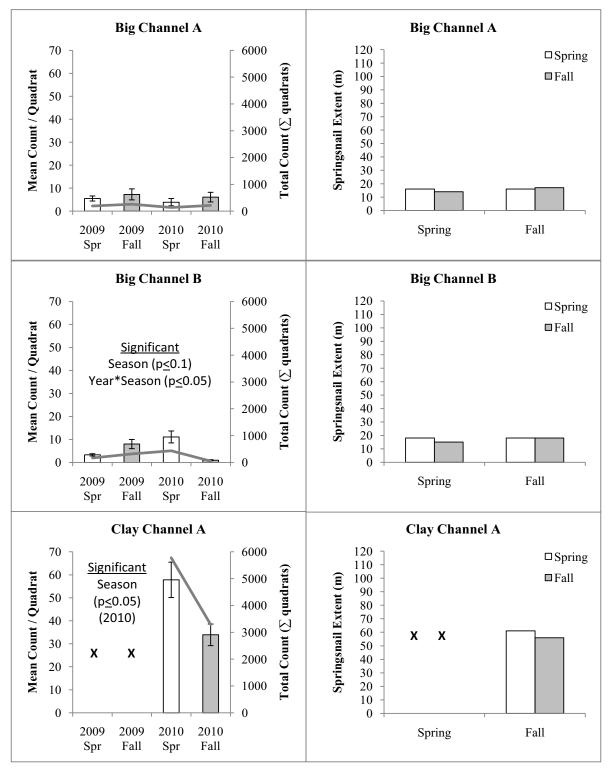




Figure 3-17 Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Spring Valley 2009 and 2010 (Page 1 of 2)

Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Spring Valley 2009 and 2010 (Page 2 of 2)

Note: Big Springs Channel B extent approximated from physical habitat map and transect UTM coordinates.

Figure 3-18 Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Snake Valley 2009 and 2010 (Page 1 of 2)

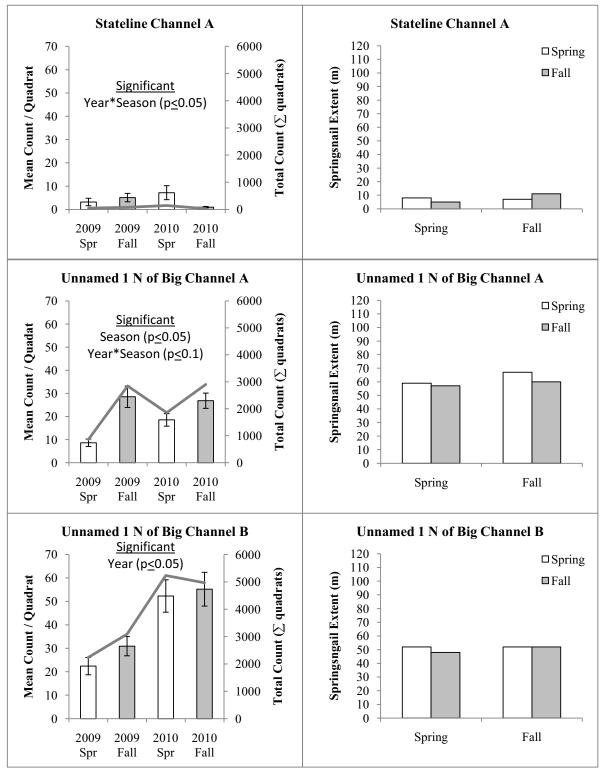


Figure 3-18 Springsnail Counts (Mean = bar, Total = line) and Springsnail Extents, Snake Valley 2009 and 2010 (Page 2 of 2)

3.5 Macroinvertebrates

The objective for macroinvertebrate monitoring is to ascertain the seasonal and annual variation in macroinvertebrate assemblage composition and richness over time. Potential changes in macroinvertebrate abundance and species composition would allow for the assessment of linkages between changes in habitat and water quality conditions (Biological Work Group, 2009). Thirteen springs were surveyed for macroinvertebrates during spring and fall 2009, and five Big Springs Creek/Lake Creek reaches were surveyed during the native fish community survey in fall 2009.

A complete taxa listing and metrics report for each sampling event at each spring can be found in Appendix A.

A summary of the percent relative abundance (percent of the total sample count) for non-insects, insect orders and the family *Chironomidae* for the 2009/2010 stipulation monitoring program is shown in Tables 3-22 and 3-23.

Non-insect taxa, mostly amphipods, ostracods and gastropods made up more than 74%, on average, of the macroinvertebrates sampled during both spring and fall, 2010. Similar patterns were identified in 2009, when these taxa made up more than 65% of the macroinvertebrates across seasons in almost all springs. Overall, in both 2009 and 2010, chironomids tended to be the most numerous insects in most of the springs.

For the purposes of this report, macroinvertebrate "richness" in the surveyed spring systems is simply defined as the number of taxa identified in the composited sample from any given spring system. EPT richness (i.e., the sum of Ephemeroptera, Plecoptera, and Trichoptera taxa in each composite spring sample) is often used as a measure of pollution or habitat degradation as insects in these three orders are considered sensitive to changes in the aquatic environment. Taxa and EPT richness determinations for the surveyed spring systems in spring and fall 2009 and 2010 are summarized in Table 3-24.

There were no apparent patterns in either taxa or EPT richness during the two years of surveys. Taxa richness averaged 18-22 in all seasons and years, and varied across sites (range: spring 2009 = 5-41; fall 2009 = 9-41; spring 2010 = 10-38; fall 2010 = 10-38). EPT richness was typically low, averaging 1-2 in all seasons and years (range: spring 2009 = 0-3; fall 2009 = 0-5; spring 2010 = 0-3; fall 2010 = 1-4).

Percent Relative Abundance of Macroinvertebrates in Spring Valley Monitoring Sites for 2009 and 2010 Table 3-22

										Category	۲۲ کار								
)	, [
		Non-Insect	sect	Odonata	ata	Ephemeroptera	optera	Plecoptera	tera	Heteroptera	otera	Trichoptera	tera	Coleoptera	otera	Diptera	era	Chironomidae	omidae
Spring	Year	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Ctopobolico	2009	74.0	96.3	0.3	1.6	0.0	0.0	0.0	0.0	5.7	0.3	0.0	0.0	0.3	0.6	3.3	0.9	16.3	0.3
	2010	93.4	93.1	0.0	0.6	0.3	0.3	0.0	0.0	0.0	0.6	1.9	0.3	0.3	0.6	0.3	0.6	4.1	3.8
VAGILONY	2009	76.3	74.7	1.3	1.0	0.0	0.3	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0	0.0	13.0	7.0	11.0
	2010	91.6	91.4	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.6	0.0	2.2	8.4	4.8
de poor y	2009	36.7	60.6	1.3	10.6	0.0	6.6	0.0	0.0	0.7	0.7	1.3	1.7	1.7	1.0	9.0	2.7	49.3	16.2
Needall	2010	54.3	60.3	0.3	5.3	0.0	1.3	0.6	0.0	0.6	0.3	0.6	1.3	0.0	1.0	9.5	1.7	34.1	28.8
Wact	2009	73.7	69.4	0.7	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	2.0	4.1	5.3	1.0	18.3	23.7
V 631	2010	89.6	71.9	0.9	2.3	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.7	0.3	17.7	5.2	4.5	4.0	2.3
Anillick د	2009	97.9	97.4	0.0	0.3	0.0	0.0	0.0	0.0	0.0	1.3	1.2	0.3	0.9	0.3	0.0	0.3	0.0	0.0
	2010	94.4	76.4	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.3	2.0	1.6	2.3	9.0	0.3	1.6	1.0	9.9
	2009	74.3	71.7	1.0	10.7	0.0	10.3	0.0	0.0	3.7	1.7	3.0	0.3	0.3	0.3	9.7	0.3	8.0	4.7
	2010	91.7	38.2	1.0	22.6	0.0	3.6	0.0	0.0	0.0	0.3	1.3	3.6	0.0	1.0	1.7	2.9	4.3	27.8
N Minorita	2009	ea	76.6	1	11.5	1	5.9	ł	0.0	1	0.0	1	0.0	1	0.0	ł	0.0	1	5.9
	2010	91.2	84.3	0.0	5.7	0.3	2.2	0.0	0.0	0.3	0.9	0.0	0.3	2.3	1.9	2.6	1.3	2.9	3.5
M Minvers	2009	79.7	83.3	0.3	0.3	0.0	0.0	1.0	0.0	0.0	0.0	2.0	1.3	0.3	0.0	0.0	0.0	16.7	15.0
	2010	93.0	63.1	0.3	0.0	0.3	0.3	0.0	0.0	0.3	0.0	0.0	1.6	2.3	0.3	2.6	0.7	2.9	34.0
Cwallow	2009	87.3	78.4	0.0	0.0	0.0	4.2	0.3	0.3	0.0	0.0	8.3	8.7	3.0	1.3	1.0	1.3	0.0	5.8
	2010	95.6	94.3	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	1.3	3.2	0.3	0.3	0.3	1.0	1.3	1.3
70 UCOM	2009	75.0	78.7	0.6	4.1	0.0	3.0	0.2	0.0	1.3	0.4	2.1	1.5	1.1	0.9	3.5	2.2	14.5	9.2
	2010	88.3	74.8	0.3	4.2	0.2	0.9	0.1	0.0	0.1	0.4	0.8	1.5	0.9	3.6	2.5	1.8	7.0	12.9
^a Not sampled during spring 2009 sampling event.	during spr	ing 2009 s	amplin	g event.															

 Table 3-23

 Percent Relative Abundance of Macroinvertebrates in Snake Valley Monitoring Sites for 2009 and 2010

										Category	ory								
		Non-Insect	sect	Odonata	ata	Ephemeroptera	optera	Plecoptera	itera	Heteroptera	otera	Trichoptera	tera	Coleoptera	tera	Diptera	sra	Chironomidae	nidae
Spring	Year	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
	2009	а	ł	1	1	1	ł	ł	1	1	ł	1	1	ł	1	ł	ł	1	1
Clay	2010	91.9	78.3	0.0	3.7	0.0	14.3	0.0	0.0	0.0	0.0	0.3	1.2	0.0	0.0	0.6	0.6	7.1	1.9
Ctataling	2009	92.4	89.3	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.3	1.0	2.9	0.6	0.7	0.3	1.0	5.7	4.6
	2010	62.3	78.7	0.0	0.0	0.3	1.0	0.0	0.0	0.0	0.0	1.9	4.2	0.3	0.0	0.3	13.9	34.9	5.2
1 bomcaal	2009	92.1	89.9	2.7	4.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.5	0.3	0.3	0.3	0.9	2.4	3.4
	2010	93.6	95.8	1.5	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.3	0.0	0.0	1.8	0.0	2.5	1.6
Big Corioge	2009	77.4	91.5	0.0	0.7	0.0	0.3	0.0	0.0	7.9	0.0	1.6	1.3	0.3	0.0	1.6	0.0	17.1	6.2
	2010	81.1	87.4	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	1.3	0.3	0.0	0.3	0.3	17.7	11.0
70 ACOM	2009	87.3	90.2	0.9	1.5	0.0	0.5	0.0	0.0	2.6	0.1	1.6	1.9	0.4	0.3	0.7	0.6	8.4	4.7
	2010	82.2	85.0	0.4	1.3	0.1	3.8	0.0	0.0	0.1	0.0	0.8	2.0	0.2	0.0	0.8	3.7	15.5	4.9
^a Not sampled during 2009 sampling events	during 20	09 sampli	ng even	ts.															

Table 3-24
Macroinvertebrate Taxa Richness and
EPT Richness for 2009 and 2010

		Tax Richn		EP Richn	
Spring	Year	Spring	Fall	Spring	Fall
Stonehouse	2009	29	19	0	0
Stonenouse	2010	16	20	1	2
Willow	2009	32	20	2	1
VIIIOW	2010	11	23	0	2
Keegan	2009	41	41	2	2
Reegan	2010	38	34	2	2
West	2009	32	31	0	1
West	2010	22	21	0	1
S. Millick	2009	5	9	1	1
S. WIIIICK	2010	11	16	1	1
Unnamed 5	2009	25	21	1	2
Unnamed 5	2010	23	38	1	2
N. Minerva	2009		16		1
N. MILLELVA	2010	26	32	1	3
M. Minvera	2009	16	19	3	2
w. winvera	2010	15	15	2	2
Swallow	2009	12	20	2	4
Swallow	2010	10	10	3	1
Clay	2009				
Clay	2010	11	12	1	2
Stateline	2009	11	24	2	5
Stateline	2010	17	21	3	4
Lippamod 1	2009	13	19	1	2
Unnamed 1	2010	16	10	1	1
Big Springs	2009	22	18	3	4
	2010	12	13	1	1
Spring Means	2009	22	21	2	2
Fall Means	2010	18	20	1	2

3.6 Northern Leopard Frog (Rana pipiens)

Northern leopard frog monitoring determines the presence of northern leopard frogs at the Plan sites and provides information on breeding activity. Twelve sites with no previous northern leopard frog documentation (five in Spring Valley and seven in Snake Valley) were surveyed to document the presence or absence of northern leopard frog. No signs of northern leopard frog were documented at any of these twelve sites (similar to 2009) and subsequent egg mass surveys were not conducted. Northern leopard frog egg-mass surveys were conducted at the remaining seven sites with previously-documented northern leopard frog occurrence (all in Spring Valley). Egg masses were documented at three of these sites (Keegan Spring Complex North, Unnamed 5 Spring, and Minerva Spring Complex North) from April 19 to May 18, 2010. Table 3-25 summarizes all sites surveyed and presents the general results for both 2009 and 2010.

		NLF Pr	esent?	Egg Mas	s Present?
Site	Survey Type	2009	2010	2009	2010
Stonehouse Complex	Presence/Absence	No	No	No	No
Willow-NV Spring	Presence/Absence	No	No	No	No
Keegan Spring Complex North ^a	Egg Mass	Yes	Yes	Yes	Yes
West Spring Valley Complex 1 ^a	Egg Mass	Yes	Yes	Yes	No
Shoshone Ponds ^a	Egg Mass	Yes	Yes	Yes	No
South Millick Spring ^a	Egg Mass	Yes	Yes	No	No
Unnamed 5 Spring ^a	Egg Mass	Yes	Yes	Yes	Yes
Four Wheel Drive Spring	Presence/Absence	No	No	No	No
Willard Spring	Presence/Absence	No	No	No	No
Minerva Spring Complex Middle ^a	Egg Mass	Yes	Yes	No	No
Minerva Spring Complex North ^a	Egg Mass	Yes	Yes	No	Yes
Swallow Spring	Presence/Absence	No	No	No	No
North Little Spring	Presence/Absence	No	No	No	No
Big Springs	Presence/Absence	No	No	No	No
Big Springs Creek	Presence/Absence	No	No	No	No
Unnamed 1 Spring North of Big	Presence/Absence	No	No	No	No
Stateline Springs	Presence/Absence	No	No	No	No
Clay Spring North	Presence/Absence	No	No	No	No
Lake Creek	Presence/Absence	No	No	No	No

Table 3-25Northern Leopard Frog Survey Locations bySurvey Type, and General Results for 2009 and 2010

^aSite with previously-documented northern leopard frog occurrence (BIO-WEST, 2007, 2009; SNWA, 2009).

Sentinel sites were visited prior to the expected onset of breeding in order to better ensure that egg mass surveys would commence at the start of the breeding season and overlap with the peak of the breeding season. These sentinel surveys were conducted in the same manner as presence/absence and egg mass surveys, with the goal of documenting any signs of northern leopard northern leopard frogs (egg masses, tadpoles, northern leopard frogs or calling). Unnamed 5 Spring and the Shoshone Ponds were chosen to be monitored as sentinel sites as they both had a documented northern leopard frog occurrence, evidence of northern leopard frog breeding, and a location proximal to the northern and southern Spring Valley survey locations respectively. Sentinel visits were conducted on a bi-weekly basis starting March 9, 2010.

Unnamed 5 Spring sentinel visits took place on March 10, March 23, April 6, and April 8. The additional April 8 visit was made because the majority of breeding at Unnamed 5 in 2009 appeared to have taken place within the first two weeks of April (SNWA, 2010). Sentinel visits to the Shoshone Ponds took place on March 9, March 24, and April 6. As an additional effort, Keegan Spring Complex North and West Spring Complex 1 were visited on March 23, as egg masses were documented at these sites in 2009. It was on the fifth visit to Unnamed 5 Spring (April 19) when the first 2010 egg mass was documented, at which time survey efforts switched from sentinel visits to presence/absence and egg mass visits.

3.6.1 Presence/Absence Surveys

With confirmation that the breeding season had begun, Phase 1 presence or absence surveys began on April 21, 2010 at the Spring Valley and Snake Valley sites with no previous northern leopard frog documentation.

The Stonehouse Spring Complex sampling area was surveyed for the presence of northern leopard frog on April 21 with no signs of northern leopard frogs documented. Also surveyed in 2009, this was the second year for a presence/absence survey of this site as required by the Plan. This area has no northern leopard frog occurrence records in the literature or internal or external datasets, and was previously visited in 2006 and 2008 (SNWA, 2009). The area appears to have suitable habitat for northern leopard frog.

Swallow Spring was surveyed for the presence of northern leopard frogs on April 21 with no northern leopard frog sign documented. Also surveyed in 2009, this was the second year for a presence/ absence survey of this site as required by the Plan. This area has no northern leopard frog occurrence records in the literature or internal or external datasets, and was previously visited in 2006 and 2008 (SNWA, 2009). The site has fast-flowing, cool water with little potential breeding habitat.

A presence/absence survey was conducted at Four Wheel Drive Spring on May 4 with no observed northern leopard frog sign. Also surveyed in 2009, this was the second year for a presence/absence survey of this site as required by the Plan. This area has no northern leopard frog occurrence records in the literature or internal or external datasets, and was previously visited on multiple occasions in 2005 and 2006 with no northern leopard frog documented (SNWA, 2009). The area appears to have suitable habitat for northern leopard frog.

Willard Spring was surveyed for the presence of northern leopard frogs on May 4. Also surveyed in 2009, this was the second year for a presence/absence survey of this site as required by the Plan. No northern leopard frog sign was documented, and no occurrence records in the literature or internal or external datasets exists for this site. The site was dry at the time of the survey, so it probably cannot support a permanent population of northern leopard frogs.

Willow Spring was surveyed for the presence of northern leopard frogs on May 4 with no frog sign documented. Also surveyed in 2009, this was the second year for a presence/absence survey of this site as required by the Plan. No occurrence record in the literature or internal or external datasets exists for this site and very little potential northern leopard frog habitat exists.

The monitoring sites in Snake Valley have no northern leopard frog occurrence records in the literature or internal or external datasets. Clay Spring North was surveyed for northern leopard frog presence on May 6 with no northern leopard frog sign documented. Also surveyed on May 6 were Lake Creek and the adjacent wetlands between Preuss Reservoir and Clay Spring North inflow (Moriah Ranch property and BLM land). Another portion of Lake Creek was surveyed on April 22 along the Stateline Springs (Dearden property), east of the Nevada border. A 3.5 km stretch of Big Springs Creek, starting at the Big Springs springhead was also surveyed on April 22 as were Unnamed 1 Spring North of Big Springs and North Little Spring. Also surveyed in 2009, this was the second year for a presence/absence survey of these sites as required by the Plan. All of these areas appear to have suitable habitat for northern leopard frog, but no signs of northern leopard frogs were documented. The landowners at Big Springs, Clay Spring North, and Clay Spring South commented that they have never seen or heard frogs on their properties. According to Kevin Wheeler of UDWR (personal communication, April 22, 2009), the landowners of the Stateline Springs property have commented that they observed some species of amphibian in the Burbank Meadows portion of Lake Creek, but this was not confirmed to be northern leopard frogs. The nearest area with confirmed recent northern leopard frog presence in Snake Valley is the Twin and Bishop springs area, which is over 64 km north of the Snake Valley sites and the IBMA.

3.6.2 Egg Mass Surveys

A total of 90 egg masses were documented across three sites in Spring Valley (Unnamed 5 Spring, Keegan Spring Complex North, and Minerva Spring Complex North), with egg deposition estimated to have occurred between April 7–May 8 (Table 3-26). In comparison, in 2009 45 egg masses were documented across four sites (Unnamed 5 Spring, Keegan Spring Complex North, West Spring Valley Complex 1, and Shoshone Ponds), with egg deposition estimated to have occurred between March 27–May 6. Of all of the monitoring sites, Unnamed 5 Spring and Keegan Spring Complex North sampling areas appear to be most consistently and heavily used.

Unnamed 5 Spring

Egg mass survey visits 1-3 were conducted bi-weekly at Unnamed 5 Spring on April 19, May 4 and May 18, 2010 (Table 3-27). On the first visit on April 19, 13 egg masses (Age Class 1: 5 egg masses; Age Class 2: 8 egg masses) were documented, as well as adult and subadult northern leopard frogs (subadults from 2009 breeding season). The second visit took place on May 4, at which time no new egg masses were documented and all previously-documented egg masses had hatched; tadpoles, adult

	Total Eg Cou	-	Survey	Period	Estimated Egg Deposition Dates		
Site	2009 2010 2009 2010		2009	2010			
Keegan Spring Complex North ^b	34	70	4/14-5/28	3/23-5/18	4/12-5/6	4/9-5/8	
Unnamed 5 Spring	9	13	3/12-5/28	3/10-5/18	4/7-4/17	4/12-4/19	
Minerva Spring Complex North ^b	0	7	4/14-5/29	4/21-5/17	N/A	4/7-4/15	
West Spring Valley Complex 1 ^b	1	0	4/14-5/28	3/23-5/18	4/28	N/A	
Shoshone Ponds	1	0	4/8-5/28	3/9-5/17	3/27	N/A	
Minerva Spring Complex Middle ^b	0	0	4/21-5/29	4/21-5/17	N/A	N/A	
South Millick Spring ^b	0	0	4/14-5/28	4/21-5/18	N/A	N/A	
Overall	45	90	3/12-5/29	3/9-5/18	3/27-5/6	4/7-5/8	

Table 3-26Northern Leopard Frog Egg Mass Survey Results for 2009 and 2010

^aBased on age class data collected on the same egg masses across visits, egg masses took approximately two weeks to reach a 3+/hatched stage in 2009 and 2010. Using age class data collected when eggs were first documented in 2009 and 2010, it appears that most if not all of the breeding fell within the survey period.

^bNorthern leopard frogs have been documented and are expected to breed in the spring complex at large (outside of the sampling area).

Table 3-27Summary of Visits to Unnamed 5 Spring with the Number andAge Class (AC) of New Egg Masses Documented and Tadpoles Observed

Visit	Date	AC 1	AC 2	AC 3	AC +3/Hatched	Tadpoles
Sentinel	3/10/2010	0	0	0	0	No
Sentinel	3/23/2010	0	0	0	0	No
Sentinel	4/06/2010	0	0	0	0	No
Sentinel	4/08/2010	0	0	0	0	No
Egg Mass Visit 1	4/19/2010	5	8	0	0	Yes
Egg Mass Visit 2	5/04/2010	0	0	0	0	Yes
Egg Mass Visit 3	5/18/2010	0	0	0	0	Yes

northern leopard frogs, and subadult northern leopard frogs were also observed. The third and final visit took place on May 18, at which time no new egg masses, tadpoles, or northern leopard frogs were observed. Table 3-27 summarizes the visits to the Unnamed 5 Spring site. Over the 2010 survey season, a total of 13 egg masses were documented at Unnamed 5 Spring, compared to 9 egg masses in 2009.

Based on the age classes of the 13 egg masses documented, it appears that breeding took place between April 12 and April 19. In 2009, breeding at this location took place from April 7 to April 17.

The general breeding area at Unnamed 5 Spring was the same as in 2009, and is located on the east side of the southern-most spring pool before the system flows into a narrow channel. This area has shallow, open water with some short emergent vegetation. The egg masses were found 0.54-m to 2.80-m from the dry shoreline and in 6.5-cm to 21.0-cm deep water with 30% to 60% emergent vegetation.

Keegan Spring Complex North

Egg mass surveys visits 1-3 were conducted bi-weekly at Keegan Spring Complex North on April 19, May 4, and May 18, 2010 (Table 3-28). On the first visit on April 19, 68 egg masses (Age Class 1: 48 egg masses; Age Class 2: 18 egg masses; Age Class 3: 1 egg mass; and Dead: 1 egg mass) were documented, along with adult and subadult northern leopard frogs. The second visit occurred on May 4, at which time 1 new egg mass (Age Class 3) was documented. All previous egg masses had hatched and tadpoles were documented along with several adult and subadult northern leopard frogs (subadults from 2009 breeding season). The third and final visit took place on May 18, at which time 1 new egg mass (Age Class +3/hatched) was documented. Subsequent visits to the site during other 1 new egg mass (Age Class +3/hatched) was documented. Subsequent visits to the site during other Spring Valley Plan biological monitoring surveys found numerous tadpoles at both general breeding areas (described below). Table 3-28 summarizes the visits to Keegan Spring Complex North. Over the 2010 survey season, a total of 70 egg masses were documented at Keegan Spring Complex North, compared to 34 egg masses in 2009.

Table 3-28Summary of Visits to Keegan Spring Complex North with the Number ofAge Class (AC) of New Egg Masses Documented and Tadpoles Observed

Visit	Date	AC 1	AC 2	AC 3	AC +3/Hatched	Dead	Tadpoles
Sentinel	3/23/2010	0	0	0	0	0	No
1	4/19/2010	48	18	1	0	1	No
2	5/4/2010	0	0	1	0	0	Yes
3	5/18/2010	0	0	0	1	0	No

Based on the age classes of the egg masses documented, it appears that breeding at this site took place between April 9 and May 8. In 2009, breeding took place between April 12 and May 6 at this site.

All of the egg masses documented at this location were either in the isolated pond north of the main channel (61 egg masses) or in a shallow pool connected to the main channel approximately 600 m from the spring source (9 egg masses), which were also areas used for breeding in 2009. Both breeding pools had short emergent vegetation with calm, shallow water in 2010, similar to 2009. Egg masses in the pond were found 0.54-m to 1.2-m from the dry shoreline and in 9.0-cm to 21.0-cm deep water with 25% to 60% emergent vegetation. Egg masses in the main channel pool were found 0.65-m to 2.80-m from dry shoreline and in 6.5-cm to 17.0-cm deep water with 40% to 60% emergent vegetation.

Minerva Spring Complex North

Minerva Spring Complex North was visited on April 21, May 5, and May 17 with seven egg masses documented (Table 3-29). All seven egg masses were found on the April 21 visit, with 1 egg mass

Age Class	Age Class (AC) of New Egg Masses Documented and Tadpoles Observed										
Visit	Visit Date AC 1 AC 2 AC 3 AC +3/Hatched										
1	4/21/2010	0	1	1	5	No					
2	5/5/2010	0	0	0	0	Yes					
3	5/17/2010	0	0	0	0	No					

Table 3-29Summary of Visits to Minerva Spring Complex North with the Number ofAge Class (AC) of New Egg Masses Documented and Tadpoles Observed

(Age Class 2) documented in the man-made southern springpool and 6 egg masses (1 Age Class 3) and 5 Age Class +3/hatched) documented in the man-made northern springpool. Table 3-29 summarizes the visits to Minerva Spring Complex North. Over the 2010 survey season, a total of 7 egg masses were documented at Minerva Spring Complex North, compared to zero egg masses in 2009.

With mostly +3/hatched egg masses observed at Minerva Spring Complex North on April 21, it appears that breeding may have started on April 7 and ended on April 15. The egg masses at this site occurred 0.52-m to 2.35-m from dry shoreline and in 10-cm to 18-cm deep water with 20% to 50% emergent vegetation.

West Spring Valley Complex 1, South Millick Spring, Minerva Spring Complex Middle, and Shoshone Ponds

Egg mass survey visits 1-3 were conducted bi-weekly at West Spring Valley Complex 1 on April 21, May 4, and May 18. No egg masses were documented, but adult northern leopard frogs were observed on every visit. This site had one egg mass documented in 2009. Limited northern leopard frog breeding appears to take place at this location. It is possible that most reproduction takes place at nearby West Spring Valley Complex 5 where evidence of breeding was documented by SNWA in 2008 and 2009 (SNWA, 2009).

Egg mass survey visits 1-3 were conducted bi-weekly at Shoshone Ponds on April 20, May 5 and May 17. No egg masses were documented at this location, but at least one adult northern leopard frogs was observed during the non-sentinel visits. One egg mass was documented at this location in 2009.

Minerva Spring Complex Middle was visited on April 21, May 5, and May 17 with no egg masses documented. This site also had zero egg masses documented in 2009. The continued presence of northern leopard frogs at this site suggests that breeding does occur in nearby areas, and in fact several shallow pools and a manmade pond are within 200 m of this site.

South Millick Spring was visited on April 21, May 3, and May 18 with no egg masses documented. No tadpoles were observed, but several adult northern leopard frogs were present. Absence of breeding, but presence of northern leopard frogs, including subadults, was also documented in 2009. This portion of the system consists of spring pools and a flowing channel and does not offer the shallow, still, and lightly vegetated habitat that northern leopard frogs seem to prefer for breeding.

Farther downstream in the system, there are shallow, manmade ponds and a marshy terminus where the leopard northern leopard frogs may focus their breeding activity. In 2009 the terminal marsh was visited near the end of the breeding season, but no egg masses or tadpoles were documented (SNWA, 2010).

3.6.3 Habitat Surveys

Habitat data collected at egg masses at the time of first sighting provide conditions under which northern leopard frogs bred, as well as possible egg deposition preferences. These data could help define the microhabitat in which egg masses are generally deposited and focus future survey efforts on appropriate breeding habitat. Table 3-30 compares the egg mass habitat data for 2009 and 2010.

Table 3-302009 and 2010 Northern Leopard Frog Egg Mass Habitat Comparison

Year	Distance to Shore (m)	Water Depth (cm)	Percent Emergent Vegetation
2009	X = 1.80 (SE = .20) Range = 0.3-5.4	X = 10.20 (SE = .32) Range = 6.0-14.0	
2010	X̄ = 1.05 (SE = .05) Range = 0.4-2.8	X = 13.44 (SE = .39) Range = 6.5-19	X = 38.0 (SE = 1.2) Range = 20-60

Because percent emergent vegetation data in 2009 were collected using a different protocol (linear point transects across general breeding areas), and were collected after the breeding season in 2009, they may not reflect conditions at the time of egg deposition or development and are omitted from this table.

Across all sites in 2010, egg masses occurred 0.4-m to 2.8-m from dry shoreline with a mean distance of 1.05-m (standard error = 0.05) and were in 6.5-cm to 21-cm deep water with a mean depth of 13.44-cm (standard error = 0.39). In 2009 egg masses occurred 0.3-m to 5.4-m from dry shoreline with a mean distance of 1.80-m (standard error = 0.20) and were in 6.0-cm to 14-cm deep water with a mean depth of 10.20-cm (standard error = 0.32). Compared to 2009, the 2010 egg masses were found significantly closer to dry shoreline (ANOVA, p-value = 0.00) and in significantly deeper water (ANOVA, p-value = 0.00).

The percentage of emergent vegetation in a 0.5-m radius circle around each egg mass in 2010 ranged from 20 to 60%, with a mean of 38% (SE = 1.17). Figure 3-19 shows a scatterplot of the number of egg masses documented in 2010 by percent emergent vegetation. The trendline (polynomial regression) depicts a positive correlation between changes in percent emergent vegetation and the deposition of egg masses.

Water-quality measurements were taken at each breeding pool used in 2010, with the exception of the shallow pool connected to the main channel approximately 600 m from the spring source at Keegan Spring Complex North. This location could not be accessed by the water-quality crew due to deep water blocking the access to the pool. Table 3-31 presents the water-quality measurements for each breeding pool. The measurements were taken between May 10 and May 13 during early tadpole growth.

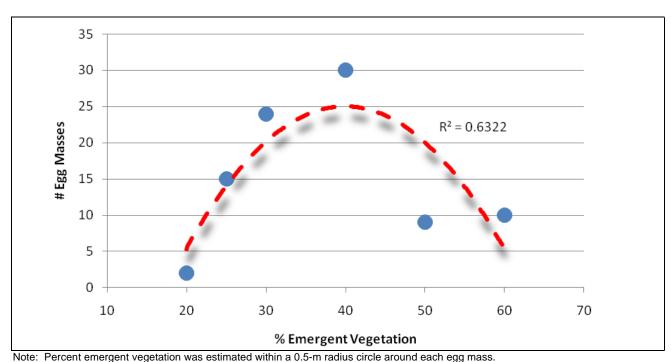
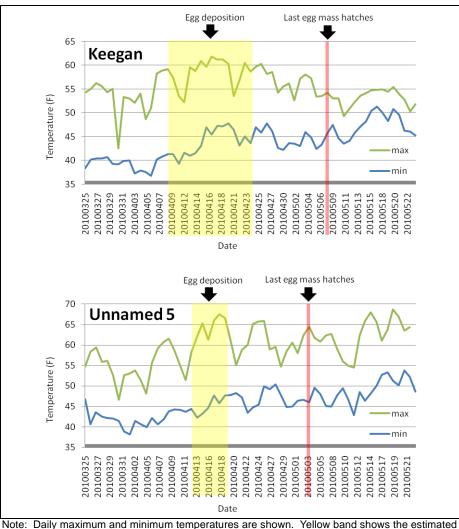


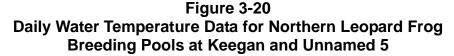
Figure 3-19 Scatterplot of Number of Northern Leopard Frog Egg Masses by Percent Emergent Vegetation

Transect	Date	Time	Water Temperature (°F)	Conductivity (μS/cm)	рН	Dissolved Oxygen (mg/L)	Velocity (m/sec)	Turbidity (NTU)
Keegan (isolated pond north of channel)	5/11/2010	16:11	50	78	7.3	4.57	0	52.2
Unnamed 5	5/10/2010	12:35	60	266	8.2	12.43	0	1.89
Minerva North (south pool)	5/13/2010	9:55	51	264	8.1	11.46	0	56.8
Minerva North (north pool)	5/13/2010	9:46	57	253	8.1	15.07	0	23.4

 Table 3-31


 Water Quality Measurements for Each Northern Leopard Frog Breeding Pool

On March 23, 2010, temperature loggers were placed at four locations that had been used by northern leopard frogs to breed the previous year (Unnamed 5 Spring, West Spring Complex 1, and two at Keegan Spring Complex North). In 2010, northern leopard frogs bred at Unnamed 5 Spring and the two locations at the Keegan Spring Complex North. The logger at Unnamed 5 Spring was placed in the spring pool where breeding was documented in 2009, and was 4 m to 7 m from the 13 egg masses documented in 2010. The first logger at Keegan Spring Complex North was placed in the isolated pond north of the main channel where breeding was documented in 2009, and was 0.8 m to 2 m from the egg masses documented at this location in 2010. The second logger at Keegan could not be placed in the exact 2009 breeding location (shallow pool connected to the main channel approximately 600 m from the spring source) as the area was dry at the time of placement (the pool



had filled by the time the northern leopard frogs began breeding). As a result, the logger was over 19 m from the egg masses deposited in the breeding pool in 2010 and therefore did not provide temperature data specific to the breeding location. The logger placed at West Spring Valley Complex 1 was placed adjacent to the 2009 breeding location because the breeding pool was dry in March 2010. This area eventually filled with water, but no breeding was documented at the West Spring Complex Valley 1 in 2010.

Figure 3-20 shows the logged temperatures for breeding pools at Unnamed 5 Spring and Keegan Spring North (isolated pond north of the main channel). The estimated dates of egg mass deposition, based on the age class of documented egg masses, are shown in yellow and appear to correspond to an increase in the minimum water temperature (Keegan: minimum water temperature during egg deposition = 39° F, maximum = 62° F; Unnamed 5 Spring: minimum = 42° F, maximum = 68° F). Also shown in Figure 3-20 is the date of the last egg mass to fully hatch at each site.

Note: Daily maximum and minimum temperatures are shown. Yellow band shows the estimated dates for the breeding events and the red line shows the date of the last egg mass to hatch.

Temperature loggers appeared to provide general information about water temperatures in breeding areas during egg deposition and development, if not exact temperatures experienced by individual egg masses. The temperature logger at the isolated pond north of the main channel at Keegan Spring Complex North appears to capture the general temperature trend for the breeding area and in fact recorded a temperature of 61°F on April 19 at 1400 hrs when a spot reading at the nearest egg mass cluster recorded 63°F. The logger was in slightly deeper water than the cluster which probably accounts for the 2°F difference, but it does appear to capture the temperature trend specific to the egg mass locations. At Unnamed 5 Spring, a spot temperature reading of 66°F was taken at one of the newly discovered egg mass clusters on April 19 at 1300 hrs, and the logger recorded a temperature of 58°F at this time. Again this temperature difference (8°F) was most likely due to the logger being in deeper water than the egg masses. However, the logger did record a temperature of 67°F at 1500 hrs, so it does appear to capture the daily temperature trend for the breeding area, if not providing an exact temperature reading for the egg masses locations.

A study of breeding northern leopard frogs in Quebec, Canada found that males began calling on April 9 at 46°F, calling ceased on April 12 at 42°F, breeding commenced on April 15 with a water temperature of 46°F, and breeding continued for 10 days (Gilbert et al., 1994). It appears that northern leopard frogs in Spring Valley exhibit a similar response to temperature as egg mass deposition at Keegan and Unnamed 5 does correspond to a general increase in the recorded minimum daily water temperatures above 42°F and reaches a peak above 46°F.

3.6.4 Conclusion

Compared to 2009, documented egg mass numbers doubled in 2010 (2010: 90 egg masses; 2009: 45) and breeding locations were generally consistent (Unnamed 5 Spring and Keegan Spring Complex North accounted for >90% of the egg masses in both years). At Unnamed 5 Spring the same breeding pool was utilized with a 44% increase in the number of documented egg masses from 2009. The same breeding pools were also utilized at Keegan Spring Complex North, with a 106% increase in the number of documented egg masses from 2009. In 2009, no egg masses were documented at Minerva Spring Complex North, but 7 were documented in 2010. Both the Shoshone Ponds and West Spring Complex had a single egg mass documented in 2009, but none documented in 2010; however, adult northern leopard frogs were present at both sites. The doubling of egg masses in 2010 could indicate an increase in the number of breeding-age northern leopard frogs, or it could be a case of not all females breeding on an annual basis, with more females breeding in 2010 than in 2009.

It appears that the bi-weekly surveys conducted in both 2009 and 2010 captured the entire northern leopard frog breeding period (specifically egg mass deposition) at all survey sites. Based on egg mass development observations over two visits, it appears that it took approximately 14 days from deposition to full hatch at most breeding locations. This is probably an accurate estimate as several studies have shown that northern leopard frog egg masses can hatch in as little as 9 days at warmer temperatures, but generally take 13 to 20 days to hatch (Hine, 1981; Hammerson 1999; Hunter 1999; DeGraaf, 2001). However, it is does appear that the last egg mass deposited at Keegan Spring Complex North developed and hatched in approximately 11 days which was probably due to temperatures warmer than what earlier egg masses experienced. In general, the 2009 northern leopard frog breeding period in Spring Valley was April 7 to May 6, and the 2010 breeding period was April 7 to May 8. The only exception to this was Shoshone Ponds in 2009 when a single egg

mass was documented on April 8 that was probably deposited around March 27. This site is warmer than the others which allowed for earlier breeding. The last documented egg mass hatched on May 18 in 2009, and the last hatched May 19 in 2010. Future bi-weekly egg mass surveys conducted between late March and mid-May should continue to capture the majority of breeding events at Spring Valley sites.

The sites with no previous northern leopard frog occurrence records were surveyed for a second year with no confirmed presence. Based on these results and the absence of historical observations, it is determined that the Stonehouse Complex, Willow Spring, Four Wheel Drive Spring, Willard Spring, Swallow Spring, North Little Spring, Big Springs, Big Springs Creek, Unnamed 1 Spring North of Big, Stateline Springs, Clay Spring North and South, and Lake Creek do not currently support a breeding population of northern leopard frog. Swallow Spring may occasionally have northern leopard frog present as it is near the breeding population at the Minerva springs, but it does not appear to offer breeding habitat and is inhabited by trout. South Millick Spring does support a breeding population of northern leopard frog, but breeding appears to occur at a currently unknown location and not within or in proximity to the sampling area. According to the Plan, if no signs of northern leopard frogs are documented after two consecutive breeding seasons, the monitoring site is to be classified as not being used by northern leopard frog and dropped from the survey protocol. If signs of northern leopard frog are incidentally documented at one of these monitoring sites in the future, the northern leopard frog surveys at that site will be re-initiated.

3.7 Relict Dace (Relictus solitarius)

Relict dace monitoring determines the distribution of fish by size, season, and habitat within the designated Stipulation sample areas. Relict dace were sampled in the spring (May 11-13) and fall (September 21–23), 2010 at Keegan Spring Complex North and Stonehouse Spring Complex.

3.7.1 Keegan and Stonehouse Spring Complexes

3.7.1.1 Keegan Spring Complex

Relict dace were sampled at the Keegan Spring Complex North designated sampling area in the spring and fall 2010. The sampling area included the cattail-lined ponds, 129 m of channel above the ponds, and 54 m of channel below the ponds. On May 12, 2010 (spring sampling), 39 minnow traps (26 large mesh and 13 small mesh) were set for approximately 19 hours and collected the next morning. A total of 754 relict dace were captured (Table 3-32). Fish were again sampled on September 22, 2010 (fall sampling), when 39 minnow traps (26 large mesh and 13 small mesh) were set for approximately 19 hours and collected the next morning. A total of 488 relict dace were captured (Table 3-32).

Table 3-32Keegan Spring Complex North: Relict Dace CPUE Valuesfor the 2010 Spring and Fall Sampling

Season	Number of Traps	Total Number of Fish	Mean CPUE	Maximum CPUE	Minimum CPUE
Spring	39	754	1.04 (SE=0.20)	6.38	0
Fall	39	488	0.64 (SE=0.13)	3.57	0

In both the spring and fall 2010 sampling effort, 28 minnow traps were placed in the pool habitat, and 11 minnow traps were placed in the channel habitat. The physical habitat mapping (Section 3.1) estimated that general pool habitat water depth ranged from 0.2 to >1.0 m, and general channel habitat water depth ranged from 0.2 m to approximately 0.5 m. CPUE values for season and habitat are shown in Table 3-33.

Table 3-33 Keegan Spring Complex North: Relict Dace CPUE Values for the 2010 Spring and Fall Sampling by Habitat Type

Season	Habitat	Number of Traps	Total Number of Fish	Mean CPUE	Maximum CPUE	Minimum CPUE	Standard Error
Spring	Pool	28	709	1.37	6.38	0	0.26
Spring	Channel	11	45	0.21	0.65	0.05	0.05
Fall	Pool	28	290	0.53	3.57	0	0.14
i ali	Channel	11	198	0.93	2.08	0.26	0.24

In the spring, 198 fish were measured with a total length range of 25 to 92 mm. The mean length of fish measured in spring 2010 was 51.5 mm (standard error = 1.1). In the fall, 273 fish were measured with a total length range of 24 to 95 mm. The mean length of fish measured in fall was 42.5 mm (standard error = 0.9). A length-frequency histogram for the Keegan Spring Complex North site by season is shown in Figure 3-21. Length frequencies are shown in 10 mm size classes except for the largest size class which covers 20 mm.

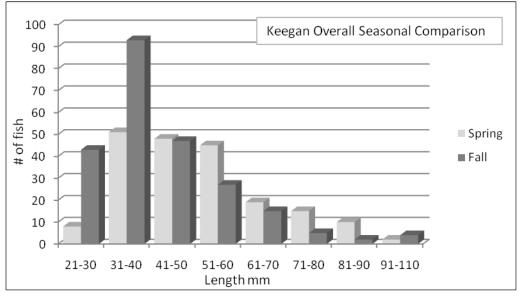


Figure 3-21 The Length Frequency of Relict Dace Measured at Keegan Spring Complex North in the Spring (n=198) and Fall (n=236) of 2010

Fish length-frequency histograms are shown for habitat and season in Figure 3-22. In the spring 2010, 188 fish were measured from the pool habitat with a length range of 25 to 92 mm and a mean length of 51.8 mm (standard error = 1.1), and 10 fish were measured from the channel habitat with a length range of 31 to 85 mm and a mean length of 44.9 mm (standard error = 45.1). In the fall 2010, 128 fish were measured from the pool habitat with a length range of 24 to 92 mm and a mean length of 43.1 mm (standard error = 1.2), and 145 fish were measured from the channel habitat with a length range of 25 to 95 mm and a mean length of 39.8 mm (standard error = 1.2).

Water-quality measurements were taken at Keegan Spring Complex North in the spring and fall 2010 at three points. Point 1 is in the channel at the northernmost point of the sampling area, Point 2 is in the pond at the middle of the sampling area, and Point 3 is in the channel at the southernmost point of the sampling area (Table 3-34).

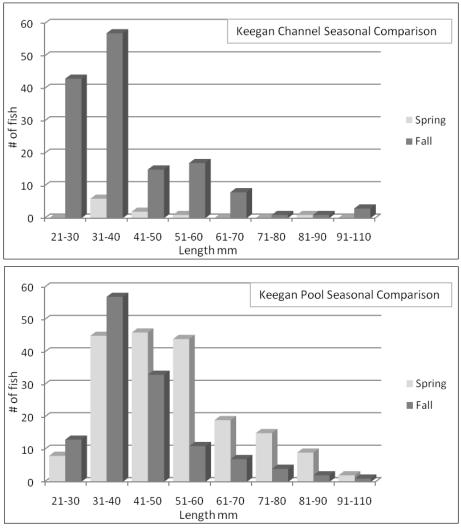


Figure 3-22

The Length Frequency of Relict Dace Measured at Keegan Spring Complex North by Habitat Mapping Unit (Pool, Channel) in the Spring (Channel n=10, Pool=188) and Fall (Channel n=145, Pool n=128) of 2010

Table 3-34
Water Quality Measurements taken at Relict Dace Sampling Area at
Keegan Spring Complex North

Season	Point	Time	Water Temperature (°F)	Conductivity (μS/cm)	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	1	1521	49.6	101	6.91	9.85	7.30
Spring	2	1535	51.3	110	6.95	10.41	13.90
	3	1542	53.1	102	7.53	11.45	15.90
	1	1217	63.6	74	7.01	6.62	22.7
Fall	2	1207	59.5	92	7.02	111.16	2.9
	3	1204	60.8	86	6.78	7.30	3.6

3.7.1.2 Stonehouse Spring Complex

Relict dace were sampled in spring and fall 2010 at the Stonehouse Spring Complex. Relict dace are known to occur throughout the Stonehouse system, but sampling efforts focused on the middle of the complex where a spring feeds several pools and a channel, and on a pool at the south end of the complex. On May 11, 2010 (spring sampling), 30 minnow traps were set for approximately 19 hours and collected the next morning. A total of 628 relict dace were captured (Table 3-35). Fish were again sampled on September 21, 2009 (fall sampling), when 30 minnow traps were set for approximately 19 hours and collected the next morning. A total of 648 relict dace were captured (Table 3-35).

Table 3-35Stonehouse Spring Complex: Relict DaceCPUE Values for 2010 Spring and Fall Sampling

Season	Number of Traps	Total Number of Fish	Mean CPUE	Maximum CPUE	Minimum CPUE
Spring	30	628	1.14 (SE=0.27)	5.40	0
Fall	30	648	1.16 (SE=0.26)	4.67	0

In both the spring and fall 2010 sampling efforts, 12 minnow traps were placed in the pool habitat and 18 minnow traps were placed in the channel habitat. The physical habitat mapping (Section 3.1) estimated that general pool habitat water depth ranged from 0.2 to >1.0 m and the general channel habitat water depth ranged from 0.2 m to approximately 1.0 m. CPUE values for season and habitat are shown in Table 3-36.

Table 3-36Stonehouse Spring Complex: Relict Dace CPUE Valuesfor 2010 Spring and Fall Sampling by Habitat Type

Season	Habitat	Number of Traps	Total Number of Fish	Mean CPUE	Maximum CPUE	Minimum CPUE	Standard Error
Spring	Pool	12	302	1.38	5.4	0.05	0.53
Opinig	Channel	18	326	1.64	3.85	0	0.39
Fall	Pool	12	491	2.21	4.67	0.22	0.45
i dii	Channel	18	157	0.47	3.04	0	0.17

In the spring 2010, 162 fish were measured with a total length range of 31 to 92 mm. The mean length of the fish measured in spring was 54.5 mm (standard error = 1.1). In the fall 2010, 266 fish were measured with a total length range of 23 mm to 98 mm. The mean length of the fish measured in fall 2010 was 52.2 mm (standard error = 1.0). A length-frequency histogram by season for the Stonehouse Complex is shown in Figure 3-23.

Fish length-frequency histograms are shown for each habitat by season in Figure 3-24. In the spring 2010, 96 fish were measured from the pool habitat with a length range of 31 to 90 mm and a mean length of 54.8 mm (standard error = 1.4), and 66 fish were measured from the channel habitat with a

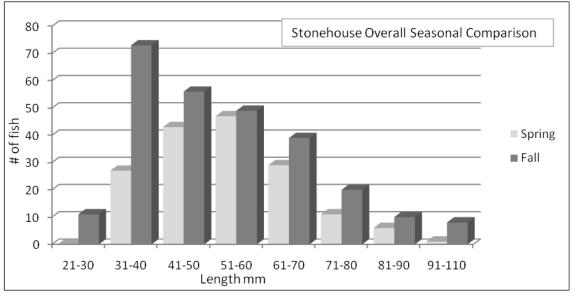


Figure 3-23 The Length Frequency of Relict Dace Measured at Stonehouse Spring Complex in the Spring (n=164) and Fall (n=266) of 2010

length range of 34 to 92 mm and a mean length of 54.1mm (standard error = 1.6). In the fall 2010, 170 fish were measured from the pool habitat with a length range of 30 to 98 mm and a mean length of 50.8 mm (standard error = 1.3), and 96 fish were measured from the channel habitat with a length range of 23 to 96 mm and a mean length of 54.7 mm (standard error = 1.0).

Water-quality measurements were taken at Stonehouse Complex in the spring and fall 2010 at three points. Point 1 is in the pool at the northern end of the sampling area, Point 2 is in the channel at the middle of the sampling area, and Point 3 is in the disjunct pool at the southernmost point of the sampling area (Table 3-37).

3.7.1.3 Discussion

In comparing the 2010 relative abundance (CPUE) data to the 2009 data, few significant differences are observed. At Keegan Spring Complex North, the spring CPUE is significantly higher in 2009 than in 2010 (p = .027), but no significant difference is observed between the fall CPUE in 2009 and 2010 (p = 0.60). There are no significant differences observed in seasonal CPUE between years at Stonehouse Spring Complex (p > 0.20).

In comparing spring to fall CPUE within 2009 and 2010, again few significant differences are observed. At Keegan Spring Complex North, the CPUE is significantly higher in spring 2009 (p = .003), but the seasons are not significantly different in 2010 (p = 0.80). No seasonal differences are noted for 2009 or 2010 at Stonehouse Spring Complex (p > 0.60). Figure 3-25 shows the annual and seasonal CPUE comparisons for Keegan Spring Complex North and Stonehouse Spring Complex.

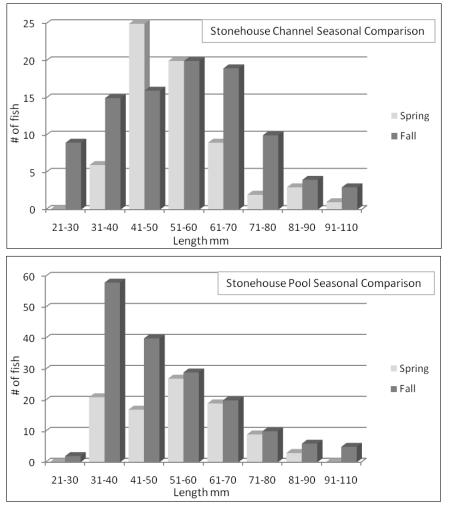
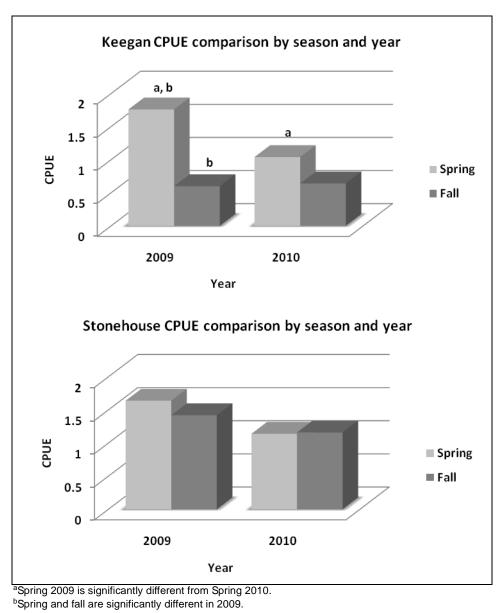
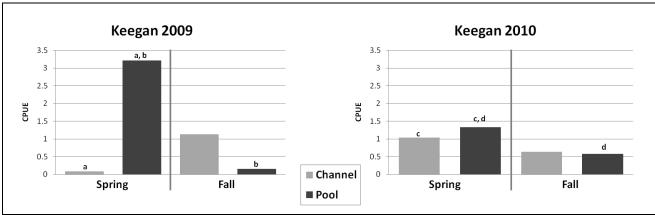



Figure 3-24

The Length Frequency of Relict Dace Measured at Stonehouse Spring Complex by Habitat Mapping Unit (Pool, Channel) in the Spring (Channel n=66, Pool n=96) and Fall (Channel n=96, Pool n=70) of 2010

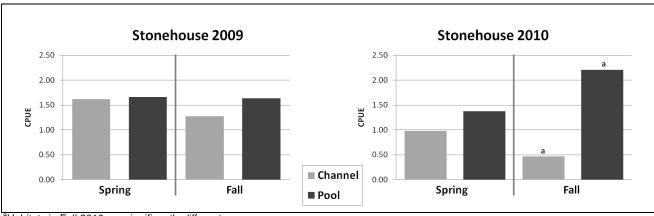

Table 3-37
Water Quality Measurements taken at
Relict Dace Sampling Area at Stonehouse Spring Complex

Season	Point	Time	Water Temperature (°F)	Conductivity (μS/cm)	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	1	1058	49.3	1310	7.69	8.90	10.00
Spring	2	1053	54.4	494	7.84	9.40	14.10
	3	1048	52.1	530	7.82	7.74	10.40
	1	1158	79.1	665	6.43	3.84	11.0
Fall	2	1204	62.9	415	6.59	10.58	7.3
	3	1240	73.1	676	7.68	26.34	69.0

Figure 3-25 Relict Dace CPUE by Season and Year for Keegan Spring Complex North and Stonehouse Spring Complex

Analysis of Keegan Spring Complex North CPUE data for 2009 and 2010 shows some significant differences in seasonal habitat use (habitat*season; $p \le 0.002$). For both years, pairwise comparisons reveal a significant difference between channel and pool habitat in the spring ($p \le 0.008$) with the CPUE higher in the pool habitat. However, pairwise comparisons do not show a significant difference between channel and pool habitat in the fall for either year ($p \ge 0.159$). Also of significance in both years, is the difference in CPUE between spring and fall pool habitat ($p \le 0.011$) with a higher CPUE in the spring. However, no significant difference is observed between spring and fall channel habitat for either year ($p \ge 0.135$). Figure 3-26 shows the 2009 and 2010 Keegan Spring Complex North CPUE's for season and habitat.

^aHabitats in Spring 2009 are significantly different.


^bPool habitat in Spring and Fall 2009 are significantly different.

^cHabitats in Spring 2010 are significantly different.

^dPool habitat in Spring and Fall 2010 are significantly different.

Figure 3-26 Relict Dace CPUE by Year, Season, and Habitat for Keegan Spring Complex North

In contrast to Keegan, analysis of Stonehouse Spring Complex CPUE data for 2009 and 2010 shows no significant differences in seasonal habitat use (habitat*season; p = 0.716 for 2009 and p = 0.057 for 2010). However, the analysis did reveal a significant difference in CPUE by habitat in 2010 (p = 0.003). Pairwise comparisons for 2010 show one case of significant difference in the fall where CPUE for pool habitat was significantly greater than in channel habitat (p = 0.004). This significant difference between habitats was not observed in 2009 or in spring 2010 ($p \ge 0.417$). Figure 3-27 shows the 2009 and 2010 Stonehouse Spring Complex CPUE's for season and habitat.

^aHabitats in Fall 2010 are significantly different.

Figure 3-27 Relict Dace CPUE by Year, Season, and Habitat for Stonehouse

A comparison of fish length between 2009 and 2010 reveals that fish are significantly smaller in 2010 (p = 0.000) at Keegan Spring Complex North as well as at Stonehouse Spring Complex. A significant difference is observed in season by year interactions for both sites (p = 0.000) with significantly smaller fish lengths recorded in the fall of 2010 compared to fall 2009 (p = 0.000). However, in comparing spring 2009 to spring 2010 at Keegan Spring Complex North, fish are significantly

smaller in 2009 (p = 0.038). No significant difference is observed at Stonehouse Spring Complex between spring 2010 and spring 2009 (p = 0.577).

Within the two years at Keegan Spring Complex North, significant fish length differences are observed in season and habitat interactions in 2009 (p = 0.000), between seasons in 2010 (p = 0.007), and between habitats in 2010 (p = 0.044). Analysis of season and habitat interactions for 2009 reveals significantly smaller fish in fall channel habitat compared to spring channel habitat (p = 0.012) and in spring pool habitat compared fall pool habitat (p = 0.007). Analysis of seasonal length differences and habitat length differences for 2010 reveals significantly smaller fish in the fall (p = .006) and smaller fish in channel habitat (p = 0.043). Within the 2009 year at Stonehouse Spring Complex, a significant fish length difference is observed between seasons (p = 0.003) with a smaller length in the spring. However, no significant differences between seasons are observed in 2010.

The length analysis suggests recruitment and seasonal use of habitat by juvenile fish at Keegan Spring Complex North. In June 2009 and May 2010, hundreds of larval relict dace were observed in channel habitat within the sampling area. It is likely that these juvenile fish utilize channel habitat throughout the summer and fall, and then move to pool habitat for winter and spring. This would explain the generally higher CPUE and smaller fish length in spring pool habitat and in fall channel habitat.

Recruitment is also apparent at Stonehouse Spring Complex, but it appears that juvenile fish may not be regulated to strictly channel or pool habitat. It is possible that the fish move continuously between pool and channel habitat and don't exhibit strong seasonal habitat use.

Based on the two years of sampling data, relict dace relative abundance appears to remain stable at both the Keegan Spring Complex North and the Stonehouse Spring Complex. Both sites show evidence of annual recruitment and length frequency data shows the presence of multiple size classes that suggest the presence of juvenile, young adult, and older adult fish in the population.

3.7.2 Shoshone Ponds

On August 5 and 11, 2010, relict dace were marked and re-captured at the South Pond. A population estimate of 281 was derived for relict dace in the South Pond in 2010 (2009 estimate: 547). NDOW's complete field trip report for the 2010 survey is attached as Appendix C.

3.8 Pahrump Poolfish (Empetrichthys latos)

On August 5 and 11, 2010, Pahrump poolfish were marked and re-captured at the Shoshone North, Middle, and Stock Ponds. The following population estimates were derived for Pahrump poolfish: Stock Pond 3,832; North Pond 116; and Middle Pond 579 (2009 estimates: Stock Pond 3,695; North Pond 191; and Middle Pond 260). NDOW's complete field trip report for the 2010 survey is attached as Appendix C.

On May 19 and June 9, 2010, a total of 1,179 Pahrump poolfish were salvaged from the springbrook below artesian Shoshone Well No. 2 and relocated to the North and Middle refuge ponds. The

purpose of the salvage was to ensure that as many Pahrump poolfish as was practical were relocated to safe habitat prior to installation of a valve system and flow meter on Shoshone Well No. 2 (FWS Biological Opinion, April 16, 2010). This project was completed in order to comply with NSE conditions for granting of a BLM water right on Shoshone Well No. 2 (NSE Permit 60086), including restricting flow of Shoshone Well No. 2 to the amount permitted for wildlife beneficial use. A total of 671 individuals were relocated to the North Pond, and a total of 508 individuals were relocated to the Middle Pond at the time of salvage.

3.9 Big Springs Creek/Lake Creek Native Fish Community

Native fish community monitoring along Big Springs Creek/Lake Creek determines the distribution and relative abundance of fish species by reach, the length-frequency for each species by reach, and the combined species total number for each reach.

The following results are provided for each reach:

- Species composition is presented as the percent of each species of the total fish captured;
- Relative abundance of each fish species is presented as the mean Catch Per Unit Effort (mean CPUE, or mean number of fish per electrofishing second), calculated across the three electrofishing passes; and
- Mean fish length is presented for each species.

3.9.1 Results by Reach

Reach 1

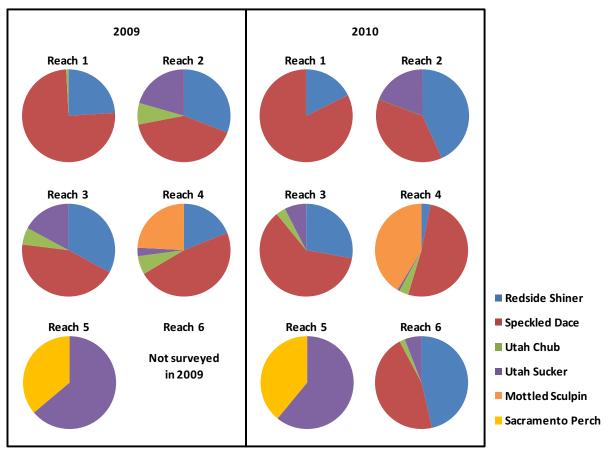
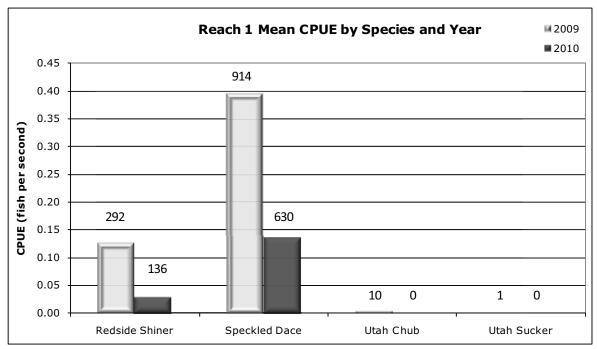

Reach 1 was electrofished for a total of 4,572 seconds over three passes. A total of 766 fish were captured with two native fish species documented: speckled dace and redside shiner. Introduced crayfish were also documented. Speckled dace was the most abundant species, with 630 individuals captured. Redside shiners numbered 136 individuals. No Utah chub or Utah sucker were captured. Of all of the reaches in 2010, Reach 1 accounted for 42% of the total fish captured.

Figure 3-28 shows the species composition for Reach 1 in 2009 and 2010, alongside the species composition for the other five reaches. Relative species abundance in Reach 1 was similar in 2009 and 2010, with speckled dace and redside shiner comprising the first and second most abundant species, respectively, and 98-100% of the CPUE (percent CPUE: redside shiner 2009 = 24%, 2010 = 18%; speckled dace 2009 = 75%, 2010 = 82%; Utah chub 2009 = 1%, 2010 = 0%; Utah sucker 2009 = <1%, 2010 = 0%).

Catch per unit effort for all species in Reach 1 was lower in 2010 than in 2009 (Figure 3-29). The mean CPUE over the three passes for redside shiner was 0.029 (standard error = 0.007) in 2010; mean CPUE was 4.4 times higher in 2009. The mean CPUE for speckled dace was 0.135 (standard error = 0.031) in 2010; mean CPUE was 2.9 times higher in 2009. Low numbers of Utah chub and Utah sucker were recorded on this reach in 2009, compared to zero in 2010.

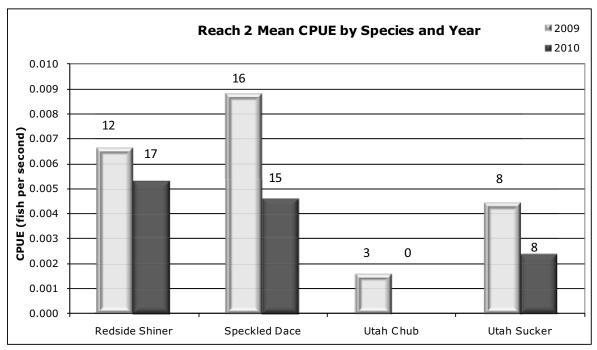
Reach 2

Reach 2 was electrofished for a total of 3,206 seconds over three passes. A total of 40 fish were captured with three native fish species documented: redside shiner, speckled dace, and Utah sucker. Introduced crayfish were also documented. Redside shiner was the most abundant species, with 17 individuals captured. Speckled dace was the next most abundant species, with 15 individuals captured. Also captured were 8 Utah sucker. No Utah chub were captured. Of all of the reaches in 2010, Reach 2 accounted for 2% of the total fish captured.



Note: Pie slices indicate percent CPUE.

Figure 3-28 Fish Species Composition in Big Springs Creek/ Lake Creek Reaches 1 to 6 in 2009 and 2010


Figure 3-28 shows the species composition for Reach 2 in 2009 and 2010, alongside the species composition for the other five reaches. Relative species abundance in Reach 2 was similar in 2009 and 2010, with speckled dace and redside shiner comprising 72-80% of the CPUE, and Utah sucker comprising approximately 20% of the CPUE (percent CPUE: redside shiner 2009 = 31%, 2010 = 43%; speckled dace 2009 = 41%, 2010 = 37%; Utah chub 2009 = 8%, 2010 = 0%; Utah sucker 2009 = 21%, 2010 = 19%).

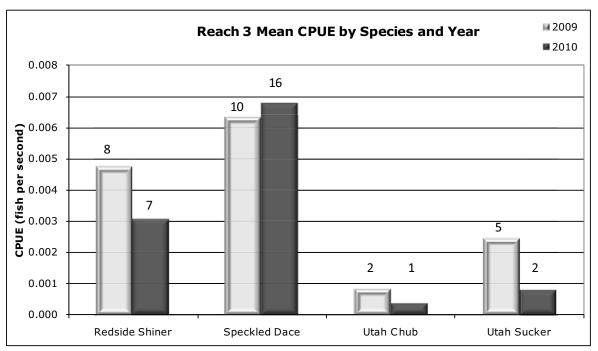
Catch per unit effort for all species in Reach 2 was lower in 2010 than in 2009 (Figure 3-30). The mean CPUE for redside shiner was 0.005 (standard error = 0.002) in 2010; mean CPUE was 1.3 times higher in 2009. The mean CPUE for speckled dace was 0.005 (standard error = 0.001) in 2010; mean CPUE was 1.9 times higher in 2009. It should be noted that total number of fish caught was greater in 2010 for redside shiner (2009: 12 fish vs 2010: 17 fish) and similar in 2010 for speckled dace (2009: 16 fish vs 2010: 15 fish), but the number of seconds electrofishing was 1.7 times greater in 2010 compared to 2009. Low numbers of Utah sucker were recorded on this reach in both 2009 and 2010. A low number of Utah chub were also recorded on this reach in 2009, compared to zero in 2010.

Note: Numbers represent total fish caught.

Figure 3-29 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 1 in 2009 and 2010

Note: Numbers represent total fish caught.

Figure 3-30 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 2 in 2009 and 2010



Reach 3

Reach 3 was electrofished for a total of 2,339 seconds over three passes. A total of 26 fish were captured with four native fish species documented: redside shiner, speckled dace, Utah chub, and Utah sucker. Introduced crayfish were also documented. Speckled dace was the most abundant species, with 16 individuals captured. Redside shiner was the next most abundant species, with 7 individuals captured. One Utah chub and two Utah suckers were also captured. Of all of the reaches in 2010, Reach 3 accounted for 1% of the total fish captured.

Figure 3-28 shows the species composition for Reach 3 in 2009 and 2010, alongside the species composition for the other five reaches. Relative species abundance in Reach 3 was similar in 2009 and 2010, with speckled dace and redside shiner comprising 77-89% of the CPUE, and Utah chub and Utah sucker comprising 11-23% of the CPUE (percent CPUE: redside shiner 2009 = 33%, 2010 = 28%; speckled dace 2009 = 44%, 2010 = 61%; Utah chub 2009 = 3%, 2010 = 4%; Utah sucker 2009 = 17%, 2010 = 8%).

The direction of change in CPUE between 2009 and 2010 in Reach 3 varied by species, but CPUE and fish numbers were generally consistent between years (Figure 3-31). The mean CPUE for redside shiner was 0.003 (standard error = 0.001) in 2010; mean CPUE was 1.5 times higher in 2009 (it should be noted, however, that the actual number of fish caught was similar -2009 = 8 fish vs 2010 = 7 fish). The mean CPUE for speckled dace was 0.007 (standard error = 0.001) in 2010, similar to 2009. Low numbers of Utah chub and Utah sucker were recorded on this reach in 2009 and 2010.

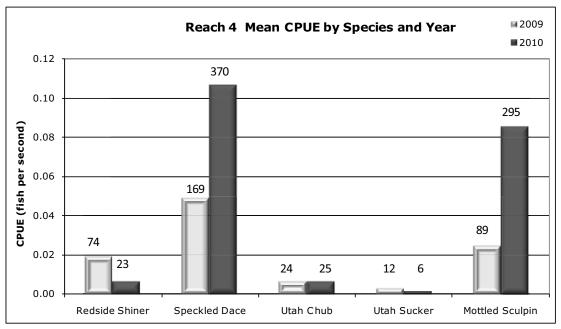
Note: Numbers represent total fish caught.

Figure 3-31 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 3 in 2009 and 2010

Reach 4

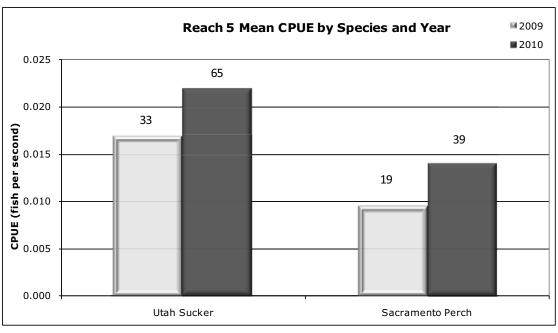
Reach 4 was electrofished for a total of 3,380 seconds over three passes. A total of 719 fish were captured with five native fish species documented: redside shiner, speckled dace, Utah chub, Utah sucker, and mottled sculpin. Introduced crayfish were also documented. Speckled dace was the most abundant species, with 370 individuals captured. Mottled sculpin was the next most abundant species, with 295 individuals captured. Twenty-three redside shiners, 25 Utah chub, and 6 Utah sucker were also captured. Of all of the reaches in 2010, Reach 4 accounted for 40% of the total fish captured.

Figure 3-28 shows the species composition for Reach 4 in 2009 and 2010, alongside the species composition for the other five reaches. Relative species abundance in Reach 4 differed in 2010 compared to 2009. While speckled dace remained dominant (percent CPUE: 2009 = 48%, 2010 = 52%), mottled sculpin was relatively more abundant in 2010 than in 2009 (percent CPUE: 2009 = 24%, 2010 = 41%), and redside shiner was relatively less abundant in 2010 than in 2009 (percent CPUE: 2009 = 19%, 2010 = 3%). Utah chub and Utah sucker comprised the lowest numbers of Reach 4 in both 2009 and 2010 (percent CPUE: Utah chub 2009 = 6\%, 2010 = 3%; Utah sucker 2009 = 3%, 2010 = 1%).


The direction of change in CPUE between 2009 and 2010 in Reach 4 varied by species (Figure 3-32). Compared to 2009, in 2010 mean CPUE decreased for redside shiner, increased for speckled dace and mottled sculpin, and remained relatively constant for Utah chub. The mean CPUE for redside shiner was 0.007 (standard error = 0.003) in 2010; mean CPUE was 3 times higher in 2009). The mean CPUE for speckled dace was 0.106 (standard error = 0.028) in 2010, 2.2 times greater than in 2009. The mean CPUE for mottled sculpin was 0.085 (standard error = 0.021) in 2010, 3.4 times greater than in 2009. The mean CPUE for Utah chub was 0.007 (standard error = 0.006) in 2010, similar to 2009. A low number of Utah sucker were recorded on this reach in both 2009 and 2010.

Reach 5

Reach 5 was electrofished for a total of 2,910 seconds over three passes. A total of 104 fish were captured with one native fish species, Utah sucker, and one introduced fish species, Sacramento perch, documented. Introduced crayfish were also present. Sixty-five Utah sucker and 39 Sacramento perch were captured. Of all of the reaches in 2010, Reach 5 accounted for 6% of the total fish captured.

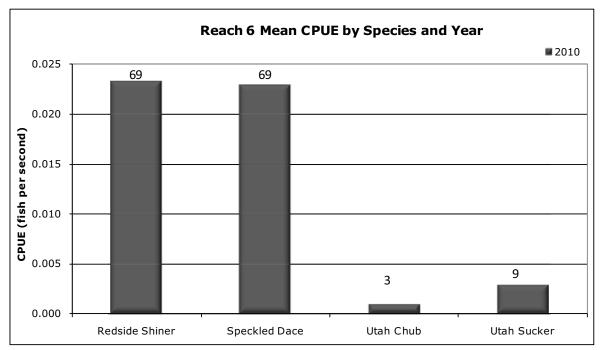

Figure 3-28 shows the species composition for Reach 5 in 2009 and 2010, alongside the species composition for the other five reaches. Relative species abundance in Reach 5 was the same in 2009 and 2010, with Utah sucker comprising the most abundant species (percent CPUE: Utah sucker 2009 = 64%, 2010 = 61%; Sacramento perch 2009 = 36%, 2010 = 39%).

Catch per unit effort for both species in Reach 5 was higher in 2010 than in 2009 (Figure 3-33). The mean CPUE for Utah sucker was 0.022 (standard error = 0.005) in 2010, 1.3 times greater than in 2009. The mean CPUE for Sacramento perch was 0.013 (standard error = 0.009) in 2010, 1.5 times greater than in 2009.

Note: Numbers represent total fish caught.

Figure 3-32 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 4 in 2009 and 2010

Note: Numbers represent total fish caught.


Figure 3-33 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 5 in 2009 and 2010

Reach 6

Reach 6 was electrofished for a total of 2,962 seconds over three passes. A total of 150 fish were captured with four native fish species documented: speckled dace, redside shiner, Utah chub, and Utah sucker. Introduced crayfish were also documented. Speckled dace and redside shiners were the most abundant species, with 69 of each species captured. Three Utah chub and 9 Utah sucker were also captured. Of all of the reaches in 2010, Reach 6 accounted for 8% of the total fish captured.

Figure 3-28 shows the species composition for Reach 6 in 2010 (the reach was not surveyed in 2009), alongside the species composition for the other five reaches. Speckled dace and redside shiner comprised the most abundant species, comprising 92% of the CPUE (2010 percent CPUE: redside shiner = 46%; speckled dace = 46%; Utah chub = 2%; Utah sucker = 6%).

Catch per unit effort for Reach 6 in 2010 is presented in Figure 3-34. The mean CPUE for redside shiner was 0.023 (standard error = 0.003), and the mean CPUE for speckled dace was 0.023 (standard error = 0.007). Low numbers of Utah chub and Utah sucker were recorded on this reach in 2010.

This reach was not surveyed in 2009. Numbers represent total fish caught.

Figure 3-34 The Relative Abundance (CPUE) of the Fishes Caught on Big Springs Creek/Lake Creek Reach 6 in 2009 and 2010

3.9.2 Relative Abundance Comparisons

Figure 3-35 shows the relative abundance (CPUE) of fishes overall for each reach per year. In both 2009 and 2010, reaches 1 and 4 had the highest total fish relative abundance. The mean fish CPUE for Reach 1 was 3.2 times higher in 2009 than in 2010 (2009: mean CPUE = 0.525, standard error = 0.082; 2010: mean CPUE = 0.164, standard error = 0.033). Conversely, the mean fish CPUE for Reach 4 was 2 times higher in 2010 than in 2009 (2009: mean CPUE = 0.103, standard error = 0.012; 2010: mean CPUE = 0.206, standard error = 0.059). Relative abundance at the other reaches remained relatively low and comparable to 2009 numbers. Reach 6 was not sampled in 2009 and the 2010 relative abundance was low compared to reaches 1 and 4, but higher compared to reaches 2 and 3. Unlike the other reaches, reaches 1 and 4 are in proximity to springheads (Reach 1 is 200 m downstream from the Big Springs springhead, and Reach 4 is at Stateline Springs).

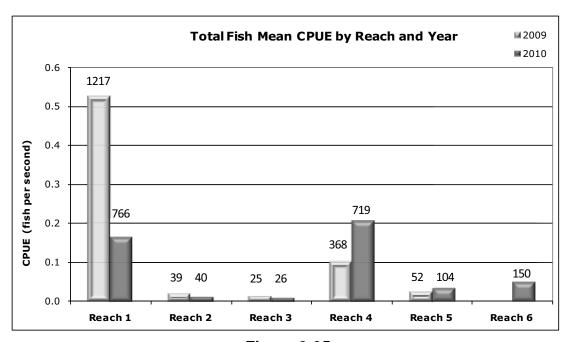


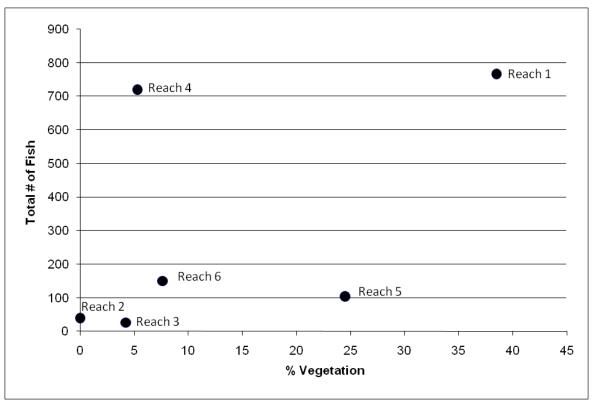
Figure 3-35 A Comparison of the CPUE, Relative Abundance, of Combined Fish Species Catch by Big Springs Creek/Lake Creek Reach and Year

3.9.3 Fish Lengths

Fish length data were collected at each reach on up to 25 individuals of each species. Table 3-38 provides descriptive statistics on the length data collected for each species across the six reaches. Redside shiner lengths ranged from 36 to 112 mm, with the mean length across five reaches ranging from 70.9 to 83.1 mm. Speckled dace lengths ranged from 35 to 104 mm, with the mean length across five reaches ranging from 53.8 to 71.0 mm. Utah chub lengths ranged from 64 to 181 mm, with the mean length across three reaches ranging from 105.0 to 152.0 mm. Utah sucker lengths ranged from 43 to 382 mm, with the mean length across five reaches ranging from 50.0 to 246.0 mm. Mottled sculpin lengths ranged from 29 to 90 mm, with the mean length of 52.5 mm (the species was present in only one reach).

	J - I-	-				
Species	Reach	Total Number of Fish Measured	Minimum Length (mm)	Maximum Length (mm)	Mean Length (mm)	Standard Error
	1	25	55	89	72.4	1.8
	2	22	42	112	71.9	5.1
Redside Shiner	3	7	43	109	83.1	9.0
	4	23	39	95	72.3	3.6
	6	25	36	108	70.9	4.3
	1	28	37	82	58.0	2.1
	2	10	46	86	71.0	4.4
Speckled Dace	3	16	45	104	67.3	3.3
	4	25	35	75	53.8	2.5
	6	25	36	82	65.0	2.0
	3	1	152	152	152	N/A
Utah Chub	4	25	64	140	105.0	3.4
	6	3	130	181	151.0	15.4
	2	8	58	243	125.9	18.8
	3	2	234	258	246.0	12.0
Utah Sucker	4	6	106	204	147.0	15.0
	5	25	43	55	50.0	0.6
	6	9	60	382	148.0	36.3
Mottled Sculpin	4	25	29	90	52.5	3.6

Table 3-38Length Data for Each Native Fish Species atBig Springs Creek/Lake Creek Reaches in 2010


N/A - The standard error could not be calculated with one measurement.

3.9.4 Reach Habitat Comparisons

Upon completion of the fish sampling at each reach, habitat data were collected along five transects to characterize the general habitat of the reach. Figure 3-36 shows mean percent vegetation (submergent and emergent combined, averaged across transects) by the total number of fish captured for each reach for 2010.

A total of 2,073 habitat data points were recorded for Reach 1, and the mean percent of the points that intersected vegetation (submergent and emergent) over the five transects was 38.5 percent (standard error = 8.6). The substrate was characterized by sand, gravel, cobble, and a few boulders. Physical habitat mapping (Section 3.1) reflected that the average depth of the water for this reach was less than 0.2 m and the velocity was greater than 0.5 m/sec; however, some deeper, slower velocity pockets did occur.

At Reach 2, a total of 1,505 habitat data points were recorded, and the mean percent of the points that intersected vegetation (submergent and emergent) over the five transects was 0.0%. The substrate

Figure 3-36 Total Number of Native Fish by Mean Percent Vegetation (Emergent and Submergent Combined) for Big Springs Creek/Lake Creek Reaches (1-6)

was characterized by silt and sand. Physical habitat mapping (Section 3.1) reflected that the average depth of the water for this reach ranged from 0.2 to 1.0 m, and the velocity was 0.1 to 0.5 m/sec.

At Reach 3, a total of 1,350 habitat data points were collected with a mean percent of intersected vegetation points of 4.2% (standard error = 2.4). The substrate was characterized by silt and gravel. Physical habitat mapping (Section 3.1) reflected that the average water depth ranged from 0.2 to 1.0 m, and the velocity ranged from 0.1 to 0.5 m/sec.

At Reach 4, a total of 1,888 data points were collected with a mean percent of intersected vegetation points of 5.3% (standard error = 2.7). The substrate was characterized by silt, sand, gravel, cobble, and boulders. Physical habitat mapping (Section 3.1) reflected that the average water depth ranged from 0.2 to 1.0 m, and velocity was greater than 0.5 m/sec.

At Reach 5, a total of 1,222 data points were collected with a mean percent of intersected vegetation points of 24.5% (standard error = 10.3). The substrate was characterized by silt and gravel. Physical habitat mapping (Section 3.1) reflected that the average water depth ranged from 0.2 to 1.0 m, and velocity ranged from 0.1 to 0.5 m/sec.

At Reach 6, a total of 1,610 habitat data points were recorded, and the mean percent of the points that intersected vegetation (submergent and emergent) over the five transects was 7.6% (standard error =

2.5). The substrate was characterized by silt and gravel. Physical habitat mapping (Section 3.1) reflected that the average depth of the water for this reach ranged from 0.2 to 1.0 m, and the velocity was 0.1 to 0.5 m/sec.

Water-quality measurements were taken three weeks following the 2010 fish data collection during the fall sampling period. Table 3-39 shows water-quality measurements for the center point of each reach. Conditions did not appear to differ to any great degree across transects. Dissolved oxygen (mg/L) and conductivity were lowest at reaches 1 and 4. Turbidity and pH were lowest at reaches 1 and 5. Water temperature was lowest at Reach 4.

Reach	Time	Water Temperature (°F)	Conductivity (μS/cm)	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)
1	1349	64.6	384	7.38	9.24	12.9
2	1312	64.5	409	8.13	10.79	53.7
3	1449	64.7	411	8.21	10.8	63.7
4	1505	62.5	392	8.06	8.4	62.3
5	1535	65.2	704	8.00	10.79	12.6
6	1423	70.6	393	8.25	10.14	36.4

 Table 3-39

 Water Quality Measurements for Big Springs Creek/Lake Creek Reaches for 2010

3.9.5 Conclusion

Fish species composition, relative abundance, and mean fish lengths in 2010 were found to be generally similar to what was documented in 2009, with a few exceptions. Species composition did change on Reach 1 with the absence of Utah sucker and Utah chub in 2010. However, these two species combined had constituted less than 1% of the total fish CPUE in Reach 1 in 2009. Utah chub were also absent on Reach 2 in 2010, down from 8% of the total fish CPUE in Reach 2 in 2009. Reach 4 showed some changes in relative abundance in 2010, with redside shiner comprising 3% of the total fish CPUE, down from 20%, and mottled sculpin at 41% of the total fish CPUE, up from 24%. Mean CPUE for redside shiner and speckled dace were 3-4 times higher in Reach 1 in 2009 than in 2010, and mean CPUE for redside shiner was 3 times higher in Reach 4 in 2009 than in 2010 than in 2009. Mean CPUE did not appear to change to any great degree across the rest of the species in the remaining reaches. Reaches 1 and 4 continued to have the highest total combined fish species relative abundances and the majority of captured redside shiner, speckled dace, and Utah chub. Reach 4 was again the only reach with mottled sculpin.

The mean fish length for each species was generally consistent between years for each reach. However, Reach 4 speckled dace showed a smaller mean length in 2010 of 53.8 mm (standard error = 2.5) compared to 60.5 mm (standard error = 2.7) in 2009, and Reach 4 Utah chub showed a smaller mean length in 2010 of 105.0 mm (standard error = 3.4) compared to 121.0 mm (standard error = 8.7) in 2009. The mean length of Utah sucker at Reach 5 was 50.0 mm (standard error = 0.6) in 2010,

which was less than the 2009 mean length of 62.3 mm (standard error = 2.7). The smaller mean lengths suggest higher numbers of juvenile fish in these reaches in 2010.

A total of 1,701 fish were recorded over reaches 1 to 5 in 2009, and 1,655 fish were recorded for the same reaches in 2010 (1,805 including Reach 6). Reaches 1 and 4 had 94% of the fish in 2009 and 82% of the fish in 2010 (82% of reaches 1-6; 89% of reaches 1-5). It is unclear if the percent vegetation recorded along each reach has an effect on fish numbers, as Reach 1 transects had a mean of 38.5% emergent vegetation, yet Reach 4 had a mean of only 5.3%. The water-quality measurements did not differ greatly across the reaches, and could not explain the uneven fish distribution. Reach 1 and Reach 4 are the only reaches with direct inflow from spring sources (Big Springs and Stateline Springs respectively), have a velocity greater than 0.5 m/sec., and have a good substrate structure that includes cobble and boulders. The remaining reaches do not have direct inflow from springs, have a velocity less than 0.5 m/sec., and appear to have less substrate structure with more siltation. A complex substrate, higher velocity, and the presence of spring inflows may provide better fish habitat in the Big Springs Creek/Lake Creek system, especially for speckled dace and mottled sculpin.

3.10 Vegetation

Summaries of the 2009 and 2010 vegetation data in subsequent sections are presented by transect type (aquatic [spring], wetland/meadow, phreatophytic shrubland and valley floor Rocky Mountain juniper [VFRMJ, a.k.a. swamp cedar]), as established in the Plan. Data are summarized for mean live cover multiple hits (MH), mean live cover first hit (FH), total number of taxa, and mean taxa richness. Comparisons are made at the site level by transect type by comparing mean live cover (MH) between 2009 and 2010. Similar comparisons are also made at the transect level for the most dominant species or taxa (i.e., dominant along a transect or within micro- communities along a transect; see Section 2.10.2 for more details).

A list of the plant taxa that occurred on the vegetation transects in 2009 and 2010 is presented in Appendix E (Table E-1). Appendix E, Tables E-1 through E-4 present mean live cover (MH) by species across the various transect types, along with the number of sites and number of transects where the species were encountered in 2009 and 2010.

3.10.1 Aquatic (Spring) Transects

Mean live cover multiple hits (MH) overall for aquatic transects was 20% higher in 2010 than in 2009 (grand mean live cover (MH): 2009 = 80%, 2010 = 95%) (Table 3-40 and Figure 3-37). Five of the 14 sites showed a significant increase in mean live cover (MH) in 2010 (Four Wheel Drive Spring: 41% increase; Unnamed 1 Spring North of Big: 59% increase; South Millick Spring: 25% increase; Stateline Springs: 39% increase; and Keegan Spring Complex: 91% increase). Mean live cover (MH) ranged from 61% (Big Springs) to 141% (Swallow Spring) in 2010. This compares to a mean live cover (MH) in 2009 that ranged from 53% (Keegan Spring Complex) to 104% (Swallow Spring).

There did not appear to be any appreciable pattern in change in mean live cover (FH) overall from 2009 to 2010 (grand mean live cover (FH): 2009 = 72%, 2010 = 74%), but mean live cover (FH) did vary between years for various sites (Table 3-40 and Figure 3-38). Mean live cover (FH) ranged from 45% for Big Springs to 89% for Unnamed 1 Spring North of Big in 2010. This compares to a mean live cover (FH) in 2009 that ranged from 52% for Keegan Spring Complex to 92% for North Little Spring. Mean live cover first hit (FH) for aquatic transects was always lower than mean live cover (MH). The direction of change from 2009 to 2010 was usually similar between the two measures of live vegetation cover, with the exception of cover changes at West Spring Valley Complex, Unnamed 5 Spring and Willard Spring, where mean live cover (MH) increased while mean live cover (FH) decreased.

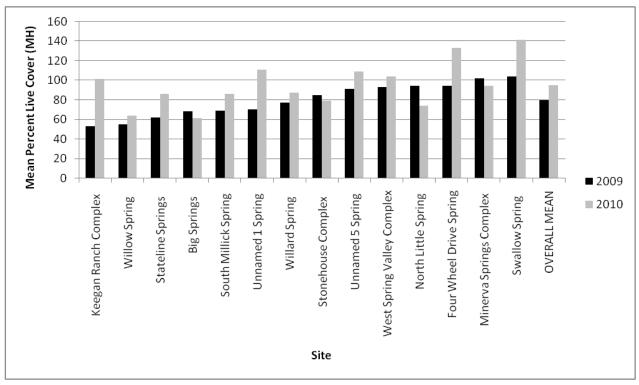
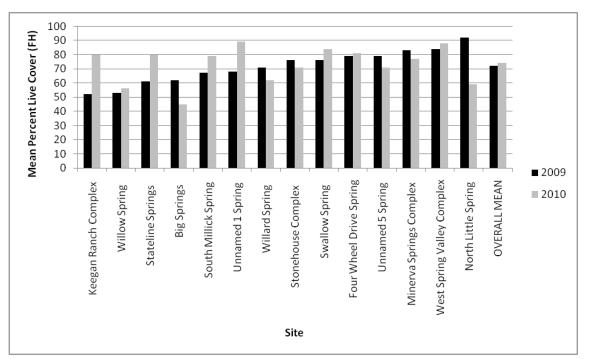
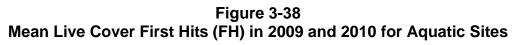

Total number of taxa overall for aquatic transects was similar in 2009 and 2010 (total: 2009 = 42, 2010 = 46), as was mean taxa richness (grand mean: 2009 = 0.9, 2010 = 1.0) (Table 3-40, and Figures 3-39 and 3-40). North Little Spring had the lowest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.3, 2010 = 0.3; total number of taxa: 2009 = 20, 2010 = 25), while West Spring Valley Complex had the highest mean taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 2.6, 2010 = 3.0; total number of taxa: 2009 = 56, 2010 = 58).

Table 3-40. Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH), Total Number of Taxa and Mean Taxa Richness on the Aquatic Transects in Spring and Snake Valleys for 2009 and 2010

Cover values are averages over all transects per site (grand mean). Total number of taxa is the total number of taxa or species observed across all transects per site. Mean taxa richness is the number of taxa divided by transect length, averaged across all transects per site (grand mean). Significance is for multiple hit (MH) cover between 2009 and 2010, and is based on an ANOVA test.


		an Live r (MH)			an Live r (FH)		lumber axa ^a	Mean Transect		n Taxa Iness
Site	2009	2010	P ≤0.05	2009	2010	2009	2010	Length (m)	2009	2010
Swallow Spring	104	141		76	84	42	46	38	0.4	0.5
Minerva Springs Complex	102	94		83	77	62	57	30	0.9	1.0
Four Wheel Drive Spring	94	133	*	79	81	39	40	14	1.1	1.3
North Little Spring	94	74		92	59	20	25	25	0.3	0.3
West Spring Valley Complex	93	104		84	88	56	58	16	2.6	3.0
Unnamed 5 Spring	91	109		79	71	44	39	46	0.6	0.5
Stonehouse Complex	85	79		76	71	26	33	23	0.5	0.6
Willard Spring	77	87		71	62	47	38	34	0.8	0.7
Unnamed 1 Spring	70	111	*	68	89	44	48	30	0.7	0.8
South Millick Spring	69	86	*	67	79	39	36	22	1.0	1.1
Big Springs	68	61		62	45	40	45	23	0.7	0.8
Stateline Springs	62	86	*	61	80	24	39	18	0.8	1.1
Willow Spring	55	64		53	56	41	46	17	1.2	1.2
Keegan Spring Complex	53	101	*	52	80	66	87	69	0.4	0.6
GRAND MEAN	80	95		72	74	42	46		0.9	1.0

^aTotal number of taxa is not independent of transect length, which varies across transects and across sites (transect lengths range from 5 to 100 m, with a mean of 14 to 69 m). Total number of taxa in the 2009 report tables may differ than those reported in the current summary table due to species that were combined based on similar species codes (e.g. Moss/Sp. Moss) in the 2009 data analysis.



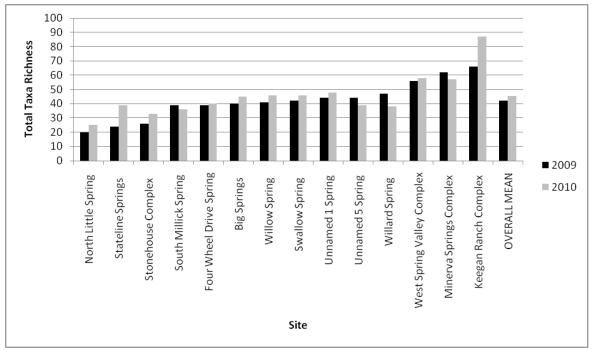
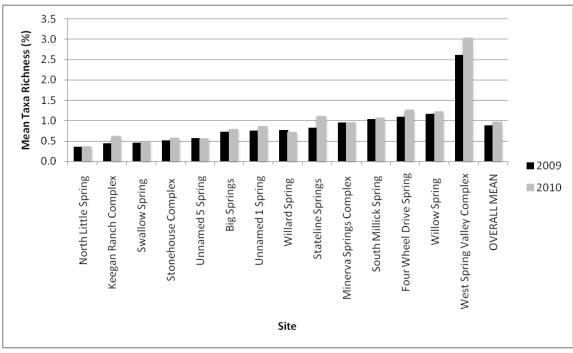

Note: Shown in ascending order based on 2009 data.

Figure 3-37 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for Aquatic Sites


Note: Shown in ascending order based on 2009 data.

Note: Shown in ascending order based on 2009 data. Total number of taxa is not independent of transect length, which varies across transects and across sites (transect lengths range from 5-100 m, with a mean of 14.69 m)

Figure 3-39 Total Number of Taxa in 2009 and 2010 for Aquatic Sites

Note: Shown in ascending order based on 2009 data.

Figure 3-40 Mean Number of Taxa (Number of Taxa Divided by Transect length, Averaged across Transects) in 2009 and 2010 for Aquatic Sites

The live cover of some individual species or taxa changed greatly between 2009 and 2010, whereas other species cover varied little between the two years (Appendix E, Tables E-2 and E-5). Taxa that were encountered along many of the aquatic transects and that had relatively high mean percent cover within and among sites were the aquatic and wetland species *Carex nebrascensis, Berula erecta,* and *Nasturtium officinale* (Appendix E, Table E-5). Because these species are abundant and occur on many of the aquatic sites, they may be good species to monitor closely for overall aquatic vegetation changes in Spring Valley.

3.10.1.1 Stonehouse Spring Complex

The Stonehouse Complex represents basin springs and seeps that occur in a relatively small, confined area. This wetland complex has some deep spring pools, shallow channels between small pools, seeps, and bog areas. The area has been historically grazed, though some areas are too deep or boggy for cattle use. This complex is the northernmost aquatic site that is being monitored in Spring Valley.

The most dominant species, by mean live cover (MH), in 2009 and 2010 on the aquatic transects at the Stonehouse Complex were *Carex simulata, Carex nebrascensis, Nasturtium officinale*, and *Juncus arcticus* (Table 3-41). A total of 26 and 33 taxa occurred on transects in 2009 and 2010, respectively, at the Stonehouse Complex and these values are below average compared across all aquatic sites (Table 3-40). Mean live cover (MH) averaged 85 and 79% in 2009 and 2010, respectively, and these were about average for the 14 sites.

Table 3-41. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Aquatic Transects at the Stonehouse Complex for 2009 and 2010

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_039 N = 26 (Total Taxa for Transect: 2009 = 11; 2010 = 17) (Mean Taxa for Transect: 2009 = 0.4; 2010 = 0.7)

		Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance
Species		2009	2010	at ≤0.05	Classification
Carex simulata		41.15	20.77	*	Transect Dominant
Carex nebrascensis		21.96	18.65		Transect Dominant
Juncus arcticus ssp. littoralis		8.23	4.12		Microcommunity Dominant
Iris missouriensis		2.89	0.35		Microcommunity Dominant
Ranunculus cymbalaria		0.54	1.73		Microcommunity Dominant
Argentina anserina		0.00	5.58		Microcommunity Dominant
	Total Live Cover	78.15	57.42	*	
Veg_040 N = 28 (Total Taxa 1	for Transect: 2009 =			Fransect: 2009 =	0.5; 2010 = 0.7)
		Mean Live	Mean Live	0	Denterer
Species		Cover (MH)	Cover (MH)	Significance at ≤0.05	Dominance Classification
Species		2009	2010	at ≤0.05	
Carex nebrascensis		28.93	26.39		Transect Dominant
Nasturtium officinale		15.61	0.89	*	Transect Subdominant
Juncus arcticus ssp. littoralis		12.04	8.89		Transect Subdominant
Carex simulata		7.86	2.54	*	Microcommunity Dominant
Berula erecta		4.46	18.61	*	Transect Subdominant
Catabrosa aquatica		4.25	2.54		Microcommunity Dominant
Moss		3.07	0.00		Microcommunity Dominant
Algae		0.00	4.93		Microcommunity Dominant
Carex praegracilis		0.00	2.79		Microcommunity Dominant
	Total Live Cover	80.93	76.11		0.5.004007
Veg_041 N = 21 (Total Taxa 1	for Transect: 2009 =	Mean Live	Mean Taxa for T	ransect: 2009 =	0.5; 2010 = 0.7)
		Cover (MH)	Cover (MH)	Significance	Dominance
Species		2009	2010	at ≤0.05	Classification
Carex simulata		39.33	22.52	*	Transect Dominant
Juncus arcticus ssp. littoralis		13.19	11.91		Transect Subdominant
Nasturtium officinale		11.91	8.48		Transect Subdominant
Carex nebrascensis		9.76	8.29		Transect Subdominant
Puccinellia distans		2.52	0.76		Microcommunity Dominant
Carex praegracilis		0.00	4.10		Microcommunity Dominant
Lemna minor		0.00	3.29		Microcommunity Dominant
Lemna minuta		0.00	24.52	*	Microcommunity Dominant
	Total Live Cover	81.48	88.86		
Veg_042 N = 30 (Total Taxa t				nsect: 2009 = 0.2	2:2010 = 0.3
					-, -• ·• - • ·• /
		Mean Live	Mean Live		
. .		Cover (MH)	Cover (MH)	Significance	Dominance
Species		Cover (MH) 2009	Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex simulata		Cover (MH) 2009 56.97	Cover (MH) 2010 40.00	Significance	Dominance Classification Transect Dominant
Carex simulata Carex nebrascensis		Cover (MH) 2009 56.97 10.20	Cover (MH) 2010 40.00 5.40	Significance at ≤0.05	Dominance Classification Transect Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata		Cover (MH) 2009 56.97 10.20 3.83	Cover (MH) 2010 40.00 5.40 5.17	Significance at ≤0.05	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp.		Cover (MH) 2009 56.97 10.20 3.83 3.17	Cover (MH) 2010 40.00 5.40 5.17 2.97	Significance at ≤0.05 * *	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90	Significance at ≤0.05	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10	Significance at ≤0.05 * *	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77	Significance at ≤0.05 * *	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor	Total Live Cover	Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 77.87	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73	Significance at ≤0.05 * * *	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Met	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran	Significance at ≤0.05 * * *	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Mean Live	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live	Significance at ≤0.05 * * * * sect: 2009 = 0.9	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor Veg_043 N = 9 (Total Taxa fo		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Mean Live Cover (MH)	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live Cover (MH)	Significance at ≤0.05 * * * * * sect: 2009 = 0.9 Significance	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant 2010 = 0.6) Dominance
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor Veg_043 N = 9 (Total Taxa fo Species		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Mean Live Cover (MH) 2009	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live Cover (MH) 2010	Significance at ≤0.05 * * * * sect: 2009 = 0.9	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant 2010 = 0.6) Dominance Classification
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor Veg_043 N = 9 (Total Taxa fo Species Carex simulata		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Mean Live Cover (MH) 2009 51.11	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live Cover (MH) 2010 42.44	Significance at ≤0.05 * * * * * sect: 2009 = 0.9 Significance	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant 2010 = 0.6) Dominance Classification Transect Dominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor Veg_043 N = 9 (Total Taxa fo Species Carex simulata Carex nebrascensis		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 77.87 8; 2010 = 5) (Mei Bi; 2010 = 5) (Mei Cover (MH) 2009 51.11 27.56	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live Cover (MH) 2010 42.44 34.33	Significance at ≤0.05 * * * * * sect: 2009 = 0.9 Significance	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant 2010 = 0.6) Dominance Classification Transect Dominant Transect Dominant
Carex simulata Carex nebrascensis Carex rostrata Scirpus sp. Nasturtium officinale Algae Lemna minor Veg_043 N = 9 (Total Taxa fo		Cover (MH) 2009 56.97 10.20 3.83 3.17 3.00 0.00 0.00 0.00 77.87 8; 2010 = 5) (Mean Live Cover (MH) 2009 51.11	Cover (MH) 2010 40.00 5.40 5.17 2.97 14.90 2.10 11.77 82.73 an Taxa for Tran Mean Live Cover (MH) 2010 42.44	Significance at ≤0.05 * * * * * sect: 2009 = 0.9 Significance	Dominance Classification Transect Dominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant Microcommunity Dominant Transect Subdominant 2010 = 0.6) Dominance Classification Transect Dominant

Carex simulata was the most dominant species along all but one transects (040; Table 3-41). *Carex nebrascensis* was a dominant species on all five transects, *Nasturtium officinale* was a subdominant species on four transects, and *Juncus arcticus* was a subdominant species on two transects. Most other species had a cover value of 10% or less of the mean cover for any transect.

Some changes in species or taxa were noted on permanent aquatic transects within the Stonehouse Complex between the summers of 2009 and 2010. For example, the aquatic species *Lemna* sp. and green algae had greater cover in 2010 than in 2009. *Carex nebrascensis* and *Carex simulata* both had significant ($P \le 0.05$) decreases in cover on several transects where they were found (Table 3-41). Mean live cover (MH) of the most dominant species on the five transects, however, showed little change between the two years. However, total live cover of all species at the Stonehouse Complex did show a moderate decrease between 2009 and 2010 (Figure 3-40 and Table 3-41).

3.10.1.2 Willow-NV Spring

Forty-six taxa were recorded along the aquatic transects at Willow Spring in 2010. This diversity was average for the 14 sites overall. The three taxa with highest mean live cover were *Carex nebrascensis, Eleocharis palustris*, and *Argentina anserina*. The overall aquatic plant community at this site is relatively diverse. Total live plant cover for the five transects was one of the lowest recorded for all 14 aquatic sites.

Carex nebrascensis had the highest cover value on two of the transects and *Iva axillaris, Juncus arcticus*, and *Typha latifolia* were the most dominant species along one of each of the remaining transects (Table 3-42). Subdominant species included *Artemisia tridentata, Agrostis gigantea, Eleocharis palustris*, and *Carex simulata*.

Mean live cover (MH) of *Agrostis gigantea* showed some increase in 2010 on all three of the transects where it was found (Table 3-42). However the increases were not significant. *Carex nebrascensis* showed little change in cover between 2009 and 2010. *Nasturtium officinale* was an important species in 2009, but this dominance was not expressed in 2010. The cover of *Typha latifolia* declined significantly between the two years as well on the two transects where it was encountered. However the average total live cover for all species at Willow Spring increased on three of the five transects in 2010. This increase of average cover was attributed primarily to increases in cover of less dominant species.

Table 3-42. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willow Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_049 N = 26 (Total Taxa for Transect: 2009 = 24; 2010 = 28) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 1.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juncus arcticus ssp. littoralis	11.39	17.19	*	Transect Dominant
Carex nebrascensis	10.46	16.77	*	Transect Dominant
Nasturtium officinale	7.23	0.31	*	Microcommunity Dominant
Agrostis gigantea	6.69	7.81		Transect Subdominant
Argentina anserina	6.54	4.00		Microcommunity Dominant
Iris missouriensis	5.46	5.77		Microcommunity Dominant
Poa sp.	5.27	2.73		Microcommunity Dominant
Algae	3.77	1.08		Microcommunity Dominant
Carex praegracilis	3.54	1.23		Microcommunity Dominant
Berula erecta	3.12	7.54		Microcommunity Dominant
Symphyotrichum eatonii	0.00	5.15		Microcommunity Dominant
Total Live Co	ver 77.62	87.04		·

Based on field data and the distribution of hits along the transect, species listed as *Poa pratensis* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Veg_050 N = 10 (Total Taxa for Transect: 2009 = 16; 2010 = 17) (Mean Taxa for Transect: 2009 = 1.6; 2010 = 1.7)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		27.30	26.40		Transect Dominant
Artemisia tridentata		14.00	15.90		Transect Subdominant
Nasturtium officinale		8.20	0.00		Microcommunity Dominant
Argentina anserina		8.00	4.50		Microcommunity Dominant
Carex simulata		6.10	13.50		Transect Subdominant
Eleocharis palustris		4.80	9.10		Transect Subdominant
Chara sp.		3.40	1.40		Microcommunity Dominant
Agrostis gigantea		3.20	8.50		Microcommunity Dominant
Mimulus guttatus		1.90	3.50		Microcommunity Dominant
Berula erecta		1.00	13.40		Transect Subdominant
	Total Live Cover	84.80	102.50	*	

Veg_051 N = 9 (Total Taxa for Transect: 2009 = 20; 2010 = 19) (Mean Taxa for Transect: 2009 = 2.2; 2010 = 2.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	24.22	24.44		Transect Dominant
Eleocharis palustris	17.11	19.89		Transect Subdominant
Artemisia tridentata	5.00	4.44		Microcommunity Dominant
Argentina anserina	4.67	6.78		Microcommunity Dominant
Carex simulata	2.33	0.00		Microcommunity Dominant
Iva axillaris	2.22	6.67		Microcommunity Dominant
Agrostis gigantea	1.67	9.78		Microcommunity Dominant
Berula erecta	0.56	6.78		Microcommunity Dominant
Total Live Cover	75.56	94.89		-
Veg_052 N = 20 (Total Taxa for Transect: 2009 :	= 12; 2010 = 13)	(Mean Taxa for	Transect: 2009 :	= 0.6; 2010 = 0.7)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Typha latifolia	10.90	5.70	*	Transect Dominant

opeelee				
Typha latifolia	10.90	5.70	*	Transect Dominant
Argentina anserina	4.00	1.75		Microcommunity Dominant
Bidens cernua	2.30	0.00		Microcommunity Dominant
Chenopodium berlandieri	1.35	0.00		Microcommunity Dominant
Distichlis spicata	0.05	0.65		Microcommunity Dominant
Cirsium vulgare	0.00	1.35		Microcommunity Dominant
Lactuca serriola	0.00	1.00		Microcommunity Dominant
Mentha spicata	0.00	0.85		Microcommunity Dominant
Potentilla biennis	0.00	1.70		Microcommunity Dominant
Total Live Co	over 20.90	15.90		

Based on field data and the distribution of hits along the transect in 2009, species listed as *Typha domingensis* in 2010 was identified as *Typha latifolia* and was analyzed as *Typha latifolia* for *t*-test analysis.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Iva axillaris	9.74	15.68		Transect Dominant
Typha latifolia	5.42	0.90	*	Microcommunity Dominant
Chenopodium berlandieri	3.26	1.42		Microcommunity Dominant
Argentina anserina	1.32	0.21		Microcommunity Dominant
Eleocharis palustris	1.16	0.05		Microcommunity Dominant
Lactuca serriola	0.05	0.74		Microcommunity Dominant
Epilobium sp.	0.00	1.00		Microcommunity Dominant
Total Live Co	over 21.84	21.00		2

 Table 3-42. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willow Spring for 2009 and 2010 (Page 2 of 2)

Based on field data and the distribution of hits along the transect in 2009, species listed as *Typha domingensis* in 2010 was identified as *Typha latifolia* and was analyzed as *Typha latifolia* for *t*-test analysis.

3.10.1.3 Keegan Spring Complex North

Dominant and subdominant taxa on the aquatic transects at the Keegan Spring Complex included *Carex simulata, Thermopsis rhombifolia,* moss, and *Typha latifolia* (Table 3-43). A total of 87 taxa occurred on the transects in 2010 and this number was the highest of the 14 sites. Mean live cover (MH) averaged 101% in 2010 and this was above average among all 14 sites (Table 3-40).

The vegetation covered by the five transects was diverse. *Carex simulata, Thermopsis rhombifolia* and *Typha latifolia* were three of the more dominant species on most of the five transects (Table 3-43). Other important taxa were *Argentina anserina, Carex praegracilis, Leymus triticoides,* and *Carex nebrascensis*.

Cover of the more important species increased considerably. This was particularly true for *Carex nebrascensis, Leymus triticoides, Carex stimulate,* and *Typha latifolia.* Only a few species showed decreases between 2009 and 2010.

Table 3-43. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Keegan Spring Complex for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_021 N = 100 (Total Taxa for Transect: 2009 = 33; 2010 = 45) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.5)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Moss		16.86	0.85	*	Transect Subdominant
Thermopsis rhombifolia		14.50	14.40		Transect Subdominant
Carex sp.		10.60	4.76	*	Transect Subdominant
Juncus arcticus ssp. littoralis		5.13	3.13	*	Microcommunity Dominant
Leymus triticoides		4.85	13.61	*	Microcommunity Dominant
Veronica anagallis-aquatica		4.45	4.24		Microcommunity Dominant
Achillea millefolium		4.04	3.49		Microcommunity Dominant
Carex nebrascensis		3.21	6.46	*	Microcommunity Dominant
Nasturtium officinale		3.05	20.00	*	Transect Subdominant
Taraxacum officinale		3.03	3.02		Microcommunity Dominant
Schedonorus pratensis		2.35	0.07		Microcommunity Dominant
Agrostis gigantea		0.81	4.11	*	Microcommunity Dominant
Poa secunda		0.02	6.14	*	Microcommunity Dominant
Eleocharis rostellata		0.00	2.39	*	Microcommunity Dominant
Mimulus guttatus		0.00	10.58	*	Microcommunity Dominant
Total	Live Cover	84.54	109.40	*	

Veg_027 N = 100 (Total Taxa for Transect: 2009 = 21; 2010 = 37) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.4)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Thermopsis rhombifolia		14.84	11.05	*	Transect Subdominant
Carex simulata		9.77	25.35	*	Transect Subdominant
Carex praegracilis		6.33	14.77	*	Transect Subdominant
Leymus triticoides		6.15	11.55	*	Transect Subdominant
Argentina anserina		5.80	8.48	*	Transect Subdominant
Carex nebrascensis		4.14	5.32		Microcommunity Dominant
Crepis runcinata ssp. glauca		3.60	3.56		Microcommunity Dominant
Juncus arcticus ssp. littoralis		3.06	8.41	*	Microcommunity Dominant
Taraxacum officinale		1.78	2.41		Microcommunity Dominant
Typha latifolia		0.77	8.53	*	Microcommunity Dominant
Puccinellia lemmonii		0.34	1.65	*	Microcommunity Dominant
Hordeum jubatum		0.29	3.71	*	Microcommunity Dominant
Glaux maritima		0.26	2.40	*	Microcommunity Dominant
Hordeum brachyantherum		0.07	1.15	*	Microcommunity Dominant
Chara sp.		0.00	2.39	*	Microcommunity Dominant
Elymus trachycaulus		0.00	5.31	*	Microcommunity Dominant
, , , , , , , , , , , , , , , , , , , ,	Total Live Cover	59.95	126.06	*	

Veg_080 N = 45 (Total Taxa for Transect: 2009 = 28; 2010 = 31) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.	6.49	7.82		Transect Subdominant
Schoenoplectus acutus	3.47	10.71	*	Transect Subdominant
Algae	3.29	6.84		Microcommunity Dominant
Carex nebrascensis	2.91	6.29	*	Microcommunity Dominant
Moss	2.49	9.24		Microcommunity Dominant
Utricularia macrorhiza	2.24	3.69		Microcommunity Dominant
Thermopsis rhombifolia	2.00	5.24		Microcommunity Dominant
Typha latifolia	1.60	12.42	*	Transect Subdominant
Trifolium repens	1.58	2.53		Microcommunity Dominant
Lemna minor	0.58	2.89	*	Microcommunity Dominant
Sium suave	0.00	3.60	*	Microcommunity Dominant
Sparganium emersum	0.00	19.07	*	Transect Subdominant
Total Live Cover	35.87	103.98	*	

Meter interval 23-24 was not sampled in 2009, so this interval was not used in *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Typha* or *Typha latifolia* in 2009 and *Typha* in 2010 were analyzed as *Typha latifolia* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as SP MOSS in 2009 and BR MOSS in 2010 were analyzed as Moss for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Carex* or *Carex simulata* in 2009 and *Carex simulata* in 2010 were analyzed as *Carex* or *Carex simulata* in 2009 and *Carex simulata* in 2010 were analyzed as *Lemna minor* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna minor* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna minor* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna minor* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna in 2009* and were analyzed as *Lemna minor* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Schoenoplectus acutus* in 2009 and were analyzed as *Schoenoplectus acutus* for *t*-test analysis.

Table 3-43. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Keegan Spring Complex for 2009 and 2010 (Page 2 of 2) Veg. 093 N = 43 (Total Taxa for Transect: 2009 = 23; 2010 = 44) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 1.0)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex simulata	19.88	29.49	*	Transect Dominant
Typha latifolia	8.16	8.00		Transect Subdominant
Čarex nebrascensis	4.77	11.49	*	Transect Subdominant
Hippuris vulgaris	3.07	0.49		Microcommunity Dominant
Juncus arcticus ssp. littoralis	1.07	1.19		Microcommunity Dominant
Lemna trisulca	0.91	1.19		Microcommunity Dominant
Galium trifidum	0.28	1.88	*	Microcommunity Dominant
Juncus nevadensis	0.23	1.44	*	Microcommunity Dominant
Sparganium emersum	0.00	2.93		Microcommunity Dominant
Útricularia macrorhiza	0.00	9.21	*	Microcommunity Dominant
Total Live	Cover 46.47	86.49	*	,

Based on field data and the distribution of hits along the transect, species listed as *Typha* in 2010 were analyzed as *Typha latifolia* for *t*-test analysis.

Veg_150 N = 56 (Total Taxa for Transect: 2009 = 28; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Typha latifolia	16.57	42.30	*	Transect Dominant
Carex nebrascensis	4.61	4.16		Microcommunity Dominant
Algae	2.66	0.00	*	Microcommunity Dominant
Trifolium repens	2.36	1.39		Microcommunity Dominant
Schoenoplectus americanus	2.13	0.00	*	Microcommunity Dominant
Carex praegracilis	1.73	0.77		Microcommunity Dominant
Lemna trisulca	1.05	0.89		Microcommunity Dominant
Carex simulata	0.88	6.77	*	Microcommunity Dominant
Argentina anserina	0.66	2.18		Microcommunity Dominant
Schoenoplectus acutus var. acutus	0.50	2.57	*	Microcommunity Dominant
Moss	0.00	7.93	*	Microcommunity Dominant
Poa secunda	0.00	1.80	*	Microcommunity Dominant
Sparganium angustifolium	0.00	3.52	*	Microcommunity Dominant
Total Live Cover	40.73	80.05	*	-

Based on field data and the distribution of hits along the transect, species listed as Typha in 2009 were analyzed as Typha latifolia for *t*-test analysis.

3.10.1.4 West Spring Valley Complex 1

The most dominant species, by mean live cover (MH), on the aquatic transects at the West Spring Valley Complex were *Lemna minor*, *Berula erecta*, *Thermopsis rhombifolia*, *Cirsium arvense*, *Agrostis gigantea*, and *Carex praegracilis* (Table 3-44). A total of 58 taxa occurred on the transects in 2010 and this was a relatively high diversity, in comparison with the other sites (Table 3-40). Mean live cover (MH) increased significantly on three transects and declined significantly on only one transect. This decline in cover on one transect (088) was caused primarily by a significant decrease in cover of five important species: *Cirsium arvense*, *Phragmites australis*, *Agrostis gigantea*, *Schoenoplectus acutus*, and *Poa pratensis*. These shoreline and shallow water species did not do as well in 2010 compared to 2009.

Table 3-44. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at West Spring Valley Complex for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_086 N = 26 (Total Taxa for Transect: 2009 = 26; 2010 = 28) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Thermopsis rhombifolia	23.00	21.92		Transect Dominant
Cirsium arvense	12.54	11.69		Transect Subdominant
Carex praegracilis	10.50	4.31		Transect Subdominant
Lemna minor	10.42	28.89	*	Transect Dominant
Agrostis gigantea	8.65	4.08	*	Transect Subdominant
Juncus arcticus ssp. littoralis	8.42	6.42		Transect Subdominant
Eleocharis rostellata	8.23	5.85		Transect Subdominant
Carex sp.	5.31	5.08		Microcommunity Dominant
Equisetum arvense	4.19	1.35		Microcommunity Dominant
Berula erecta	3.89	1.08		Microcommunity Dominant
Carex simulata	3.12	3.23		Microcommunity Dominant
Poa secunda	0.04	6.39	*	Microcommunity Dominant
Total Live Cover	114.00	119.19		

Veg_088 N = 38 (Total Taxa for Transect: 2009 = 31; 2010 = 33) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.9)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Cirsium arvense	20.82	14.61	*	Transect Dominant
Berula erecta	16.79	14.47		Transect Subdominant
Phragmites australis	15.11	3.11	*	Transect Subdominant
Thermopsis rhombifolia	9.84	14.53		Transect Subdominant
Carex nebrascensis	6.63	4.63		Transect Subdominant
Lemna minor	6.29	9.87		Transect Subdominant
Agrostis gigantea	5.45	2.58	*	Microcommunity Dominant
Schoenoplectus acutus	4.66	1.58	*	Microcommunity Dominant
Ericameria nauseosa	3.42	3.18		Microcommunity Dominant
Juncus arcticus ssp. littoralis	3.18	3.50		Microcommunity Dominant
Argentina anserina	2.95	4.58		Microcommunity Dominant
Poa pratensis	1.95	0.24	*	Microcommunity Dominant
Schedonorus pratensis	1.58	1.40		Microcommunity Dominant
Carex praegracilis	1.16	4.71	*	Microcommunity Dominant
Total Live Cover	111.55	94.00	*	

Veg_094 N = 5 (Total Taxa for Transect: 2009 = 16; 2010 = 18) (Mean Taxa for Transect: 2009 = 3.2; 2010 = 3.6)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta		19.80	12.40		Transect Dominant
Carex praegracilis		14.60	6.40		Transect Subdominant
Medicago polymorpha		7.00	11.80		Transect Subdominant
Agrostis gigantea		6.20	9.60		Transect Subdominant
Carex nebrascensis		6.20	10.20		Transect Subdominant
Castilleja minor ssp. minor		2.80	2.60		Microcommunity Dominant
Mimulus guttatus		1.40	41.20		Transect Subdominant
	Total Live Cover	77.20	116.80	*	

Transect length was 3-m longer in 2010, therefore data for 2010 meter interval 20-23 was not used in the analysis. Only data for 0-20 m for both years was used for *t*-test analysis.

Table 3-44. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at West Spring Valley Complex for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	16.40	22.40		Transect Dominant
Nasturtium officinale	11.40	0.00		Transect Subdominant
Lemna minor	6.80	19.80		Transect Subdominant
Trifolium repens	6.40	3.00		Microcommunity Dominant
Juncus arcticus ssp. littoralis	5.00	0.80		Microcommunity Dominant
Carex nebrascensis	4.40	13.20		Transect Subdominant
Mimulus guttatus	4.00	8.00		Microcommunity Dominant
Agrostis gigantea	2.60	5.40		Microcommunity Dominant
Thermopsis rhombifolia	2.00	6.20		Microcommunity Dominant
Potamogeton sp.	1.80	3.80		Microcommunity Dominant
Total Live Cover	79.40	105.80	*	

Veg_095 N = 5 (Total Taxa for Transect: 2009 = 23; 2010 = 25) (Mean Taxa for Transect: 2009 = 4.6; 2010 = 5.0)

Based on field data and the distribution of hits along the transect, species listed as *Lemna minor* in 2009 and *Lemna minuta* in 2010 were analyzed as *Lemna minor* for *t*-test analysis. Transect length was 1-m longer in 2010, therefore data for 2010 meter interval 20-21 was not used in the analysis. Only data for 0-20 m for both years was used for *t*-test analysis.

Veg_096 N = 5 (Total Taxa for Transect: 2009 = 17; 2010 = 23) (Mean Taxa for Transect: 2009 = 3.4; 2010 = 4.6)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Lemna minor	20.80	20.40		Transect Dominant
Agrostis gigantea	9.40	8.20		Transect Subdominant
Elymus trachycaulus	8.20	0.00		Microcommunity Dominant
Eleocharis rostellata	7.40	15.40		Transect Subdominant
lva axillaris	7.00	5.40		Transect Subdominant
Symphyotrichum eatonii	6.80	7.00		Transect Subdominant
Carex nebrascensis	5.60	7.20		Transect Subdominant
Distichlis spicata	4.60	0.00		Microcommunity Dominant
Mimulus guttatus	3.60	5.20		Microcommunity Dominant
Leymus triticoides	0.40	8.40		Microcommunity Dominant
Total Live Cove	er 82.60	111.00	*	

3.10.1.5 South Millick Spring

The most dominant species, by mean live cover (MH), on the aquatic transects at South Millick Spring were *Berula erecta*, *Nasturtium officinale*, and *Argentina anserina* (Table 3-45). A total of 36 taxa occurred on the transects in 2010 and this was below average diversity in comparison with the other sites. Live cover (MH) was also slightly below average in comparison with the other sites (Table 3-40).

Berula erecta was the most abundant aquatic species on four of the transects at South Millick Spring in 2009, but declined on all four transects in 2010 (Table 3-45). *Nasturtium officinale* was abundant on one transect in 2009 and increased significantly on three transects in 2010.

Agrostis gigantea and Argentina anserina were important species that showed little change between the two years. Carex nebrascensis and Juncus arcticus increased significantly on one transect, but showed less change on the other transects where they occurred.

Table 3-45. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at South Millick Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_016 N = 29 (Total Taxa for Transect: 2009 = 25; 2010 = 23) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 0.8)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	21.21	18.76		Transect Dominant
Agrostis gigantea	4.79	4.48		Microcommunity Dominant
Argentina anserina	4.28	3.72		Microcommunity Dominant
Juncus arcticus ssp. littoralis	4.10	15.97	*	Transect Subdominant
Carex nebrascensis	3.48	9.28	*	Microcommunity Dominant
Stuckenia filiformis ssp. filiformis	2.45	6.83		Microcommunity Dominant
Berula erecta	1.97	0.59		Microcommunity Dominant
Carex simulata	1.55	2.28		Microcommunity Dominant
Sphenopholis obtusata	1.31	2.28		Microcommunity Dominant
Juncus nevadensis	1.03	1.90		Microcommunity Dominant
Total Live Cover	50.86	71.07	*	

Veg_017 N = 30 (Total Taxa for Transect: 2009 = 16; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.6)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta	54.80	0.47	*	Transect Dominant
Carex nebrascensis	7.70	5.33		Transect Subdominant
Lemna minuta	5.57	1.70		Microcommunity Dominant
Juncus nevadensis	5.43	2.90	*	Microcommunity Dominant
Agrostis gigantea	3.67	1.73		Microcommunity Dominant
Juncus arcticus ssp. littoralis	3.17	1.47		Microcommunity Dominant
Schoenoplectus acutus var. acutus	3.10	1.37		Microcommunity Dominant
Equisetum arvense	0.77	1.57		Microcommunity Dominant
Nasturtium officinale	0.40	78.70	*	Transect Dominant
Total Live Cover	88.60	98.00		

Veg_018 N = 23 (Total Taxa for Transect: 2009 = 18; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.8)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta	31.44	0.00	*	Transect Dominant
Stuckenia filiformis ssp. filiformis	8.04	0.00	*	Microcommunity Dominant
Nasturtium officinale	5.61	72.96	*	Transect Dominant
Equisetum arvense	2.83	4.30		Microcommunity Dominant
Juncus nevadensis	1.83	3.13		Microcommunity Dominant
Argentina anserina	1.78	1.48		Microcommunity Dominant
Schoenoplectus acutus var. acutus	1.00	0.78		Microcommunity Dominant
Agrostis gigantea	0.91	1.13		Microcommunity Dominant
Leymus triticoides	0.70	0.26		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.44	0.87		Microcommunity Dominant
Lemna minuta	0.17	1.09		Microcommunity Dominant
Total Live Cover	56.70	91.65	*	

Table 3-45. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at South Millick Spring for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta	22.73	0.18		Transect Dominant
Argentina anserina	22.00	23.36		Transect Dominant
Juncus arcticus ssp. littoralis	5.46	6.18		Microcommunity Dominant
Carex praegracilis	4.09	7.73	*	Microcommunity Dominant
Distichlis spicata	3.36	3.46		Microcommunity Dominant
Spartina gracilis	2.73	6.09		Microcommunity Dominant
Carex nebrascensis	2.18	0.55		Microcommunity Dominant
Equisetum arvense	2.09	2.82		Microcommunity Dominant
Eleocharis palustris	0.00	4.00		Microcommunity Dominant
Nasturtium officinale	0.00	26.46	*	Transect Subdominant
Total Live Cover	78.91	93.91	*	

Veg_019 N = 11 (Total Taxa for Transect: 2009 = 21; 2010 = 23) (Mean Taxa for Transect: 2009 = 1.9; 2010 = 2.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta	24.50	21.89		Transect Dominant
Juncus nevadensis	13.22	20.94	*	Transect Dominant
Distichlis spicata	4.11	2.50		Microcommunity Dominant
Stuckenia filiformis ssp. filiformis	4.00	2.94		Microcommunity Dominant
Argentina anserina	3.83	4.17		Microcommunity Dominant
Juncus arcticus ssp. littoralis	3.39	3.50		Microcommunity Dominant
Ivesia kingii	3.33	4.67		Microcommunity Dominant
Mimulus guttatus	3.11	3.22		Microcommunity Dominant
Spartina gracilis	1.56	2.00		Microcommunity Dominant
Lemna minuta	0.94	4.17		Microcommunity Dominant
Total Live Cover	67.44	76.39	*	

3.10.1.6 Unnamed 5 Spring

The most dominant species, by mean live cover (MH), on the aquatic transects at Unnamed 5 Spring were *Chara* sp., *Carex nebrascensis, Potamogeton* sp., and *Utricularia macrorhiza* (Table 3-46). A total of 39 taxa occurred on these transects in 2010 and this was below average diversity compared to that of the other transects. Total live cover was moderately high as compared with the other aquatic sites in Spring Valley (Table 3-40).

Sampling was conducted 9 days later in 2010 than in 2009. This probably resulted in the significant increase in algae along two of the three transects where it occurred and a reduction in *Chara* sp. The emergent pondweed *Potamogeton* sp. also had increased cover on two transects in 2010. The shoreline species of *Carex nebrascensis* showed significant increases in live cover along several transects in 2010 (Table 3-46). The overall result of increases in these most dominant species resulted in significantly greater total live cover of vegetation on three of the five transects in 2010 as compared with 2009.

Table 3-46. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 5 Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_054 N = 42 (Total Taxa for Transect: 2009 = 27; 2010 = 25) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.6)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	28.95	24.41		Transect Dominant
Potamogeton sp.	25.12	20.12		Transect Dominant
Carex sp.	20.76	19.60		Transect Dominant
Chara sp.	12.43	11.79		Transect Subdominant
Berula erecta	7.12	8.21		Transect Subdominant
Argentina anserina	6.12	2.95	*	Microcommunity Dominant
Juncus nevadensis	3.48	4.69		Microcommunity Dominant
Eleocharis palustris	2.29	1.33		Microcommunity Dominant
Juncus arcticus ssp. littoralis	1.71	1.19		Microcommunity Dominant
Total Live	Cover 117.93	104.10		

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* or *Carex praegracilis* in 2009 and *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Chara sp.	39.56	30.87		Transect Dominant
Carex nebrascensis	12.38	28.07	*	Transect Dominant
Eleocharis rostellata	2.56	0.00	*	Microcommunity Dominant
Algae	2.51	18.93	*	Transect Subdominant
Potamogeton sp.	2.11	8.09	*	Microcommunity Dominant
Berula erecta	1.98	0.76		Microcommunity Dominant
Argentina anserina	1.71	2.11		Microcommunity Dominant
Sparganium angustifolium	0.96	0.49		Microcommunity Dominant
Sporobolus airoides	0.84	2.29		Microcommunity Dominant
Poa pratensis	0.58	0.42		Microcommunity Dominant
Puccinellia lemmonii	0.38	0.91		Microcommunity Dominant
Eleocharis palustris	0.09	7.40	*	Microcommunity Dominant
Total Live Cov	/er 70.31	105.91	*	

Veg_056 N = 64 (Total Taxa for Transect: 2009 = 20; 2010 = 22) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Chara sp.		43.44	21.36	*	Transect Dominant
Potamogeton sp.		24.28	49.67	*	Transect Dominant
Carex nebrascensis		9.22	16.14	*	Transect Subdominant
Eleocharis palustris		7.00	7.81		Transect Subdominant
Berula erecta		2.63	3.14		Microcommunity Dominant
Juncus nevadensis		1.28	1.77		Microcommunity Dominant
Agrostis gigantea		0.83	0.78		Microcommunity Dominant
Juncus arcticus ssp. littoralis		0.77	1.61		Microcommunity Dominant
Argentina anserina		0.69	0.63		Microcommunity Dominant
Algae		0.47	1.98		Microcommunity Dominant
Tota	al Live Cover	92.25	108.28	*	

Table 3-46. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 5 Spring for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	32.82	20.60		Transect Dominant
Carex rostrata	16.92	16.60		Transect Subdominant
Algae	11.18	28.80	*	Transect Dominant
Berula erecta	10.44	0.50	*	Transect Subdominant
Eleocharis palustris	5.92	6.14		Transect Subdominant
Sparganium angustifolium	5.60	8.66	*	Transect Subdominant
Hippuris vulgaris	4.24	4.54		Microcommunity Dominant
Potamogeton sp.	3.58	6.80		Microcommunity Dominant
Argentina anserina	3.50	1.76		Microcommunity Dominant
Carex simulata	2.10	2.10		Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.06	3.70		Microcommunity Dominant
Eleocharis rostellata	1.28	0.00		Microcommunity Dominant
Chara sp.	1.26	0.04		Microcommunity Dominant
Sporobolus airoides	0.88	1.84		Microcommunity Dominant
Carex praegracilis	0.80	1.26		Microcommunity Dominant
Carex nebrascensis	0.00	11.06	*	Microcommunity Dominant
Total Live Cover	108.14	117.40		
Veg_058 N = 28 (Total Taxa for Transect: 2009	9 = 22; 2010 = 21)	(Mean Taxa for	Transect: 2009 =	= 0.8; 2010 = 0.8)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	20.61	19.50		Transect Dominant
Sparganium angustifolium	13.86	33.82	*	Transect Dominant
Berula erecta	8.00	1.96	*	Transect Subdominant
Hippuris vulgaris	5.21	13.43	*	Transect Subdominant
Carex nebrascensis	5.04	19.71	*	Transect Subdominant
Juncus arcticus ssp. littoralis	3.21	9.25		Transect Subdominant
Agrostis gigantea	0.96	0.07		Microcommunity Dominant
Sporobolus airoides	0.61	2.00		Microcommunity Dominant
Eleocharis palustris	0.00	3.82	*	Microcommunity Dominant
Total Live Cover	66.25	110.64	*	

Veg_057 N = 50 (Total Taxa for Transect: 2009 = 30; 2010 = 27) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.5)

3.10.1.7 Four Wheel Drive Spring

The dominant taxa, by mean live cover (MH), on the aquatic transects at Four Wheel Drive Spring were *Carex nebrascensis, Juniperus scopulorum, Potamogeton* sp., *Carex simulata*, and *Eleocharis palustris* (Table 3-47). A total of 40 taxa occurred on the transects in 2010 and this was below average compared with the other sites. Mean live cover (MH) was at the upper end compared with other aquatic sites (Table 3-40).

A large and significant increase in the live cover (MH) of Four Wheel Drive Spring occurred between 2009 and 2010 (Table 3-47). This resulted from small increases in growth of several emergent and submergent species at Four Wheel Drive Spring. Notably the emergent *Potamageton* sp., and *Carex nebrascensis* and algae had greater cover in 2010.

Table 3-47. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Four Wheel Drive Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_059 N = 14 (Total Taxa for Transect: 2009 = 20; 2010 = 21) (Mean Taxa for Transect: 2009 = 1.4; 2010 = 1.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Potamogeton sp.	31.93	40.71		Transect Dominant
Eleocharis palustris	19.57	18.00		Transect Dominant
Juncus nevadensis	14.57	8.07		Transect Subdominant
Berula erecta	8.50	2.00		Transect Subdominant
Nasturtium officinale	7.79	14.64		Transect Subdominant
Rosa woodsii	6.43	2.86		Microcommunity Dominant
Alisma plantago-aquatica	3.50	13.00	*	Transect Subdominant
Distichlis spicata	2.57	4.21		Microcommunity Dominant
Bassia scoparia	2.36	0.43		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.86	4.21		Microcommunity Dominant
Chara sp.	0.00	12.00		Transect Subdominant
Total Live Cover	113.71	140.64	*	

Veg_060 N = 14 (Total Taxa for Transect: 2009 = 14; 2010 = 17) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Potamogeton sp.	19.07	68.43	*	Transect Dominant
Eleocharis palustris	13.57	19.07		Transect Subdominant
Carex nebrascensis	6.36	3.57		Microcommunity Dominant
Berula erecta	3.64	7.93	*	Microcommunity Dominant
Alisma plantago-aquatica	2.36	7.64		Microcommunity Dominant
Distichlis spicata	2.29	5.14		Microcommunity Dominant
Juncus nevadensis	2.07	0.50		Microcommunity Dominant
Algae	0.00	10.64	*	Microcommunity Dominant
Sagittaria cuneata	0.00	5.36	*	Microcommunity Dominant
Total Live Cov	ver 54.64	137.21	*	

Veg_061 N = 10 (Total Taxa for Transect: 2009 = 14; 2010 = 18) (Mean Taxa for Transect: 2009 = 1.4; 2010 = 1.8)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		40.20	43.20		Transect Dominant
Juniperus scopulorum		34.00	28.70		Transect Dominant
Argentina anserina		9.80	1.10		Microcommunity Dominant
Berula erecta		8.70	1.10		Microcommunity Dominant
Carex simulata		6.50	11.70		Transect Subdominant
Distichlis spicata		6.40	6.80		Transect Subdominant
Agrostis gigantea		3.70	0.10		Microcommunity Dominant
Typha latifolia		2.20	8.70		Microcommunity Dominant
Epilobium sp.		0.50	8.60		Microcommunity Dominant
То	tal Live Cover	119.30	125.20		

Table 3-47. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Four Wheel Drive Spring for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	42.82	60.94	*	Transect Dominant
Carex simulata	28.53	40.65	*	Transect Dominant
Juniperus scopulorum	26.47	25.29		Transect Dominant
Rosa woodsii	16.82	22.71		Transect Subdominant
Nasturtium officinale	3.53	0.00		Microcommunity Dominant
<i>Epilobium</i> sp.	2.65	5.00		Microcommunity Dominant
Typha latifolia	2.41	4.41		Microcommunity Dominant
Berula erecta	2.35	2.77		Microcommunity Dominant
Artemisia tridentata	2.06	7.35		Microcommunity Dominant
Juncus nevadensis	1.71	4.94		Microcommunity Dominant
Total Live Cover	133.88	177.41	*	

Veg_062 N = 17 (Total Taxa for Transect: 2009 = 14; 2010 = 14) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.8)

Veg_063 N = 16 (Total Taxa for Transect: 2009 = 13; 2010 = 15) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.9)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	18.06	35.06	*	Transect Dominant
Carex sp.	13.81	21.31		Transect Subdominant
Arctium minus	7.06	4.06		Microcommunity Dominant
Rosa woodsii	4.13	6.06		Microcommunity Dominant
Artemisia tridentata	3.56	7.13		Microcommunity Dominant
Epilobium sp.	1.50	0.56		Microcommunity Dominant
Bassia scoparia	0.75	0.13		Microcommunity Dominant
Poa secunda	0.00	3.63		Microcommunity Dominant
Total Live C	Cover 50.88	83.88	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* or *Carex* in 2009 and *Carex simulata* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

3.10.1.8 Willard Spring

The dominant taxa, by mean live cover (MH), on the aquatic transects at Willard Spring in 2009 were *Carex nebrascensis, Carex praegracilis, Argentina anserina, Rorippa sinuate* and *Achillea millefolium* (Table 3-48). This was the only site where *Rorippa sinuata* was found on the transects and it was a most subdominant species on two transects (067 and 068) in 2009, but was not recorded in 2010. A total of 38 taxa occurred on the transects in 2010 and this was average compared to the other sites. Mean live cover (MH) at Willard Spring was below average for the 14 sites (Table 3-40).

Four of the five transects at Willard Spring showed significant declines in total live plant cover between 2009 and 2010 (Table 3-48). Some individual species responded differently in 2010. *Juncus arcticus* showed significant increases in cover on four of the five transects where it occurred. However, several other grasses and sedges showed slight decreases in cover between 2009 and 2010.

Table 3-48. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willard Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_064 N = 18 (Total Taxa for Transect: 2009 = 25 2010 = 22 (Mean Taxa for Transect: 2009 = 1.4 2010 = 1.2

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Achillea millefolium	14.39	13.56		Transect Dominant
Poa pratensis	14.33	11.67		Transect Dominant
Argentina anserina	11.39	10.94		Transect Subdominant
Juncus nevadensis	8.44	3.44		Transect Subdominant
Agrostis gigantea	7.50	0.00		Microcommunity Dominant
Leymus triticoides	7.22	1.28	*	Microcommunity Dominant
Deschampsia ceaspitosa	4.94	4.44		Microcommunity Dominant
Carex nebrascensis	4.39	4.72		Microcommunity Dominant
Cirsium scariosum	3.22	4.17		Microcommunity Dominant
Juncus arcticus ssp. littoralis	1.11	7.00	*	Microcommunity Dominant
Total Live Cov	er 90.17	77.50		

Veg_065 N = 33 (Total Taxa for Transect: 2009 = 30; 2010 = 25) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	17.12	12.18		Transect Dominant
Argentina anserina	16.58	13.12		Transect Dominant
Carex simulata	16.00	0.00	*	Transect Subdominant
Carex nebrascensis	15.67	17.42		Transect Dominant
Poa pratensis	7.61	6.18		Transect Subdominant
Deschampsia ceaspitosa	6.21	4.30		Microcommunity Dominant
Juncus arcticus ssp. littoralis	4.79	13.03	*	Transect Subdominant
Juncus nevadensis	4.06	0.49		Microcommunity Dominant
Leymus triticoides	4.00	3.79		Microcommunity Dominant
Achillea millefolium	3.76	2.46	*	Microcommunity Dominant
Total Liv	e Cover 110.00	81.91	*	

Transect length was 3-m longer in 2010, therefore data for 2010 meter interval 20-23 was not used in the analysis. Only data for 0-20 m for both years was used for *t*-test analysis.

Veg_066 N = 38 (Total Taxa for Transect: 2009 = 26; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.7; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	16.90	5.97	*	Transect Dominant
Carex nebrascensis	5.63	22.13	*	Transect Dominant
Argentina anserina	4.90	3.76		Microcommunity Dominant
Agrostis gigantea	2.66	0.00	*	Microcommunity Dominant
Deschampsia ceaspitosa	2.08	7.37	*	Microcommunity Dominant
Juncus nevadensis	1.37	2.87		Microcommunity Dominant
Elymus trachycaulus	1.34	0.87		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.87	6.63	*	Microcommunity Dominant
Salsola tragus	0.74	0.42		Microcommunity Dominant
Poa pratensis	0.34	2.45	*	Microcommunity Dominant
Total Live Cov	er 41.42	59.71	*	

Table 3-48. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Willard Spring for 2009 and 2010 (Page 2 of 2)

Veg. 067 N - 54 (Total Taxa for	Transact: 2009 - 18: 2010 -	18) (Mean Taxa for	r Transect: 2009 = 0.3; 2010 = 0.3)
$vey_{001} = 34 (101a) = 100$	11a115ect. 2009 = 10, 2010 =	10) (INICALL TAXA 10)	11a115ect. 2009 = 0.3, 2010 = 0.3

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		30.39	20.87	*	Transect Dominant
Hordeum jubatum		19.13	10.06	*	Transect Subdominant
Rorippa sinuata		17.70	0.00	*	Transect Subdominant
Hordeum brachyantherum		2.69	6.24		Microcommunity Dominant
Poa pratensis		2.43	0.32		Microcommunity Dominant
Deschampsia ceaspitosa		2.04	4.56		Microcommunity Dominant
Juncus arcticus ssp. littoralis		0.85	3.76	*	Microcommunity Dominant
Argentina anserina		0.46	0.06		Microcommunity Dominant
<i>Epilobium</i> sp.		0.44	6.82	*	Microcommunity Dominant
Berula erecta		0.00	6.46	*	Microcommunity Dominant
,	Total Live Cover	78.11	61.63	*	

Veg_068 N = 26 (Total Taxa for Transect: 2009 = 15; 2010 = 15) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.6)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	20.69	9.81	*	Transect Dominant
Rorippa sinuata	14.50	0.00	*	Transect Subdominant
Carex praegracilis	10.27	7.69		Transect Subdominant
Juncus arcticus ssp. littoralis	5.62	2.96		Microcommunity Dominant
Argentina anserina	4.73	2.00		Microcommunity Dominant
Hordeum jubatum	2.50	3.81		Microcommunity Dominant
Puccinellia lemmonii	2.23	2.04		Microcommunity Dominant
Hordeum brachyantherum	1.42	8.42	*	Microcommunity Dominant
Berula erecta	0.00	6.15	*	Microcommunity Dominant
Total Liv	ve Cover 65.42	46.04	*	

3.10.1.9 Minerva Spring Complex (North and Middle)

The dominant taxa, by mean live cover (MH), on the aquatic transects at the Minerva Spring Complex in 2009 were *Potamogeton* sp., *Schedonorus pratensis, Carex nebrascensis, Rosa woodsii, Thermopsis rhombifolia, Eleocharis rostellata*, and *Nasturtium officinale* (Table 3-49). A total of 57 taxa occurred on the transects in 2010 and this was the third-highest number among the 14 sites. This site had above average live cover (MH) in 2009 and 2010 (Table 3-40).

There was a significant decrease in total live cover on two transects (004 and 006), but an increase in cover on one transect (010) in 2010 (Table 3-49). Transect 04 had the greatest decrease in cover with six species having less cover in 2010 than in 2009. Two less palatable species, *Bromus tectorum* and *Juncus arcticus*, had significantly greater cover in 2010 than 2009. The aquatic species, *Nasturtium officinale*, had greater cover in 2010 as compared with 2009.

Table 3-49. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_001 N = 20 (Total Taxa for Transect: 2009 = 19; 2010 = 21) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Potamogeton foliosus ssp. foliosus	44.85	44.20		Transect Dominant
Chara sp.	18.75	8.55		Transect Subdominant
Distichlis spicata	13.60	1.95	*	Transect Subdominant
Carex nebrascensis	5.10	2.85		Microcommunity Dominant
Hordeum jubatum	4.85	2.10		Microcommunity Dominant
Berula erecta	4.20	4.10		Microcommunity Dominant
Eleocharis palustris	4.20	1.70		Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.10	1.35		Microcommunity Dominant
Agrostis gigantea	0.80	1.50		Microcommunity Dominant
Stuckenia filiformis ssp. occidentalis	0.00	8.95	*	Microcommunity Dominant
Total Live Cover	106.75	86.05		

Based on field data and the distribution of hits along the transect, species listed as *Potamogeton* in 2009 were analyzed as *Potamogeton foliosus* ssp. *foliosus* for *t*-test analysis.

Veg_004 N = 60 (Total Taxa for Transect: 2009 = 35; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Potamogeton sp.	27.25	26.32	*	Transect Dominant
Hordeum jubatum	25.80	4.43	*	Transect Subdominant
Schedonorus pratensis	11.43	17.65	*	Transect Subdominant
Thermopsis rhombifolia	10.85	7.25		Transect Subdominant
Agrostis gigantea	10.82	1.23	*	Transect Subdominant
Polygonum aviculare	8.97	3.40	*	Transect Subdominant
Melilotus officinalis	7.57	0.00	*	Microcommunity Dominant
Elymus trachycaulus	6.82	0.38	*	Microcommunity Dominant
Poa pratensis	6.68	5.82		Transect Subdominant
Carex nebrascensis	3.17	2.65		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.53	2.55	*	Microcommunity Dominant
Leymus triticoides	0.37	2.33		Microcommunity Dominant
Bromus tectorum	0.17	1.87	*	Microcommunity Dominant
Total Live Cove	r 129.90	82.67	*	-

Veg_006 N = 27 (Total Taxa for Transect: 2009 = 26; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 1.1)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Rosa woodsii		32.85	26.44		Transect Dominant
Schedonorus pratensis		27.74	26.11		Transect Dominant
Thermopsis rhombifolia		22.37	17.70		Transect Dominant
Agrostis gigantea		17.82	1.15	*	Transect Subdominant
Berula erecta		8.04	2.11		Microcommunity Dominant
Medicago polymorpha		5.41	6.15		Microcommunity Dominant
Leymus triticoides		4.59	0.11		Microcommunity Dominant
Carex nebrascensis		3.82	6.19		Microcommunity Dominant
Carex simulata		3.82	0.00		Microcommunity Dominant
Trifolium pratense		3.82	0.63		Microcommunity Dominant
Argentina anserina		2.15	1.52		Microcommunity Dominant
Nasturtium officinale		1.89	5.22		Microcommunity Dominant
Juncus arcticus ssp. littoralis		0.82	3.82	*	Microcommunity Dominant
Carex praegracilis		0.00	6.44	*	Microcommunity Dominant
То	otal Live Cover	146.19	115.33	*	-

Table 3-49. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for theAquatic Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	22.70	22.00		Transect Dominant
Stuckenia filiformis ssp. filiformis	19.15	15.55		Transect Subdominant
Mimulus guttatus	8.10	1.60	*	Microcommunity Dominant
Juncus nevadensis	5.80	8.10		Microcommunity Dominant
Algae	3.95	6.65		Microcommunity Dominant
Nasturtium officinale	3.60	13.85		Microcommunity Dominant
Elymus trachycaulus	2.80	0.30		Microcommunity Dominant
Agrostis gigantea	2.45	3.65		Microcommunity Dominant
Berula erecta	1.90	7.70	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	1.85	1.15		Microcommunity Dominant
Total Live Cover	80.55	92.55		

Veg_007 N = 20 (Total Taxa for Transect: 2009 = 28; 2010 = 26) (Mean Taxa for Transect: 2009 = 1.4; 2010 = 1.3)

Transect length was 1-m longer in 2010, therefore data for 2010 meter interval 20-21 and was not used in *t*-test analysis. Only data for 0-20 m for both years was used for *t*-test analysis.

Veg_010 N = 21 (Total Taxa for Transe	ct: 2009 = 18; 2010 = 19) (Mean ⁻	Taxa for Transect: 2009 = 0.9; 2010 = 0.9
---------------------------------------	--	---

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis rostellata	17.14	27.33	*	Transect Dominant
Nasturtium officinale	13.62	22.81	*	Transect Subdominant
Carex praegracilis	6.91	9.76	*	Transect Subdominant
Moss	5.38	0.86		Microcommunity Dominant
Agrostis gigantea	2.00	3.10		Microcommunity Dominant
Juncus nevadensis	1.57	1.57		Microcommunity Dominant
Carex simulata	0.24	1.95		Microcommunity Dominant
Triglochin maritima	0.14	3.19		Microcommunity Dominant
Chara sp.	0.00	16.43	*	Transect Subdominant
Total Live Cove	r 51.86	90.95	*	

3.10.1.10 Swallow Spring

Swallow Spring was the only one of the 14 aquatic transect sites that was dominated by trees. *Populus angustifolia* and *Salix* sp. were the two tree species that occurred along the aquatic transects (Table 3-50). Other dominant or subdominant species included *Rosa woodsii*, *Nasturtium officinale*, *Berula erecta*, *Poa pratensis*, and *Rhus trilobata*. A total of 46 taxa occurred on the aquatic transects in 2010 and this was average for the 14 sites. Mean live cover (MH) at Swallow Spring exceeded 100%, and this was the highest value for the 14 sites (Table 3-40). This high cover value was the result, in large part, to the dominance of the tree *Populus angustifolia*.

Populus angustifolia was the dominant species on all five transects (Table 3-50). *Rosa woodsi* was the most abundant shrub species on two transects. *Berula erecta, Nasturtium officinale,* and *Veronica anagallis-aquatica* were abundant aquatic species on the transects.

Berula erecta showed significant increase in cover on two transects (045 and 048) during the 2010 growing season. A few other species showed positive increases on transect 044 in 2010.

Table 3-50. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Swallow Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_044 N = 39 (Total Taxa for Transect: 2009 = 7; 2010 = 12) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Populus angustifolia		37.49	78.97	*	Transect Dominant
Salix sp.		26.03	39.00	*	Transect Dominant
Nasturtium officinale		15.21	47.33	*	Transect Dominant
Clematis ligusticifolia		4.77	13.77	*	Transect Subdominant
Moss		3.72	3.21		Microcommunity Dominant
Poa pratensis		2.74	5.69	*	Microcommunity Dominant
Aster		1.10	0.44		Microcommunity Dominant
Bromus tectorum		0.00	1.80	*	Microcommunity Dominant
Mimulus guttatus		0.00	5.26	*	Microcommunity Dominant
Ribes aureum var. aureum		0.00	2.49		Microcommunity Dominant
Total	Live Cover	91.05	198.69	*	

Veg_045 N = 44 (Total Taxa for Transect: 2009 = 17; 2010 = 16) (Mean Taxa for Transect: 2009 = 0.4; 2010 = 0.4)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Populus angustifolia		51.36	41.14		Transect Dominant
Rosa woodsii		21.57	25.96		Transect Dominant
Rhus trilobata		19.96	9.82	*	Transect Subdominant
Berula erecta		5.11	19.16	*	Transect Subdominant
Aster		3.00	3.68		Microcommunity Dominant
Nasturtium officinale		2.57	17.80	*	Transect Subdominant
Veronica anagallis-aquatica		2.16	6.02		Microcommunity Dominant
Agrostis gigantea		1.91	0.00		Microcommunity Dominant
Poa pratensis		1.07	2.18		Microcommunity Dominant
Bassia scoparia		0.68	2.16		Microcommunity Dominant
	Total Live Cover	111.61	130.07		

Veg_046 N = 22 (Total Taxa for Transect: 2009 = 19; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 0.8)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Populus angustifolia		59.55	49.46		Transect Dominant
Rosa woodsii		15.64	14.73		Transect Subdominant
Poa pratensis		14.59	15.86		Transect Subdominant
Agrostis gigantea		7.64	5.32		Transect Subdominant
Medicago polymorpha		3.86	3.00		Microcommunity Dominant
Rhus trilobata		3.27	6.14		Microcommunity Dominant
Berula erecta		1.86	0.68		Microcommunity Dominant
Veronica anagallis-aquatica		1.82	10.91		Microcommunity Dominant
Nasturtium officinale		1.59	5.32		Microcommunity Dominant
Bromus tectorum		0.32	2.46		Microcommunity Dominant
Total L	ive Cover	113.96	116.09		

Table 3-50. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Swallow Spring for 2009 and 2010 (Page 2 of 2)

Veg_047 N = 40 (Total Taxa for Transect: 2009 = 9; 2010 = 14) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.4)	
--	--

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Populus angustifolia	68.75	43.40	*	Transect Dominant
Nasturtium officinale	13.60	15.53		Transect Subdominant
Rosa woodsii	7.75	9.35		Transect Subdominant
Sambucus nigra	6.88	6.98		Transect Subdominant
Urtica dioica	2.40	4.53		Microcommunity Dominant
Bassia scoparia	1.55	19.73	*	Transect Subdominant
Bromus tectorum	1.38	1.25		Microcommunity Dominant
Poa pratensis	1.08	2.23		Microcommunity Dominant
lva axillaris	0.70	0.48		Microcommunity Dominant
Chenopodium sp.	0.00	1.45	*	Microcommunity Dominant
Total Live Cove	er 104.08	107.70		

Veg_048 N = 44 (Total Taxa for Transect: 2009 = 25; 2010 = 25) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.6)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Populus angustifolia		42.05	44.55		Transect Dominant
Berula erecta		19.34	43.96	*	Transect Dominant
Poa sp.		9.21	18.80	*	Transect Subdominant
Agrostis gigantea		7.21	12.98	*	Transect Subdominant
Medicago polymorpha		5.64	7.84		Transect Subdominant
Carex nebrascensis		4.75	2.71	*	Microcommunity Dominant
Nasturtium officinale		4.00	0.80		Microcommunity Dominant
Veronica anagallis-aquatica		0.61	6.75	*	Microcommunity Dominant
Mimulus guttatus		0.30	3.57	*	Microcommunity Dominant
Bromus tectorum		0.09	3.30		Microcommunity Dominant
	Total Live Cover	99.00	151.32	*	

Based on field data and the distribution of hits along the transect, species listed as *Poa pratensis* or *Poa secunda* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

3.10.1.11 North Little Spring

The dominant taxa, by mean live cover (MH), on the aquatic transects at North Little Spring in 2009 were *Carex nebrascensis, Carex* spp., *Chara* sp., and algae (Table 3-51). A total of 25 taxa occurred on the transects in 2010 and this was the lowest number of the 14 sites. Mean cover (MH) was below average compared to the other sites in 2010 (Table 3-40).

Carex nebrascensis was the most abundant species on four of the five transects and *Chara* sp. was the most abundant on one transect (Table 3-51). The transects were sampled one month earlier in 2010 than in 2009. The cover of *Carex nebrascensis* and *Carex* spp. declined significantly on three of the five transects in 2010. Other species cover changed very little between the two years.

Table 3-51. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at North Little Spring for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_174 N = 28 (Total Taxa for Transect: 2009 = 12; 2010 = 11) (Mean Taxa for Transect: 2009 = 0.4; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	51.68	41.68	*	Transect Dominant
Carex sp.	39.29	17.50	*	Transect Dominant
Algae	20.25	25.36		Transect Dominant
Berula erecta	5.71	12.75	*	Transect Subdominant
Ranunculus sceleratus	4.93	0.68		Microcommunity Dominant
Argentina anserina	1.86	0.54		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.71	1.79	*	Microcommunity Dominant
Total Live Cover	126.46	102.04	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* or *Carex simulata* in 2009 and 2010 were analyzed as *Carex* sp., for *t*-test analysis.

Veg 175 N = 17 (Total Taxa for	Transect: 2009 = 10; 2010 = 8) (N	Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Chara sp.	49.47	56.82		Transect Dominant
Carex nebrascensis	18.65	9.53		Transect Subdominant
Carex sp.	14.18	10.12		Transect Subdominant
Berula erecta	2.06	2.29		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.65	2.82		Microcommunity Dominant
Total Live Cov	er 86.35	84.06		

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* in 2009 and *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_176 N = 26 (Total Taxa for Transect: 2009 = 5; 2010 = 7) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	60.00	50.54	*	Transect Dominant
Carex sp.	17.04	9.50	*	Transect Subdominant
Eleocharis palustris	5.92	2.31	*	Microcommunity Dominant
Juncus sp.	1.62	1.62		Microcommunity Dominant
Total Live Cover	85.42	64.62	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* in 2009 and *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Juncus nevadensis* in 2009 and *Juncus arcticus* ssp. *littoralis* or *Juncus nevadensis* in 2010 were analyzed as *Juncus* sp. for *t*-test analysis.

Veg_177 N = 20 (Total Taxa for Transect: 2009 = 2; 2010 = 2) (Mean Taxa for Transect: 2009 = 0.1; 2010 = 0.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	33.00	32.10		Transect Dominant
Carex sp.	23.00	12.60	*	Transect Subdominant
Total Live Cover	56.00	44.70	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* in 2009 and *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Table 3-51. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at North Little Spring for 2009 and 2010 (Page 2 of 2)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		67.18	36.00	*	Transect Dominant
Juncus arcticus ssp. littoralis		16.21	12.30		Transect Subdominant
Carex sp.		9.82	7.79		Transect Subdominant
Eleocharis sp.		8.24	7.03		Transect Subdominant
Berula erecta		5.30	2.27		Microcommunity Dominant
Rosa woodsii		3.85	1.55		Microcommunity Dominant
Poa pratensis		3.27	3.21		Microcommunity Dominant
Argentina anserina		1.82	2.55		Microcommunity Dominant
	Total Live Cover	117.88	74.30	*	

Veg_178 N = 33 (Total Taxa for Transect: 2009 = 14; 2010 = 16) (Mean Taxa for Transect: 2009 = 0.4; 2010 = 0.5)

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* in 2009 and *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* in 2009 and *Eleocharis palustris* or *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

3.10.1.12 Big Springs

The dominant taxa, by mean live cover (MH), on the aquatic transects at Big Springs were *Nasturtium officinale, Eleocharis rostellata, Carex praegracilis, Schedonorus pratensis*, algae and moss (Table 3-52). A total of 45 taxa occurred on the aquatic transects in 2010 and this was average for the 14 sites. Mean live cover (MH) was the lowest for the 14 sites in 2010 (Table 3-40).

Nasturtium officinale was the dominant species on four of the five transects and was the second most dominant species on the one transect dominated by *Eleocharis rostellata* (Table 3-52). The second-most dominant taxa on the other four transects were *Argentina anserina, Schedonorus pratensis*, moss and algae.

Live cover (MH) at Big Springs declined significantly on two transects between 2009 and 2010 (Table 3-52), but the area was sampled one month earlier in 2010. Algae in the water increased significantly on one transect between 2009 and 2010. *Carex praegracilis* increased significantly on two transect (169 and 172), between 2009 and 2010. *Nasturtium officinale* decreased significantly on two transects (171 and 172) or did not change between 2009 and 2010.

Table 3-52. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Big Springs for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_169 N = 24 (Total Taxa for Transect: 2009 = 18; 2010 = 17) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	58.54	70.83		Transect Dominant
Schedonorus pratensis	16.33	16.58		Transect Subdominant
Carex praegracilis	12.08	0.00	*	Transect Subdominant
Hordeum jubatum	6.08	1.04		Microcommunity Dominant
Juncus arcticus ssp. littoralis	4.96	1.54	*	Microcommunity Dominant
Melilotus officinalis	4.96	1.13		Microcommunity Dominant
Mimulus guttatus	1.29	5.04		Microcommunity Dominant
Juncus nevadensis	0.00	5.63		Microcommunity Dominant
Pascopyrum smithii	0.00	4.83		Microcommunity Dominant
Total Live Cover	114.92	113.92		

Veg_170 N = 25 (Total Taxa for Transect: 2009 = 15; 2010 = 16) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.6)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale		6.44	3.96		Microcommunity Dominant
Argentina anserina		4.08	2.76		Microcommunity Dominant
Juncus arcticus ssp. littoralis		3.48	3.92		Microcommunity Dominant
Algae		2.52	17.08	*	Transect Subdominant
Glaux maritima		2.32	1.44		Microcommunity Dominant
Distichlis spicata		1.80	0.44		Microcommunity Dominant
Asclepias speciosa		1.36	1.32		Microcommunity Dominant
Carex praegracilis		0.88	0.92		Microcommunity Dominant
Grindelia squarrosa		0.00	1.68		Microcommunity Dominant
	Total Live Cover	26.32	35.96		

Veg_171 N = 28 (Total Taxa for Transect: 2009 = 15; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.6)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale		70.18	30.86	*	Transect Dominant
Moss		16.00	0.00	*	Transect Subdominant
Eleocharis rostellata		7.57	2.96		Microcommunity Dominant
Carex nebrascensis		1.71	1.46		Microcommunity Dominant
Argentina anserina		1.61	0.71		Microcommunity Dominant
Trifolium repens		1.46	0.18		Microcommunity Dominant
Carex sp.		0.89	1.79		Microcommunity Dominant
Pyrrocoma lanceolata		0.36	1.71		Microcommunity Dominant
Algae		0.00	9.39	*	Microcommunity Dominant
Veronica anagallis-aquatica		0.00	17.96	*	Transect Subdominant
	Total Live Cover	102.89	70.79	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Table 3-52. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Big Springs for 2009 and 2010 (Page 2 of 2)

Veg. 172 N - 15 (Total Taxa fo	r Transact: 2009 - 17: 2010 - 19)) (Mean Taxa for Transect: 2009 = 1.1	· 2010 - 1 3)
$veg_1/2 i v = i J (10 a i la xa i 0)$	1 11aiiseul. 2003 = 17, 2010 = 13)	(1000000000000000000000000000000000000	, 2010 = 1.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	16.73	2.60	*	Transect Dominant
Algae	9.60	4.07		Transect Subdominant
Eleocharis rostellata	5.13	3.07		Microcommunity Dominant
Carex praegracilis	4.20	7.87	*	Microcommunity Dominant
Agrostis gigantea	3.80	2.60		Microcommunity Dominant
Aquilegia formosa	2.53	2.87		Microcommunity Dominant
Potentilla gracilis	0.93	1.47		Microcommunity Dominant
Total Live Cover	49.73	30.87	*	
Veg_173 N = 25 (Total Taxa for Transect: 2009	= 14; 2010 = 16) (Mean Taxa for	Transect: 2009 :	= 0.6; 2010 = 0.6)
	Mean Live	Mean Live		
Species	Cover (MH) 2009	Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
•		Cover (MH)		
Eleocharis rostellata	2009	Cover (MH) 2010		Classification
Eleocharis rostellata Nasturtium officinale	2009 15.92	Cover (MH) 2010 18.04		Classification Transect Dominant
Eleocharis rostellata Nasturtium officinale Potamogeton sp.	2009 15.92 12.64	Cover (MH) 2010 18.04 6.12		Classification Transect Dominant Transect Subdominant
Species Eleocharis rostellata Nasturtium officinale Potamogeton sp. Epilobium ciliatum ssp. ciliatum Juncus arcticus ssp. littoralis	2009 15.92 12.64 5.36	Cover (MH) 2010 18.04 6.12 9.20		Classification Transect Dominant Transect Subdominant Transect Subdominant
Eleocharis rostellata Nasturtium officinale Potamogeton sp. Epilobium ciliatum ssp. ciliatum Juncus arcticus ssp. littoralis	2009 15.92 12.64 5.36 3.36	Cover (MH) 2010 18.04 6.12 9.20 0.00		Classification Transect Dominant Transect Subdominant Transect Subdominant Microcommunity Dominant
Eleocharis rostellata Nasturtium officinale Potamogeton sp. Epilobium ciliatum ssp. ciliatum	2009 15.92 12.64 5.36 3.36 2.20	Cover (MH) 2010 18.04 6.12 9.20 0.00 1.16		Classification Transect Dominant Transect Subdominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant
Eleocharis rostellata Nasturtium officinale Potamogeton sp. Epilobium ciliatum ssp. ciliatum Juncus arcticus ssp. littoralis Argentina anserina	2009 15.92 12.64 5.36 3.36 2.20 1.60	Cover (MH) 2010 18.04 6.12 9.20 0.00 1.16 3.04		Classification Transect Dominant Transect Subdominant Transect Subdominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant

3.10.1.13 Unnamed 1 Spring North of Big

The dominant taxa, by grand mean live cover (MH), on the aquatic transects at Unnamed 1 Spring in 2010 were *Nasturtium officinale, Berula erecta, Eleocharis rostellata, Carex praegracilis, Chara* sp., and moss (Table 3-53). A total of 48 taxa occurred on the transects in 2010 and this was about average for the 14 sites. Mean live cover (MH) exceeded 100% and was the third highest among the 14 sites in 2010 (Table 3-40).

There was a significant increase in average mean live cover (MH) from 2009 to 2010 on all five transects even though sampling occurred one month earlier in 2010 than in 2009 (Table 3-53). A total of ten species showed significant increases in cover between 2009 and 2010. Of the species that demonstrated increased cover between 2009 and 2010, *Eleocharis rostellata* increased on three of the five transects.

Table 3-53. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 1 Spring North of Big for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_164 N = 12 (Total Taxa for Transect: 2009 = 18; 2010 = 20) (Mean Taxa for Transect: 2009 = 1.5; 2010 = 1.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	21.33	35.25		Transect Dominant
Carex praegracilis	9.25	14.75		Transect Subdominant
Distichlis spicata	2.42	6.42		Microcommunity Dominant
Plantago major	2.25	0.50		Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.17	7.00	*	Microcommunity Dominant
Algae	2.08	0.00		Microcommunity Dominant
Bassia scoparia	1.83	4.83		Microcommunity Dominant
Berula erecta	1.83	4.75	*	Microcommunity Dominant
Carex nebrascensis	1.42	3.33		Microcommunity Dominant
Mimulus guttatus	0.17	11.17		Transect Subdominant
Poa secunda	0.00	5.25		Microcommunity Dominant
Total Live Cov	ver 53.50	108.00	*	

Veg_165 N = 44 (Total Taxa	for Transect: 2009 = 21; 2	2010 = 24) (Mean Taxa for	Transect: 2009 = 0.5; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	23.23	23.32		Transect Dominant
Berula erecta	21.89	22.27		Transect Dominant
Moss	15.41	18.32		Transect Subdominant
Eleocharis rostellata	13.80	28.39	*	Transect Subdominant
Juncus arcticus ssp. littoralis	2.34	4.64		Microcommunity Dominant
Carex sp.	2.18	5.98	*	Microcommunity Dominant
Carex nebrascensis	1.41	3.34	*	Microcommunity Dominant
Deschampsia ceaspitosa	0.89	2.46		Microcommunity Dominant
Mimulus guttatus	0.59	7.41	*	Microcommunity Dominant
Juncus nevadensis	0.14	5.36	*	Microcommunity Dominant
Total Live C	over 84.23	126.68	*	

Based on field data and the distribution of hits along the transect, species listed as SP MOSS in 2009 were analyzed as Moss for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* or *Carex simulata* in 2009 and 2010 were analyzed as *Carex* sp. for *t*-test analysis.

	Mean Live		a :	_ .
Species	Cover (Mł 2009	l) Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Berula erecta	43.00	47.93		Transect Dominant
Eleocharis rostellata	8.03	14.13	*	Transect Subdominant
Juncus arcticus ssp. littoralis	6.43	5.23		Transect Subdominant
Agrostis gigantea	4.20	1.98		Microcommunity Dominant
Carex praegracilis	3.43	3.60		Microcommunity Dominant
Carex nebrascensis	3.23	5.53	*	Microcommunity Dominant
Schedonorus pratensis	2.95	2.90		Microcommunity Dominant
Nasturtium officinale	2.85	10.60	*	Transect Subdominant
Mimulus guttatus	2.83	9.58	*	Transect Subdominant
Elymus trachycaulus	1.35	1.78		Microcommunity Dominant
Total Li	ve Cover 86.60	116.88	*	

Table 3-53. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Unnamed 1 Spring North of Big for 2009 and 2010 (Page 2 of 2)

Species	5	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Chara sp.		12.35	17.92		Transect Dominant
Eleocharis rostellata		11.69	27.46	*	Transect Dominant
Moss		8.65	19.81		Transect Subdominant
Berula erecta		5.65	4.19		Microcommunity Dominant
Juncus nevadensis		2.04	9.50	*	Microcommunity Dominant
Deschampsia ceaspitosa		1.19	4.08		Microcommunity Dominant
Leymus triticoides		1.12	1.89		Microcommunity Dominant
Argentina anserina		0.81	2.00		Microcommunity Dominant
Carex simulata		0.00	3.31	*	Microcommunity Dominant
Hordeum jubatum		0.00	2.89		Microcommunity Dominant
	Total Live Cover	50.39	95.85	*	

Veg_167 N = 26 (Total Taxa for Transect: 2009 = 17; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.7; 2010 = 0.7)

Based on field data and the distribution of hits along the transect, species listed as SP MOSS in 2009 were analyzed as Moss for *t*-test analysis.

Veg_168 N = 30 (Total Taxa for Transect: 2009 = 18; 2010 = 22) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis rostellata	33.33	48.27	*	Transect Dominant
Moss	18.70	37.27	*	Transect Dominant
Berula erecta	6.30	9.63		Transect Subdominant
Nasturtium officinale	6.13	0.00		Microcommunity Dominant
Deschampsia ceaspitosa	0.90	2.70		Microcommunity Dominant
Total Live Co	ver 69.83	106.10	*	

Based on field data and the distribution of hits along the transect, species listed as SP MOSS in 2009 were analyzed as Moss for *t*-test analysis.

3.10.1.14 Stateline Springs

The dominant taxa, by mean live cover (MH), on the aquatic transects at Stateline Springs in 2010 was *Nasturtium officinale* (Table 3-54). A total of 39 taxa occurred on the aquatic transects in 2010 and this was below average among the 14 sites. Mean cover (MH) was also below average for the 14 sites for both 2009 and 2010 (Table 3-40).

Nasturtium officinale was the most abundant species on all five transects (Table 3-54). Greater cover on three of the five transects were found in 2010 even though the transects were sampled three weeks earlier in 2010 than in 2009. Other small but insignificant increases in cover of six to nine other species also contributed to the greater total cover observed in 2010 at Stateline Spring.

Table 3-54. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the Aquatic Transects at Stateline Springs for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale		40.79	63.00	*	Transect Dominant
Argentina anserina		3.07	2.14		Microcommunity Dominant
Juncus arcticus ssp. littoralis		2.93	3.07		Microcommunity Dominant
Eleocharis rostellata		1.50	1.71		Microcommunity Dominant
Carex nebrascensis		1.43	0.64		Microcommunity Dominant
Agrostis gigantea		1.14	4.36		Microcommunity Dominant
Melilotus officinalis		0.00	2.93		Microcommunity Dominant
Тс	otal Live Cover	55.21	84.86	*	
Veg_132 N = 22 (Total Taxa for	Transect: 2009	= 13; 2010 = 19)	(Mean Taxa for	Transect: 2009 =	= 0.6; 2010 = 0.9)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale		50.09	56.50		Transect Dominant
Moss		7.50	6.14		Transect Subdominant
Eleocharis rostellata		2.77	3.86		Microcommunity Dominant
Juncus arcticus ssp. littoralis		2.05	2.86		Microcommunity Dominant
Carex nebrascensis		0.82	1.46		Microcommunity Dominant
Argentina anserina		0.36	2.32		Microcommunity Dominant
Berula erecta		0.36	1.36	*	Microcommunity Dominant
Agrostis gigantea		0.05	1.50		Microcommunity Dominant
Mimulus guttatus		0.00	5.32		Microcommunity Dominant
Тс	otal Live Cover	68.05	86.77	*	-
Veg_133 N = 24 (Total Taxa for	r Transect: 2009	= 10; 2010 = 20)) (Mean Taxa for	Transect: 2009	= 0.4; 2010 = 0.8)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale		38.00	62.63	*	Transect Dominant
Moss		8.83	1.67	*	Microcommunity Dominant
Potamogeton sp.		7.54	0.00		Microcommunity Dominant
Eleocharis sp.		5.29	5.00		Microcommunity Dominant
Juncus arcticus ssp. littoralis		2.04	3.75		Microcommunity Dominant
Carex nebrascensis		1.83	4.25		Microcommunity Dominant
Argentina anserina		0.88	1.58		Microcommunity Dominant
Algae		0.00	3.33		Microcommunity Dominant
Equisetum arvense		0.00	2.33		Microcommunity Dominant
_	otal Live Cover	65.67	92.58	+	

2009 and *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_134 N = 13 (Total Taxa for Transect: 2009 = 14; 2010) = 15) (Mean Taxa for Transect: 2009 = 1.1; 2010 = 1.2)
--	--

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	29.69	58.23	*	Transect Dominant
Moss	23.77	0.00	*	Transect Subdominant
Juncus arcticus ssp. littoralis	11.54	5.00		Transect Subdominant
Argentina anserina	5.46	4.31		Microcommunity Dominant
Agrostis gigantea	3.39	3.62		Microcommunity Dominant
Pyrrocoma lanceolata	2.15	3.08		Microcommunity Dominant
Algae	1.77	4.00		Microcommunity Dominant
Eleocharis rostellata	0.00	9.00		Microcommunity Dominant
Total Live Cover	81.39	90.23		2

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Nasturtium officinale	31.81	49.50		Transect Dominant
Algae	4.13	11.56		Transect Subdominant
Eleocharis rostellata	1.38	3.69		Microcommunity Dominant
Cirsium scariosum	0.94	1.63		Microcommunity Dominant
Berula erecta	0.50	1.38		Microcommunity Dominant
Distichlis spicata	0.25	0.31		Microcommunity Dominant
Total Live Cover	42.13	76.75	*	-

Table 3-54. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for theAquatic Transects at Stateline Springs for 2009 and 2010 (Page 2 of 2)

3.10.2 Wetland/Meadow Transects

Mean live cover multiple hits (MH) overall for wetland/meadow transects was similar in 2009 and 2010 (grand mean live cover (MH): 2009 = 69%, 2010 = 72%) (Table 3-55 and Figure 3-41). Two of the 8 sites showed a significant increase in mean live cover (MH) in 2010 (Keegan Spring Complex: 70% increase; and Burbank Meadows: 18% increase). Mean live cover (MH) ranged from 33% (The Seep) to 104% (Keegan Spring Complex) in 2010. This compares to a mean live cover (MH) in 2009 that ranged from 41% (Shoshone Ponds) to 98% (Minerva Spring Complex).

There did not appear to be any appreciable pattern in change in mean live cover (FH) overall from 2009 to 2010 (grand mean live cover (FH): 2009 = 62%, 2010 = 63%), but mean live cover (FH) did vary between years for various sites (Table 3-55 and Figure 3-42). Mean live cover (FH) ranged from 33% (The Seep) to 85% (Keegan Spring Complex) in 2010. This compares to a mean live cover (FH) in 2009 that ranged from 39% (Shoshone Ponds) to 81% (Minerva Spring Complex). Mean live cover first hit (FH) for wetland/meadow transects was always lower than mean live cover (MH). The direction of change from 2009 to 2010 was similar between the two measures of live vegetation cover.

Total number of taxa overall for wetland/meadow was similar in 2009 and 2010 (total: 2009 = 61, 2010 = 66), as was mean taxa richness (grand mean: 2009 = 0.4, 2010 = 0.5) (Table 3-55 and Figures 3-43 and 3-44). Burbank Meadows had the lowest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.2, 2010 = 0.2; total number of taxa: 2009 = 55, 2010 = 51), while Minerva Spring Complex had the highest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.9, 2010 = 0.9; total number of taxa: 2009 = 78).

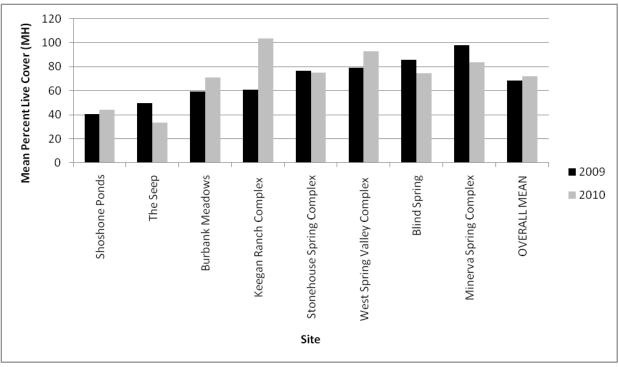
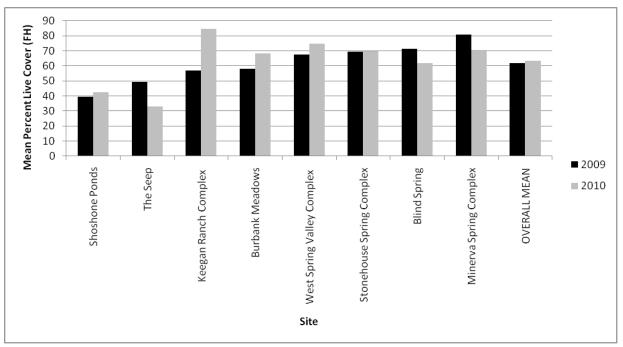
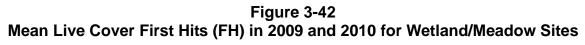

The live cover of some individual species or taxa changed greatly between 2009 and 2010, whereas other species cover varied little between the two years (Appendix E, Tables E-3 and E-6). Taxa that were encountered at many of the wetland/meadow sites (7-8 sites, of the 8 sites) and that had relatively high mean percent cover among sites were the wetland species *Carex nebrascensis, Carex praegracilis*, and *Juncus arcticus* (Appendix E, Table E-6). Minerva Springs Complex and at Blind Spring were noticeably different from the other wetland/meadow sites. At Minerva Springs Complex, it was the grassland species *Schedonorus pratensis*, aquatic species *Potamogeton* sp., and wetland species *Thermopsis rhombifolia* that had relatively high mean percent cover across both 2009 and 2010. At Blind Spring, the aquatic species *Utricularia macrorhiza* in particular had relatively high mean percent cover across both 2009 and 2010.

Table 3-55. Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH), Total Number of Taxa and Mean Taxa Richness on the Wetland/Meadow Transects in Spring and Snake Valleys for 2009 and 2010

Cover values are averages over all transects per site (grand mean). Total number of taxa is the total number of taxa or species observed across all transects per site. Mean taxa richness is the number of taxa divided by transect length, averaged across all transects per site (grand mean). Significance is for multiple hit (MH) cover between 2009 and 2010, and is based on an ANOVA test.


		n Live r (MH)		% Mean Live Cover (FH)		Total Number of Taxa ^a		Mean Transect	Mean Taxa Richness	
Site	2009	2010	P ≤0.05	2009	2010	2009	2010	Length (m)	2009	2010
Minerva Spring Complex	98	84		81	71	82	78	25	0.9	0.9
Blind Spring	86	75		71	62	34	30	34	0.4	0.5
West Spring Valley Complex	79	93		68	75	74	84	22	0.8	0.9
Stonehouse Spring Complex	76	75		70	70	70	65	62	0.3	0.3
Keegan Spring Complex	61	104	*	57	85	75	110	64	0.3	0.5
Burbank Meadows	60	71	*	58	68	55	51	100	0.2	0.2
The Seep	50	33		49	33	44	43	75	0.3	0.3
Shoshone Ponds	41	44		39	43	57	68	50	0.2	0.2
GRAND MEAN	69	72		62	63	61	66		0.4	0.5

^aTotal number of taxa is not independent of transect length, which varies across transects and across sites (transect lengths range from 22 to 130 m, with a mean of 33 to 100 m). Total number of taxa in the 2009 report tables may differ than those reported in the current summary table due to species that were combined based on similar species codes (e.g. Moss/ Sp. Moss) in the 2009 data analysis.



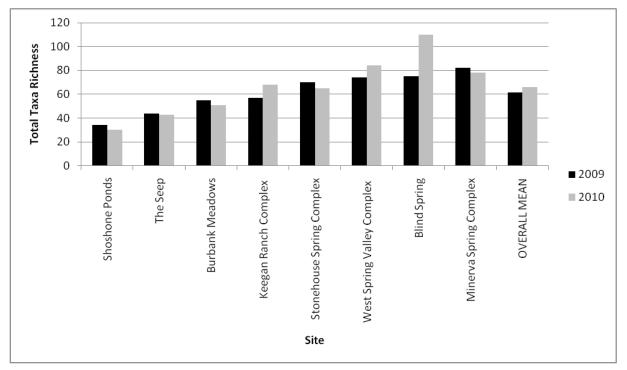
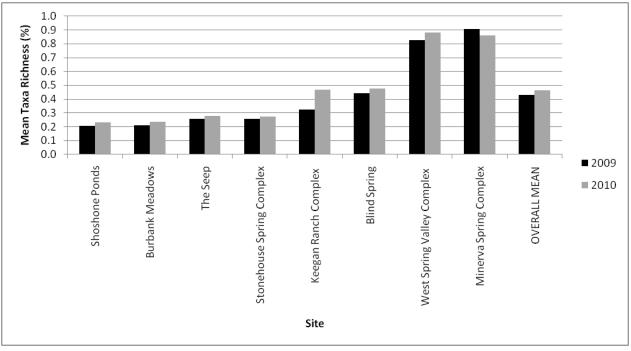

Note: Shown in ascending order based on 2009 data.

Figure 3-41 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for Wetland/Meadow Sites


Note: Shown in ascending order based on 2009 data.

Note: Shown in ascending order based on 2009 data. Total number of taxa is not independent of transect length, which varies across transects and across sites (transect Lengths range from 5-100 m, with a mean of 14-69 m).

Figure 3-43 Total Number of Taxa in 2009 and 2010 for Wetland/Meadow Sites

Note: Shown in ascending order based on 2009 data. Total number of taxa divided by transect length, averaged across transects.

Figure 3-44 Mean Number of Taxa in 2009 and 2010 for Wetland/Meadow Sites

3.10.2.1 Stonehouse Spring Complex

The most dominant species, by mean live cover (MH), on the wetland/meadow transects at the Stonehouse Complex were *Carex* sp., *Carex simulata*, *Carex nebrascensis*, *Eleocharis rostellata*, *Carex rostrata*, *Juncus arcticus* and *Eleocharis* sp. (Table 3-56). A total of 65 taxa occurred on the transects in 2010 and this total was average for the eight wetland/meadow sites. Live cover (MH) was about average for these wetland/meadow sites.

Carex nebrascensis and *Juncus arcticus* occurred on seven of the ten transects as a dominant or subdominant species. *Carex simulata, Carex* sp., *Carex rostrata, Carex nebrascensis, Eleocharis palustris,* and *Eleocharis* sp., were the most dominant species on several transects.

Carex nebrascensis increased significantly from 2009 to 2010 on three transects and only decreased on one of the 10 transects at the Stonehouse Complex (Table 3-56). However, a combination of *Carex* sp. made up primarily of *Carex simulata* and *Carex praegracilis* significantly declined on two transects and only increased on one transect. *Eleocharis* sp., made up of two to four different species, showed an increase in cover on two transects and a decrease in cover on one other transect. *Juncus arcticus* showed some slight increases on some transects and slight decreases on other transects between the two years.

Nasturtium officinale showed a large increase in cover on one transect and a drastic decline on another transect. Argentina anserina cover remained relatively stable on four of the five transects

Table 3-56. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at the Stonehouse Complex for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_029 N = 102 (Total Taxa for Transect: 2009 = 26; 2010 = 36) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis rostellata	35.80	29.85	*	Transect Dominant
Carex sp.	21.08	20.37		Transect Dominant
Juncus arcticus ssp. littoralis	8.31	8.64		Transect Subdominant
Carex nebrascensis	4.12	5.16		Microcommunity Dominant
Glaux maritima	3.34	4.64	*	Microcommunity Dominant
Eleocharis palustris	2.31	0.00	*	Microcommunity Dominant
Berula erecta	1.36	0.42		Microcommunity Dominant
Argentina anserina	0.76	1.02		Microcommunity Dominant
Nitrophila occidentalis	0.75	0.80		Microcommunity Dominant
Distichlis spicata	0.74	0.83		Microcommunity Dominant
Nasturtium officinale	0.00	2.01	*	Microcommunity Dominant
Total Live Co	over 81.55	81.04		-

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* or *Carex praegracilis* in 2009 or 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_030 N = 93 (Total Taxa for Transect: 2009 = 21; 2010 = 21) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis sp.	29.69	23.44	*	
Carex simulata	21.55	26.53	*	Transect Dominant
Juncus arcticus ssp. littoralis	13.52	12.67		Transect Subdominant
Carex nebrascensis	13.00	14.67		Transect Subdominant
Iris missouriensis	5.12	6.52		Transect Subdominant
Triglochin maritima	2.41	2.20		Microcommunity Dominant
Argentina anserina	1.24	1.04		Microcommunity Dominant
Glaux maritima	1.19	1.85	*	Microcommunity Dominant
Total Live Cov	er 91.23	91.99		

Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* or *Eleocharis rostellata* in 2009 and *Eleocharis parishii* or *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_031 N = 100 (Tota	al Taxa for Transect: 2009 = 2	7; 2010 = 28) (Mean Taxa for	Transect: 2009 = 0.3; 2010 = 0.3)
-----------------------	--------------------------------	------------------------------	-----------------------------------

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	13.10	12.90		Transect Subdominant
Carex sp.	12.06	8.85	*	Transect Subdominant
Iris missouriensis	6.98	8.07		Transect Subdominant
Argentina anserina	2.13	3.49	*	Microcommunity Dominant
luncus arcticus ssp. littoralis	2.02	1.24	*	Microcommunity Dominant
Leymus triticoides	1.43	1.68		Microcommunity Dominant
Puccinellia lemmonii	0.92	1.88	*	Microcommunity Dominant
Crepis runcinata ssp. glauca	0.72	0.78		Microcommunity Dominant
Eleocharis quinqueflora	0.00	0.80	*	Microcommunity Dominant
Hesperochiron pumilus	0.00	1.43	*	Microcommunity Dominant
Total Live Co	over 44.00	45.91		

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex praegracilis* or *Carex simulata* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Table 3-56. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at the Stonehouse Complex for 2009 and 2010 (Page 2 of 3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis sp.	26.87	27.54		Transect Dominant
Carex simulata	18.83	13.68	*	Transect Subdominant
Juncus arcticus ssp. littoralis	10.30	12.21		Transect Subdominant
Carex sp.	9.43	8.71		Transect Subdominant
Carex praegracilis	7.08	3.76	*	Transect Subdominant
Iris missouriensis	2.15	2.61		Microcommunity Dominant
Distichlis spicata	1.76	3.74	*	Microcommunity Dominant
Leymus triticoides	1.26	1.17		Microcommunity Dominant
Argentina anserina	1.06	2.00		Microcommunity Dominant
Crepis runcinata ssp. glauca	0.55	1.27		Microcommunity Dominant
Total Live Cover	86.44	86.58		

Veg_032 N = 95 (Total Taxa for Transect: 2009 = 33; 2010 = 34) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Based on field data and the distribution of hits along the transect, species listed as *Carex rostrata* or *Carex nebrascensis* in 2009 and 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* in 2009 and *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_033 N = 100 (Total Taxa for Transect: 2009 = 24; 2010 = 27) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification	
Carex sp.	55.54	48.95	*	Transect Dominant	
Juncus arcticus ssp. littoralis	12.30	16.51	*	Transect Subdominant	
Berula erecta	5.96	0.00	*	Microcommunity Dominant	
Schoenoplectus acutus var. acutus	2.39	4.33	*	Microcommunity Dominant	
Puccinellia lemmonii	2.07	0.66	*	Microcommunity Dominant	
Eleocharis rostellata	1.46	0.86		Microcommunity Dominant	
Nasturtium officinale	0.46	3.32	*	Microcommunity Dominant	
Lemna minuta	0.15	4.32	*	Microcommunity Dominant	
Total Live Cover	84.54	84.22			

Based on field data and the distribution of hits along the transect, species listed as *Carex nebrascensis*, *Carex rostrata, Carex simulata* or *Carex praegracilis* in 2009 and *Carex nebrascensis*, *Carex simulata* or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_034 N = 77 (Total Taxa for Transect: 2009 = 25; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.	47.42	53.13		Transect Dominant
Juncus arcticus ssp. littoralis	31.34	19.23	*	Transect Dominant
Nasturtium officinale	5.83	0.00	*	Microcommunity Dominant
Schoenoplectus acutus var. acutus	4.53	2.95		Microcommunity Dominant
Eleocharis sp.	3.71	8.75	*	Transect Subdominant
Berula erecta	3.16	1.14		Microcommunity Dominant
Algae	0.00	4.07	*	Microcommunity Dominant
Lemna minor	0.00	3.27	*	Microcommunity Dominant
Total Live Cover	101.79	98.88		

Based on field data and the distribution of hits along the transect, species listed as *Carex nebrascensis* or *Carex simulata* in 2009 and *Carex nebrascensis*, *Carex rostrata*, *Carex simulata* or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* or *Eleocharis quinqueflora* in 2009 and *Eleocharis parishii* or *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Table 3-56. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at the Stonehouse Complex for 2009 and 2010 (Page 3 of 3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification	
Carex sp.		16.94	29.76	*	Transect Dominant	
Carex nebrascensis		13.33	19.56	*	Transect Subdominant	
Eleocharis sp.		7.84	11.87	*	Transect Subdominant	
Juncus arcticus ssp. littoralis		5.09	6.08		Transect Subdominant	
Berula erecta		1.04	1.21		Microcommunity Dominant	
Moss		0.00	2.01	*	Microcommunity Dominant	
	Total Live Cover	46.56	74.72	*		

Veg_035 N = 99 (Total Taxa for Transect: 2009 = 25; 2010 = 21) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.2)

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex simulata* or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Eleocharis rostellata*, *Eleocharis parishii* or *Eleocharis quinqueflora* in 2009 and *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_036 N = 100 (Total Taxa for Transect: 2009 = 7; 2010 = 12) (Mean Taxa for Transect: 2009 = 0.1; 2010 = 0.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex simulata	51.25	44.76	*	Transect Dominant
Carex rostrata	31.56	15.97	*	Transect Dominant
Carex nebrascensis	9.10	14.04	*	Transect Subdominant
Typha latifolia	4.87	2.31	*	Microcommunity Dominant
Lemna minor	0.00	2.05		Microcommunity Dominant
Total Live Cover	98.60	80.82	*	

Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. in 2010 was analyzed as *Typha latifolia* for *t*-test analysis.

Veg_037 N = 62 (Total Taxa for Transect: 2009 = 21; 2010 = 19) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		13.15	21.71	*	Transect Subdominant
Carex sp.		10.63	9.69		Transect Subdominant
Carex rostrata		8.45	14.00	*	Transect Subdominant
Juncus arcticus ssp. littoralis		3.55	6.23		Microcommunity Dominant
Leymus triticoides		1.42	1.05		Microcommunity Dominant
Tot	al Live Cover	40.50	58.18	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 or 2010 were ran as *Carex* sp. for *t*-test analysis.

Veg_038 N = 78 (Total Taxa for Transect: 2009 = 20; 2010 = 21) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification	
Carex nebrascensis		44.94	26.94	*	Transect Dominant	
Carex sp.		10.60	3.17	*	Transect Subdominant	
Juncus arcticus ssp. littoralis		7.62	2.69	*	Microcommunity Dominant	
Distichlis spicata		4.49	4.40		Microcommunity Dominant	
Agrostis gigantea		2.82	4.00		Microcommunity Dominant	
Puccinellia lemmonii		1.06	1.18		Microcommunity Dominant	
Argentina anserina		0.74	1.21		Microcommunity Dominant	
То	tal Live Cover	75.37	47.09	*		

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* or *Carex simulata* in 2009 were analyzed as *Carex* sp. for *t*-test analysis.

where it was an important species. Other species showed small changes in cover between the two years. In addition, total live cover remained similar in both years on six of the 10 transects, but increased significantly on two transects but decreased significantly on two other transects (Table 3-56).

3.10.2.2 Keegan Spring Complex North

The dominant taxa, by mean live cover (MH), on the wetland/meadow transects at the Keegan Spring Complex were *Thermopsis rhombifolia*, *Carex nebrascensis*, *Carex* sp., *Argentina anserine*, *Juncus arcticus*, *Carex praegracilis*, *Carex simulate*, *Typha latifolia*, *Leymus triticoides* and moss. A total of 110 taxa occurred on the eight transects in 2010 and this was the highest among the eight wetland/meadow sites. Mean live cover (MH) exceeded 100% and this was well above average for the eight wetland/meadow sites.

Cover of individual species on the eight transects at the Keegan Spring Complex varied considerably between 2009 and 2010. The grasses, including *Agrostis gigantea, Poa* sp., *Puccinellia lemmonii, Leymus triticoides, Muhlenbergia asperifolia, Distichlis spicata, Sporobolus airoides, and Typha latifolia, all showed positive increases in cover between the two years (Table 3-57). This was also true for the <i>Carex* sp., including *Carex nebrascensis.* Most forbs showed few changes in cover between the two years, except for some increases in cover of *Mimulus guttatus* and *Trifolium* spp.

Table 3-57. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Keegan Spring Complex for 2009 and 2010 (Page 1 of 4)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg 021 N = 100 (Total Taxa for Transect:	2009 = 33; 2010 = 45) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Moss	16.86	0.85	*	Transect Subdominant
Thermopsis rhombifolia	14.50	14.40		Transect Subdominant
Carex sp.	10.60	4.76	*	Transect Subdominant
Juncus arcticus ssp. littoralis	5.13	3.13	*	Microcommunity Dominant
Leymus triticoides	4.85	13.61	*	Transect Subdominant
Veronica anagallis-aquatica	4.45	4.24		Microcommunity Dominant
Achillea millefolium	4.04	3.49		Microcommunity Dominant
Carex nebrascensis	3.21	6.46	*	Microcommunity Dominant
Nasturtium officinale	3.05	20.00	*	Transect Subdominant
Taraxacum officinale	3.03	3.02		Microcommunity Dominant
Schedonorus pratensis	2.35	0.07		Microcommunity Dominant
Agrostis gigantea	0.81	4.11	*	Microcommunity Dominant
Poa secunda	0.02	6.14	*	Microcommunity Dominant
Eleocharis rostellata	0.00	2.39	*	Microcommunity Dominant
Mimulus guttatus	0.00	10.58	*	Microcommunity Dominant
Total Live C	over 84.54	109.40	*	

Veg_022 N = 120 (Total Taxa for Transect: 2009 = 33; 2010 = 54) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juncus arcticus ssp. littoralis	13.42	14.53		Transect Subdominant
Thermopsis rhombifolia	2.82	2.44		Microcommunity Dominant
Carex praegracilis	2.75	2.20		Microcommunity Dominant
Carex simulata	2.63	0.52	*	Microcommunity Dominant
Puccinellia lemmonii	2.60	0.00	*	Microcommunity Dominant
Nasturtium officinale	2.30	2.93		Microcommunity Dominant
Argentina anserina	2.28	2.25		Microcommunity Dominant
Hordeum jubatum	2.10	4.25	*	Microcommunity Dominant
Leymus triticoides	1.58	3.93	*	Microcommunity Dominant
Veronica anagallis-aquatica	1.24	2.07		Microcommunity Dominant
Mimulus guttatus	1.18	5.63	*	Microcommunity Dominant
Taraxacum officinale	1.14	1.58		Microcommunity Dominant
Carex nebrascensis	1.12	1.93		Microcommunity Dominant
Eleocharis rostellata	0.79	1.28		Microcommunity Dominant
Berula erecta	0.58	0.98		Microcommunity Dominant
Poa secunda	0.44	1.72	*	Microcommunity Dominant
Agrostis gigantea	0.43	2.38	*	Microcommunity Dominant
Eleocharis quinqueflora	0.00	2.20	*	Microcommunity Dominant
Total Live Cover	50.23	71.89	*	

Table 3-57. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Keegan Spring Complex for 2009 and 2010 (Page 2 of 4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.	15.70	19.08		Transect Subdominant
Argentina anserina	13.45	21.30		Transect Subdominant
Thermopsis rhombifolia	10.52	20.00		Transect Subdominant
Juncus arcticus ssp. littoralis	4.94	5.00		Microcommunity Dominant
Sporobolus airoides	4.50	7.45		Microcommunity Dominant
Distichlis spicata	3.88	5.50		Microcommunity Dominant
Poa pratensis	2.00	4.67		Microcommunity Dominant
Leymus triticoides	1.80	5.47	*	Microcommunity Dominant
Sparganium angustifolium	1.33	13.22	*	Transect Subdominant
Agrostis gigantea	0.50	2.64		Microcommunity Dominant
Trifolium repens	0.34	4.34	*	Microcommunity Dominant
Sium suave	0.20	2.91		Microcommunity Dominant
Total Live Co	over 64.45	129.67	*	

Veg_023 N = 64 (Total Taxa for Transect: 2009 = 33; 2010 = 43) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.7)

Based on field data and the distribution of hits along the transect, species listed as *Carex nebrascensis* or *Carex praegracilis* in 2009 and *Carex nebrascensis*, *Carex simulata*, or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_024 N = 99 (Total Taxa fo	r Transect: 2009 = 27; 2010 = 49)	(Mean Taxa for Transect	: 2009 = 0.3; 2010 = 0.5)
-------------------------------	-----------------------------------	-------------------------	---------------------------

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	12.29	16.72	*	Transect Subdominant
Thermopsis rhombifolia	10.44	12.91		Transect Subdominant
Argentina anserina	6.27	8.18	*	Transect Subdominant
Poa sp.	4.18	6.72	*	Microcommunity Dominant
Sporobolus airoides	3.94	8.63	*	Transect Subdominant
Crepis runcinata ssp. glauca	3.59	5.07	*	Microcommunity Dominant
Eleocharis sp.	3.52	2.12		Microcommunity Dominant
Distichlis spicata	3.39	6.27	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	3.10	2.25		Microcommunity Dominant
Leymus triticoides	1.70	4.88	*	Microcommunity Dominant
Puccinellia lemmonii	1.18	6.99	*	Microcommunity Dominant
Equisetum arvense	0.64	1.43	*	Microcommunity Dominant
Agrostis gigantea	0.44	2.44	*	Microcommunity Dominant
Spartina gracilis	0.00	3.26	*	Microcommunity Dominant
Total Live Cover	59.70	97.88	*	

Based on field data and the distribution of hits along the transect, species listed as *Poa secunda* in 2009 and *Poa pratensis* or *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* in 2009 and *Eleocharis palustris* or *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Table 3-57. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Keegan Spring Complex for 2009 and 2010 (Page 3 of 4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	14.86	28.12	*	Transect Dominant
Juncus arcticus ssp. littoralis	7.03	20.71	*	Transect Subdominant
Argentina anserina	6.54	8.47	*	Transect Subdominant
Thermopsis rhombifolia	5.11	3.74		Microcommunity Dominant
Carex praegracilis	3.32	5.41	*	Microcommunity Dominant
Hordeum brachyantherum	3.13	2.56		Microcommunity Dominant
Leymus triticoides	2.59	13.86	*	Transect Subdominant
Hordeum jubatum	2.30	5.98	*	Microcommunity Dominant
Ericameria nauseosa	1.82	1.10		Microcommunity Dominant
Poa secunda	1.12	3.99	*	Microcommunity Dominant
Cirsium vulgare	0.96	0.17		Microcommunity Dominant
Eleocharis palustris	0.41	2.09	*	Microcommunity Dominant
Muhlenbergia asperifolia	0.00	3.76	*	Microcommunity Dominant
Total Live Co	over 55.47	111.11	*	

Veg_025 N = 99 (Total Taxa for Transect: 2009 = 31; 2010 = 43) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Veg_026 N = 130 (Total Taxa for Transect: 2009 = 37; 2010 = 51) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	9.91	13.63	*	Transect Subdominant
Moss	9.80	0.99	*	Transect Subdominant
Distichlis spicata	6.74	9.00	*	Transect Subdominant
Carex simulata	6.09	9.20	*	Transect Subdominant
Argentina anserina	3.11	2.89		Microcommunity Dominant
Carex praegracilis	2.91	3.13		Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.70	3.13		Microcommunity Dominant
Sporobolus airoides	2.61	5.99	*	Microcommunity Dominant
Utricularia macrorhiza	2.13	0.72		Microcommunity Dominant
Poa sp.	1.95	2.33		Microcommunity Dominant
Algae	1.80	1.44		Microcommunity Dominant
Schoenoplectus acutus var. acutus	1.35	0.67	*	Microcommunity Dominant
Leymus triticoides	1.22	2.94	*	Microcommunity Dominant
Spartina gracilis	1.21	0.31	*	Microcommunity Dominant
Typha latifolia	0.88	2.78	*	Microcommunity Dominant
Puccinellia lemmonii	0.77	1.19	*	Microcommunity Dominant
Ericameria nauseosa	0.72	0.25		Microcommunity Dominant
Trifolium repens	0.41	0.62		Microcommunity Dominant
Polygonum amphibium	0.00	2.66	*	Microcommunity Dominant
Total Live Co	ver 60.98	70.04	*	-

Based on field data and the distribution of hits along the transect, species listed as *Poa secunda* in 2009 and *Poa pratensis* or *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Table 3-57. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover forWetland/Meadow Transects at Keegan Spring Complex for 2009 and 2010 (Page 4 of 4)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Thermopsis rhombifolia		14.84	11.05	*	Transect Subdominant
Carex simulata		9.77	25.35	*	Transect Subdominant
Carex praegracilis		6.33	14.77	*	Transect Subdominant
Leymus triticoides		6.15	11.55	*	Transect Subdominant
Argentina anserina		5.80	8.48	*	Transect Subdominant
Carex nebrascensis		4.14	5.32		Microcommunity Dominant
Crepis runcinata ssp. glauca		3.60	3.56		Microcommunity Dominant
Juncus arcticus ssp. littoralis		3.06	8.41	*	Microcommunity Dominant
Taraxacum officinale		1.78	2.41		Microcommunity Dominant
Typha latifolia		0.77	8.53	*	Microcommunity Dominant
Puccinellia lemmonii		0.34	1.65	*	Microcommunity Dominant
Hordeum jubatum		0.29	3.71	*	Microcommunity Dominant
Glaux maritima		0.26	2.40	*	Microcommunity Dominant
Hordeum brachyantherum		0.07	1.15	*	Microcommunity Dominant
Chara sp.		0.00	2.39	*	Microcommunity Dominant
Elymus trachycaulus		0.00	5.31	*	Microcommunity Dominant
	Total Live Cover	59.95	126.06	*	

Veg_027 N = 100 (Total Taxa for Transect: 2009 = 21; 2010 = 37) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.4)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis		11.41	17.77	*	Transect Subdominant
Carex sp.		8.56	16.67	*	Transect Subdominant
Typha latifolia		7.40	12.67	*	Transect Subdominant
Algae		3.30	1.82		Microcommunity Dominant
Bidens cernua		2.81	3.49		Microcommunity Dominant
Juncus arcticus ssp. littoralis		2.50	1.19	*	Microcommunity Dominant
Nasturtium officinale		1.87	3.19		Microcommunity Dominant
Mimulus guttatus		1.44	3.85	*	Microcommunity Dominant
Berula erecta		1.01	6.82	*	Microcommunity Dominant
Thermopsis rhombifolia		0.94	2.80		Microcommunity Dominant
Leymus triticoides		0.62	0.00		Microcommunity Dominant
Juncus nevadensis		0.17	5.45	*	Microcommunity Dominant
Agrostis gigantea		0.00	5.99	*	Microcommunity Dominant
Sparganium emersum		0.00	5.12	*	Microcommunity Dominant
Trifolium sp.		0.00	6.92	*	Microcommunity Dominant
т	Total Live Cover	48.45	111.74	*	

3.10.2.3 West Spring Valley Complex 1

The West Spring Valley Complex is made up of several large springs forming fairly deep spring pools and channels running from the spring pools to a terminal pond. The dominant and subdominant taxa on the wetland/meadow transects at the West Spring Valley Complex were *Juncus arcticus, Eleocharis rostellata, Thermopsis rhombifolia, Cirsium arvense, Berula erecta, Carex nebrascensis, Carex sp., Carex praegracilis, Lemna minor, Lemna sp., and Agrostis gigantea* (Table 3-58). A total of 84 taxa occurred on the transects in 2010 and this total was the second highest species richness for the eight sites. Mean live cover (MH) was above average for the eight wetland/meadow sites.

Although transects were sampled almost two weeks earlier in 2010 than in 2009, total live vegetation cover was still significantly greater (P ≤ 0.05) in 2010 than in 2009 on five of the eight transects (Table 3-58). These increases in total cover resulted from small to moderate increases in cover of *Carex nebrascensis* and *Carex praegracilis*. There were also some increases in a few of the forbs, notably *Thermopsis rhombifolia* and *Berula erecta*.

Table 3-58. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at West Spring Valley for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg 085 N = 27 (Total Taxa for Transect: 2009 = 36: 2010 = 27) (Mean Taxa for Transect: 2009 = 1.3: 2010 = 1.0)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.	43.93	39.44		Transect Dominant
Juncus arcticus ssp. littoralis	12.48	6.74		Transect Subdominant
Berula erecta	10.70	7.85		Transect Subdominant
Eleocharis rostellata	9.41	13.89		Transect Subdominant
Agrostis gigantea	4.07	7.07		Transect Subdominant
Thermopsis rhombifolia	4.04	12.56		Transect Subdominant
Mimulus guttatus	4.00	3.15		Microcommunity Dominant
Schoenoplectus pungens	1.15	3.07		Microcommunity Dominant
Equisetum arvense	1.00	0.93		Microcommunity Dominant
Epilobium ciliatum	0.00	13.07	*	Transect Subdominant
Festuca idahoensis	0.00	3.19		Microcommunity Dominant
Total Live	Cover 101.00	118.96	*	-

Based on field data and the distribution of hits along the transect, species listed as *Carex nebrascensis*, *Carex rostrata*, *Carex simulata* or *Carex praegracilis* in 2009 and *Carex nebrascensis*, *Carex simulata* or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_086 N = 26 (Total Taxa for Transect: 2009 = 26; 2010 = 28) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Thermopsis rhombifolia	23.00	21.92		Transect Dominant
Cirsium arvense	12.54	11.69		Transect Subdominant
Carex praegracilis	10.50	4.31		Transect Subdominant
Lemna minor	10.42	28.89	*	Transect Subdominant
Agrostis gigantea	8.65	4.08	*	Transect Subdominant
Juncus arcticus ssp. littoralis	8.42	6.42		Transect Subdominant
Eleocharis rostellata	8.23	5.85		Transect Subdominant
Carex sp.	5.31	5.08		Microcommunity Dominant
Equisetum arvense	4.19	1.35		Microcommunity Dominant
Berula erecta	3.89	1.08		Microcommunity Dominant
Carex simulata	3.12	3.23		Microcommunity Dominant
Poa secunda	0.04	6.39	*	Microcommunity Dominant
Total Live Cover	114.00	119.19		

Table 3-58. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at West Spring Valley for 2009 and 2010 (Page 2 of 3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.		38.26	37.48		Transect Dominant
Eleocharis rostellata		34.85	29.69		Transect Dominant
Juncus arcticus ssp. littoralis		9.06	7.85		Transect Subdominant
Thermopsis rhombifolia		7.56	9.57		Transect Subdominant
Agrostis gigantea		4.96	4.07		Microcommunity Dominant
Berula erecta		2.52	4.06		Microcommunity Dominant
Distichlis spicata		2.44	0.65		Microcommunity Dominant
Typha latifolia		2.43	3.76		Microcommunity Dominant
Mimulus guttatus		2.41	2.22		Microcommunity Dominant
Ericameria nauseosa		1.06	0.82		Microcommunity Dominant
Festuca idahoensis		0.00	2.13		Microcommunity Dominant
	Total Live Cover	119.06	118.32		

Veg_087 N = 54 (Total Taxa for Transect: 2009 = 31; 2010 = 41) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.8)

Based on field data and the distribution of hits along the transect, species listed as *Carex nebrascensis* in 2009 and *Carex nebrascensis*, *Carex simulata* or *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Veg_088 N = 38 (Total Taxa for Transect: 2009 = 31; 2010 = 33) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.9)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Cirsium arvense		20.82	14.61	*	Transect Subdominant
Berula erecta		16.79	14.47		Transect Subdominant
Phragmites australis		15.11	3.11	*	Transect Subdominant
Thermopsis rhombifolia		9.84	14.53		Transect Subdominant
Carex nebrascensis		6.63	4.63		Transect Subdominant
Lemna minor		6.29	9.87		Transect Subdominant
Agrostis gigantea		5.45	2.58	*	Microcommunity Dominant
Schoenoplectus acutus		4.66	1.58	*	Microcommunity Dominant
Ericameria nauseosa		3.42	3.18		Microcommunity Dominant
Juncus arcticus ssp. littoralis		3.18	3.50		Microcommunity Dominant
Argentina anserina		2.95	4.58		Microcommunity Dominant
Poa pratensis		1.95	0.24	*	Microcommunity Dominant
Schedonorus pratensis		1.58	1.40		Microcommunity Dominant
Carex praegracilis		1.16	4.71	*	Microcommunity Dominant
	Total Live Cover	111.55	94.00	*	

Veg_089 N = 32 (Total Taxa for Transect: 2009 = 21; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.7; 2010 = 0.9)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Lemna sp.	31.53	31.50		Transect Dominant
Carex nebrascensis	8.63	19.59	*	Transect Subdominant
Mimulus guttatus	6.72	14.25	*	Transect Subdominant
Berula erecta	5.78	12.44	*	Transect Subdominant
Sparganium angustifolium	3.25	3.66		Microcommunity Dominant
Argentina anserina	1.53	3.66		Microcommunity Dominant
Juncus sp.	1.38	10.44	*	Transect Subdominant
Schoenoplectus acutus var. acutus	0.84	2.44	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.53	1.75		Microcommunity Dominant
Medicago polymorpha	0.44	0.09		Microcommunity Dominant
Poa secunda	0.41	0.34		Microcommunity Dominant
Algae	0.00	23.56	*	Transect Subdominant
Ericameria nauseosa	0.00	2.03		Microcommunity Dominant
Total Live Cover	63.94	139.38	*	-

Based on field data and the distribution of hits along the transect, species listed as *Juncus nevadensis* in 2010 were analyzed as *Juncus* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna minor* in 2010 were analyzed as *Lemna* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Schoenoplectus acutus* in 2010 were analyzed as *Schoenoplectus acutus* var. *acutus* for *t*-test analysis.

Table 3-58. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at West Spring Valley for 2009 and 2010 (Page 3 of 3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juncus arcticus ssp. littoralis	9.77	11.23		Transect Subdominant
Carex praegracilis	8.86	16.09	*	Transect Subdominant
Cirsium arvense	6.05	6.00		Transect Subdominant
Bromus inermis	5.55	8.18		Transect Subdominant
Iva axillaris	4.46	4.09		Microcommunity Dominant
Total Live Cover	40.46	54.96	*	
Veg_091 N = 24 (Total Taxa for Transect: 2009 :	= 27; 2010 = 26)	(Mean Taxa for	Transect: 2009 =	= 1.1; 2010 = 1.1)
Veg_091 N = 24 (Total Taxa for Transect: 2009 : Species	= 27; 2010 = 26) Mean Live Cover (MH) 2009	(Mean Taxa for Mean Live Cover (MH) 2010	Transect: 2009 = Significance at ≤0.05	= 1.1; 2010 = 1.1) Dominance Classification
Species	Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance
Species Juncus arcticus ssp. littoralis	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Species Juncus arcticus ssp. littoralis Carex nebrascensis	Mean Live Cover (MH) 2009 11.79	Mean Live Cover (MH) 2010 15.88	Significance at ≤0.05	Dominance Classification Transect Subdominant
Species Juncus arcticus ssp. littoralis Carex nebrascensis Carex praegracilis	Mean Live Cover (MH) 2009 11.79 8.71	Mean Live Cover (MH) 2010 15.88 11.17	Significance at ≤0.05 *	Dominance Classification Transect Subdominant Transect Subdominant
	Mean Live Cover (MH) 2009 11.79 8.71 3.58	Mean Live Cover (MH) 2010 15.88 11.17 6.21	Significance at ≤0.05 * *	Dominance Classification Transect Subdominant Transect Subdominant Microcommunity Dominant

4.29

1.58 Microcommunity Dominant Trifolium repens 1.92 Microcommunity Dominant Argentina anserina 1.54 3.25 Lemna minor 0.79 0.71 **Microcommunity Dominant** Sporobolus airoides 0.33 1.13 Microcommunity Dominant **Total Live Cover** 72.21 51.54

Veg_092 N = 44 (Total Taxa for Transect: 2009 = 23; 2010 = 27) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.6)

2.17

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Schoenoplectus acutus var. acutus	9.96	6.57	*	Transect Subdominant
Carex nebrascensis	3.46	4.32		Microcommunity Dominant
Typha latifolia	2.50	2.27		Microcommunity Dominant
Berula erecta	2.41	0.75		Microcommunity Dominant
Cirsium arvense	1.46	1.89		Microcommunity Dominant
lva axillaris	1.09	1.23		Microcommunity Dominant
Poa pratensis	1.02	0.91		Microcommunity Dominant
Carex sp.	0.77	2.84	*	Microcommunity Dominant
Muhlenbergia sp.	0.34	1.14		Microcommunity Dominant
Equisetum arvense	0.18	0.86		Microcommunity Dominant
Total Live Cover	26.75	26.86		·

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Muhlenbergia richardsonis* in 2009 and 2010 were analyzed as *Muhlenbergia* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Schoenoplectus acutus* in 2010 were analyzed as *Schoenoplectus acutus* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Schoenoplectus acutus* for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. in 2010 were analyzed as *Typha latifolia* for *t*-test analysis.

Poa pratensis

Microcommunity Dominant

3.10.2.4 Minerva Spring Complex (North and Middle)

The Minerva Spring Complex is made up of a number of springs and seeps that occur in various geographic positions, from hill slope to bottoms. In addition, irrigation surface water is brought into this area through ditches that originate at the base of the mountains to the east of southern Spring Valley. Flood irrigation is practiced on meadows at the south end of the valley.

A total of 78 taxa occurred on the transects in 2010 and this was the third-highest number among the eight wetland/meadow sites. This site also has the third-highest mean live cover (MH) in 2010. The dominant and subdominant taxa, by mean live cover (MH), on the seven wetland/meadow transects at the Minerva Spring Complex were *Schedonorus pratensis, Carex nebrascensis, Carex* sp., *Potamogeton* sp., *Agrostis gigantea, Elymus trachycaulus, Hordeum jubatum, Thermopsis rhombifolia, Rosa woodsii*, and *Eleocharis rostellata* (Table 3-59). Fifteen species on the transects showed significant decreases in cover between 2009 and 2010, whereas 13 species showed increased cover between the two years (Table 3-59).

There was a significant decrease in total live cover on three transects in 2010. Transect 004 had the greatest decrease in cover with six species having less cover in 2010 than in 2009. There was an increase in total live cover on only one transect (009) in 2010 (Table 3-59). Two less palatable species, *Bromus tectorum* and *Juncus arcticus*, had significantly greater cover in 2010 than 2009.

Table 3-59. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Elymus trachycaulus	24.00	17.30	*	Transect Dominant
Thermopsis rhombifolia	12.18	3.58	*	Transect Subdominant
Agrostis gigantea	10.34	10.28		Transect Subdominant
Nasturtium officinale	7.20	0.96	*	Microcommunity Dominant
Hordeum jubatum	6.20	2.50	*	Microcommunity Dominant
Schedonorus pratensis	3.84	2.88		Microcommunity Dominant
Achillea millefolium	3.22	3.82		Microcommunity Dominant
Poa sp.	3.20	5.16		Microcommunity Dominant
Medicago polymorpha	3.00	0.16	*	Microcommunity Dominant
Carex praegracilis	2.08	0.82		Microcommunity Dominant
Juncus sp.	2.06	4.88	*	Microcommunity Dominant
Eleocharis rostellata	1.86	4.08	*	Microcommunity Dominant
Berula erecta	1.56	1.32		Microcommunity Dominant
Carex nebrascensis	1.30	3.58	*	Microcommunity Dominant
Cirsium scariosum	0.38	2.80	*	Microcommunity Dominant
Thelesperma megapotamicum	0.00	9.52	*	Microcommunity Dominant
Total Live Cover	93.82	78.32	*	

Veg_002 N = 50 (Total Taxa for Transect: 2009 = 39; 2010 = 37) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.7)

Based on field data and the distribution of hits along the transect, species listed as *Poa pratensis* or *Poa secunda* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Juncus arcticus* ssp. *littoralis* or *Juncus nevadensis* in 2009 and *Juncus arcticus* ssp. *littoralis* in 2010 were analyzed as *Juncus* sp. for *t*-test analyzed sp. for *t*-test ana

Table 3-59. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010 (Page 2 of 3)

Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
14.50	9.43		Transect Subdominant
11.03	12.40		Transect Subdominant
7.27	6.13		Transect Subdominant
5.60	0.30	*	Microcommunity Dominant
5.57	0.53	*	Microcommunity Dominant
4.83	0.00	*	Microcommunity Dominant
3.73	1.67	*	Microcommunity Dominant
3.03	2.23		Microcommunity Dominant
1.80	0.73		Microcommunity Dominant
1.80	0.00		Microcommunity Dominant
1.47	0.87		Microcommunity Dominant
er 74.37	42.80	*	
	Cover (MH) 2009 14.50 11.03 7.27 5.60 5.57 4.83 3.73 3.03 1.80 1.80 1.80 1.47	Cover (MH) 2009Cover (MH) 201014.509.4311.0312.407.276.135.600.305.570.534.830.003.731.673.032.231.800.731.800.001.470.87	Cover (MH) 2009Cover (MH) 2010Significance at ≤0.0514.509.4311.0312.407.276.135.600.305.570.534.830.003.731.673.032.231.800.731.800.001.470.87

Veg_003 N = 30 (Total Taxa for Transect: 2009 = 34; 2010 = 25) (Mean Taxa for Transect: 2009 = 1.1; 2010 = 0.8)

Veg_004 N = 60 (Total Taxa for Transect: 2009 = 35; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Potamogeton sp.	27.25	26.32	*	Transect Dominant
Hordeum jubatum	25.80	4.43	*	Transect Subdominant
Schedonorus pratensis	11.43	17.65	*	Transect Subdominant
Thermopsis rhombifolia	10.85	7.25		Transect Subdominant
Agrostis gigantea	10.82	1.23	*	Transect Subdominant
Polygonum aviculare	8.97	3.40	*	Microcommunity Dominant
Melilotus officinalis	7.57	0.00	*	Microcommunity Dominant
Elymus trachycaulus	6.82	0.38	*	Microcommunity Dominant
Poa pratensis	6.68	5.82		Transect Subdominant
Carex nebrascensis	3.17	2.65		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.53	2.55	*	Microcommunity Dominant
Leymus triticoides	0.37	2.33		Microcommunity Dominant
Bromus tectorum	0.17	1.87	*	Microcommunity Dominant
Total Live Cover	129.90	82.67	*	

Veg_005 N = 50 (Total Taxa for Transect: 2009 = 50; 2010 = 48) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.0)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Agrostis gigantea		22.20	3.48	*	Transect Subdominant
Schedonorus pratensis		19.82	20.00		Transect Dominant
Potamogeton sp.		19.06	19.96		Transect Dominant
Thermopsis rhombifolia		8.62	6.78		Transect Subdominant
Carex sp.		7.48	7.38		Transect Subdominant
Carex nebrascensis		3.06	3.36		Microcommunity Dominant
eymus triticoides		3.02	0.12	*	Microcommunity Dominant
Puccinellia lemmonii		2.30	2.24		Microcommunity Dominant
Dactylis glomerata		1.96	0.20		Microcommunity Dominant
Algae		1.48	9.90	*	Microcommunity Dominant
Eleocharis palustris		1.12	2.54		Microcommunity Dominant
ris missouriensis		0.94	2.12		Microcommunity Dominant
luncus arcticus ssp. littoralis		0.50	4.50	*	Microcommunity Dominant
emna minuta		0.42	2.42		Microcommunity Dominant
	Total Live Cover	110.42	102.78		-

Based on field data and the distribution of hits along the transect, species listed as *Carex simulata* in 2009 and 2010 were ran as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Lemna minuta* in 2009 and *Lemna* sp. in 2010 were analyzed as *Lemna minuta* for *t*-test analysis.

Table 3-59. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Minerva Spring Complex (North and Middle) for 2009 and 2010 (Page 3 of 3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Rosa woodsii	32.85	26.44		Transect Dominant
Schedonorus pratensis	27.74	26.11		Transect Dominant
Thermopsis rhombifolia	22.37	17.70		Transect Dominant
Agrostis gigantea	17.82	1.15	*	Transect Subdominant
Berula erecta	8.04	2.11		Microcommunity Dominant
Medicago polymorpha	5.41	6.15		Microcommunity Dominant
Leymus triticoides	4.59	0.11		Microcommunity Dominant
Carex nebrascensis	3.82	6.19		Microcommunity Dominant
Carex simulata	3.82	0.00		Microcommunity Dominant
Trifolium pratense	3.82	0.63		Microcommunity Dominant
Argentina anserina	2.15	1.52		Microcommunity Dominant
Nasturtium officinale	1.89	5.22		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.82	3.82	*	Microcommunity Dominant
Carex praegracilis	0.00	6.44	*	Microcommunity Dominant
Total Live Cover	146.19	115.33	*	-

Veg_006 N = 27 (Total Taxa for Transect: 2009 = 26; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 1.1)

Veg_008 N = 25 (Total Taxa for Transect: 2009 = 28; 2010 = 31) (Mean Taxa for Transect: 2009 = 1.1; 2010 = 1.2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	23.56	23.48		Transect Dominant
Juncus arcticus ssp. littoralis	7.88	0.64	*	Microcommunity Dominant
Leymus triticoides	7.20	2.44	*	Microcommunity Dominant
Moss	6.80	2.32		Microcommunity Dominant
Carex praegracilis	6.00	2.76	*	Microcommunity Dominant
Nasturtium officinale	5.84	5.36		Microcommunity Dominant
Argentina anserina	5.48	3.40		Microcommunity Dominant
Distichlis spicata	4.36	3.00		Microcommunity Dominant
Deschampsia ceaspitosa	2.52	5.92	*	Microcommunity Dominant
Eleocharis sp.	2.52	10.60	*	Transect Subdominant
Chara sp.	2.08	0.88		Microcommunity Dominant
Agrostis gigantea	1.28	3.80	*	Microcommunity Dominant
Potamogeton sp.	0.00	3.84		Microcommunity Dominant
Total Liv	e Cover 83.96	79.68		

Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* in 2009 and *Eleocharis rostellata* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_009 N = 33 (Total Taxa for Transect: 2009 = 27; 2010 = 25) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.8)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Eleocharis rostellata	14.27	28.09	*	Transect Dominant
Algae	10.42	0.00	*	Microcommunity Dominant
Chara sp.	8.03	10.55		Transect Subdominant
Carex nebrascensis	3.88	10.06	*	Transect Subdominant
Agrostis gigantea	3.18	5.52		Microcommunity Dominant
Stuckenia filiformis ssp. filiformis	2.97	4.58		Microcommunity Dominant
Mimulus guttatus	1.12	2.64		Microcommunity Dominant
Equisetum arvense	0.94	1.91		Microcommunity Dominant
Carex praegracilis	0.85	7.85	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.79	3.33		Microcommunity Dominant
Deschampsia ceaspitosa	0.46	4.82	*	Microcommunity Dominant
Juncus nevadensis	0.42	2.49		Microcommunity Dominant
Total Live Cover	50.39	85.94	*	

3.10.2.5 Shoshone Ponds

The Shoshone Ponds meadow is a relatively flat meadow to the east and north of the Shoshone ponds. The meadow is fed by an artesian well that feeds the ponds and a spring on the east side of the meadow. Juniper woodlands are invading the fringes of the meadow as is evident by seedlings and younger plants, as is the shrub *Ericameria nauseosa*.

The most dominant species, by mean live cover (MH), on the meadow transects at Shoshone Ponds were *Carex praegracilis, Juncus arcticus, Distichlis spicata, Argentina anserina, Carex nebrascensis, Carex* sp., *Poa* sp., *Agrostis gigantea*, and *Juniperus scopulorum* (Table 3-60). A total of 68 taxa occurred on the transects in 2010 and this total was about average for the eight sites. Mean live cover (MH) was the second-lowest for the eight wetland/meadow sites.

Juncus arcticus was the only species that occurred on all 10 transects at this site. *Carex praegracilis* increased on three transects, but decreased significantly on four other transects between 2009 and 2010 (Table 3-60). On the other hand, *Juncus arcticus*, increased on seven transects and decreased on two transects in 2010. It was very difficult to identify several of the *Carex* species in 2010, so some were just identified as *Carex* sp. Other species often showed small but often significant changes between the two years on some transects.

There were five significant positive increases in total live vegetation cover, and five significant decreases in total cover on the 10 permanent transects. Therefore, overall vegetation cover did not change greatly for Shoshone Meadow between 2009 and 2010.

Table 3-60. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Shoshone Ponds for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_074 N = 80 (Total Taxa for Transect: 2009 = 24; 2010 = 28) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex sp.	22.39	10.40	*	Transect Subdominant
Carex nebrascensis	18.15	14.95	*	Transect Subdominant
Juncus arcticus ssp. littoralis	7.88	3.20	*	Transect Subdominant
Eleocharis palustris	4.19	0.70	*	Microcommunity Dominant
Trifolium repens	1.59	0.70		Microcommunity Dominant
Agrostis gigantea	1.36	1.53		Microcommunity Dominant
Poa secunda	1.06	0.03	*	Microcommunity Dominant
Total Live Cover	60.84	36.33	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_075 N = 100 (Total Taxa for Transect: 2009 = 16; 2010 = 25) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification	
Carex sp.	8.84	13.49	*	Transect Subdominant	
Juniperus scopulorum	8.02	9.29		Transect Subdominant	
Juncus arcticus ssp. littoralis	3.08	10.04	*	Transect Subdominant	
Carex nebrascensis	1.95	2.96		Microcommunity Dominant	
Argentina anserina	1.53	0.34	*	Microcommunity Dominant	
Distichlis spicata	1.18	1.29		Microcommunity Dominant	
Poa secunda	0.56	1.37		Microcommunity Dominant	
Total Live Cover	27.49	42.49	*		

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex praegracilis* or *Carex douglasii* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_076 N = 100 (Total Taxa for Transect: 2009 = 15; 2010 = 10) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	23.35	35.33	*	Transect Dominant
Argentina anserina	4.81	1.44	*	Microcommunity Dominant
Achillea millefolium	1.64	0.92		Microcommunity Dominant
Juncus arcticus ssp. littoralis	0.93	4.51	*	Microcommunity Dominant
Muhlenbergia richardsonis	0.81	0.77		Microcommunity Dominant
Ericameria nauseosa	0.18	1.73	*	Microcommunity Dominant
Total Live Cover	32.78	45.43	*	

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis		31.16	25.50	*	Transect Dominant
Muhlenbergia asperifolia		4.06	1.97	*	Microcommunity Dominant
Argentina anserina		4.00	1.36	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis		2.91	2.16		Microcommunity Dominant
Muhlenbergia richardsonis		1.23	2.66	*	Microcommunity Dominant
Poa sp.		0.59	0.27		Microcommunity Dominant
	Total Live Cover	45.61	35.65	*	

Based on field data and the distribution of hits along the transect, species listed as *Poa pratensis* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Table 3-60. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Shoshone Ponds for 2009 and 2010 (Page 2 of 3)

Veg_078 N = 100 (Total Taxa for Transect: 2009 = 12; 2010 = 11) (Mean Taxa for Transect: 2009 = 0.1; 2010 = 0	0.1)
100 = 100 (10 al 10 a	,

Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
18.53	19.46		Transect Dominant
3.16	7.36	*	Microcommunity Dominant
2.88	5.28	*	Microcommunity Dominant
2.41	3.30	*	Microcommunity Dominant
0.30	0.63		Microcommunity Dominant
er 29.09	38.35	*	
	Cover (MH) 2009 18.53 3.16 2.88 2.41 0.30	Cover (MH) 2009 Cover (MH) 2010 18.53 19.46 3.16 7.36 2.88 5.28 2.41 3.30 0.30 0.63	Cover (MH) 2009 Cover (MH) 2010 Significance at ≤0.05 18.53 19.46 3.16 7.36 * 2.88 5.28 * 2.41 3.30 * 0.30 0.63 *

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Agrostis gigantea		6.88	6.56		Transect Subdominant
Eleocharis sp.		5.60	14.22	*	Transect Subdominant
Carex sp.		5.12	7.26		Transect Subdominant
uncus arcticus ssp. littoralis		4.78	9.80	*	Transect Subdominant
rifolium repens		3.24	2.44		Microcommunity Dominant
arex nebrascensis		2.38	5.84	*	Microcommunity Dominant
erula erecta		1.00	0.88		Microcommunity Dominant
Poa pratensis		0.62	9.74	*	Microcommunity Dominant
Schedonorus pratensis		0.62	0.00		Microcommunity Dominant
lgae		0.00	4.84	*	Microcommunity Dominant
	Total Live Cover	34.32	69.82	*	

Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* or *Elymus trachycaulus* in 2010 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_081 N = 100 (Total Taxa for Transect: 2009 = 22; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Poa sp.	14.28	8.07	*	Transect Subdominant
Carex praegracilis	5.87	3.68	*	Microcommunity Dominant
Argentina anserina	4.92	2.22	*	Microcommunity Dominant
Ivesia kingii	3.77	3.19		Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.21	3.60	*	Microcommunity Dominant
Erigeron lonchophyllus	1.84	0.29	*	Microcommunity Dominant
Ericameria nauseosa	1.08	1.58	*	Microcommunity Dominant
Muhlenbergia richardsonis	0.69	0.54		Microcommunity Dominant
Total Live Cover	38.27	28.06	*	

Based on field data and the distribution of hits along the transect, species listed as *Poa secunda* or *Puccinellia lemmonii* in 2009 and 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juncus arcticus ssp. littoralis	7.08	19.16	*	Transect Subdominant
Carex praegracilis	5.18	10.51	*	Transect Subdominant
Distichlis spicata	2.24	3.49	*	Microcommunity Dominant
Argentina anserina	1.46	1.81		Microcommunity Dominant
Carex nebrascensis	0.89	1.82	*	Microcommunity Dominant
Puccinellia lemmonii	0.39	3.04	*	Microcommunity Dominant
Moss	0.00	5.59	*	Microcommunity Dominant
Poa secunda	0.00	2.43	*	Microcommunity Dominant
Total Live Cover	18.97	50.87	*	

 Table 3-60. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/

 Meadow Transects at Shoshone Ponds for 2009 and 2010 (Page 3 of 3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Poa sp.	11.77	10.19		Transect Subdominant
Carex praegracilis	11.49	5.84	*	Transect Subdominant
Distichlis spicata	10.68	6.64	*	Transect Subdominant
Juncus arcticus ssp. littoralis	4.28	1.81	*	Microcommunity Dominant
Achillea millefolium	0.82	0.66		Microcommunity Dominant
Total Liv	ve Cover 41.05	27.74	*	

Veg_083 N = 100 (Total Taxa for Transect: 2009 = 16; 2010 = 23) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.2)

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* or *Puccinellia lemmonii* in 2010 were analyzed as *Poa* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Carex* sp. in 2010 were analyzed as *Carex praegracilis* for *t*-test analysis.

Veg_084 N = 100 (Total Taxa for Transect: 2009 = 24; 2010 = 33) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	14.93	9.78	*	Transect Subdominant
Argentina anserina	12.92	6.62	*	Transect Subdominant
Trifolium sp.	11.93	7.09	*	Transect Subdominant
Juncus arcticus ssp. littoralis	11.22	8.52	*	Transect Subdominant
Juniperus scopulorum	4.57	4.82		Microcommunity Dominant
Agrostis gigantea	3.78	4.33		Microcommunity Dominant
Erigeron lonchophyllus	3.26	2.33		Microcommunity Dominant
Achillea millefolium	2.49	0.88		Microcommunity Dominant
Pyrrocoma lanceolata	2.41	2.20		Microcommunity Dominant
Poa pratensis	1.36	4.01	*	Microcommunity Dominant
Carex nebrascensis	1.25	1.45		Microcommunity Dominant
Cirsium scariosum	0.81	2.02	*	Microcommunity Dominant
Aster sp.	0.00	5.58	*	Microcommunity Dominant
Total Live Cove	r 73.94	65.48	*	

Based on field data and the distribution of hits along the transect, species listed as *Trifolium repens* and 2010 were analyzed as *Trifolium* sp. for *t*-test analysis

3.10.2.6 The Seep

The most dominant species, by mean live cover (MH), on transects at the Seep were Argentina anserina, Carex nebrascensis, Sporobolus airoides, Polygonum aviculare, and Carex sp. A total of 43 taxa occurred on the transects in 2010 and this total was second-lowest species richness for the eight sites. Mean live cover (MH) was the lowest for the eight wetland/meadow sites.

Four of the taxa occurred on all five transects. *Argentina anserina* was the most dominant species on three transects and *Carex nebrascensis* was the most dominant species on two transects. *Argentina anserina* showed a significant decrease in live cover on three transects, no changes on one transect and an increase in cover on the fifth transect (Table 3-61). *Carex nebrascensis* had the same trend as was found for *Argentina anserine*. In addition, there were many other significant decreases of individual species cover between the two years. The only significant increases were noted on a couple of transects for *Juncus arcticus, Sporobolus airoides, Ranunculus cymbalaria* and *Cirsium scariosum*. The only significant increase in total live cover (MH) was found on transect 073 (Table 3-61). The four remaining transects all had significant decreases in total cover between 2009 and 2010.

Table 3-61. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at The Seep for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_069 N = 110 (Total Taxa for Transect: 2009 = 23; 2010 = 21) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Argentina anserina	23.56	8.65	*	Transect Subdominant
Sporobolus airoides	19.66	7.40	*	Transect Subdominant
Carex sp.	7.86	3.99	*	Transect Subdominant
luncus arcticus ssp. littoralis	4.36	3.26	*	Microcommunity Dominant
Carex nebrascensis	3.12	1.40	*	Microcommunity Dominant
Agrostis gigantea	2.19	2.42		Microcommunity Dominant
Hordeum jubatum	2.03	0.00	*	Microcommunity Dominant
Distichlis spicata	1.71	0.90	*	Microcommunity Dominant
Puccinellia lemmonii	1.53	0.00	*	Microcommunity Dominant
Taraxacum officinale	1.07	0.41	*	Microcommunity Dominant
A <i>ster</i> sp.	0.18	1.43	*	Microcommunity Dominant
Total Li	ve Cover 70.23	32.66	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex douglasii* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_070 N = 100 (Total Taxa for Transect: 2009 = 27; 2010 = 22) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.2)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Argentina anserina		12.52	5.15	*	Transect Subdominant
Sporobolus airoides		7.16	2.81	*	Microcommunity Dominant
Polygonum aviculare		5.61	5.47		Microcommunity Dominant
Puccinellia distans		5.42	0.00	*	Microcommunity Dominant
Carex nebrascensis		4.43	2.82	*	Microcommunity Dominant
Eleocharis sp.		1.31	0.16	*	Microcommunity Dominant
Distichlis spicata		1.13	0.69		Microcommunity Dominant
Agrostis gigantea		0.98	0.32		Microcommunity Dominant
Juncus arcticus ssp. littoralis		0.83	0.80		Microcommunity Dominant
То	tal Live Cover	42.37	20.33	*	

Based on field data and the distribution of hits along the transect, species listed as *Eleocharis palustris* in 2009 were analyzed as *Eleocharis* sp. for *t*-test analysis.

Veg_071 N = 100 (Total Taxa for Transect: 2009 = 24; 2010 = 27) (Mean Taxa for Transect:	2009 = 0.2; 2010 = 0.3)
--	------------------------	---

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Argentina anserina	12.94	5.75	*	Transect Subdominant
Polygonum aviculare	7.17	5.77		Transect Subdominant
Carex nebrascensis	6.90	6.55		Transect Subdominant
Puccinellia distans	3.33	0.79	*	Microcommunity Dominant
Agrostis gigantea	2.46	1.57		Microcommunity Dominant
Carex sp.	2.42	1.94		Microcommunity Dominant
luncus arcticus ssp. littoralis	2.09	3.22	*	Microcommunity Dominant
Eleocharis palustris	1.37	0.53	*	Microcommunity Dominant
Erigeron lonchophyllus	1.02	0.38	*	Microcommunity Dominant
Muhlenbergia sp.	0.69	0.94		Microcommunity Dominant
Puccinellia lemmonii	0.63	0.26		Microcommunity Dominant
Total Live Cover	44.80	31.31	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex praegracilis* or *Carex douglasii* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Muhlenbergia richardsonis* in 2009 and 2010 were analyzed as *Muhlenbergia* sp. for *t*-test analysis.

Table 3-61. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/
Meadow Transects at The Seep for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	10.10	5.74	*	Transect Subdominant
Polygonum aviculare	6.40	2.88	*	Microcommunity Dominant
Argentina anserina	5.48	4.69		Microcommunity Dominant
Distichlis spicata	5.38	3.46	*	Microcommunity Dominant
Puccinellia lemmonii	4.31	0.00	*	Microcommunity Dominant
Hordeum jubatum	4.19	0.62	*	Microcommunity Dominant
Carex sp.	3.48	1.04	*	Microcommunity Dominant
Ivesia kingii	3.31	1.75	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	2.84	2.69		Microcommunity Dominant
Spartina gracilis	1.90	0.00	*	Microcommunity Dominant
Agrostis gigantea	1.55	0.82		Microcommunity Dominant
Sporobolus airoides	1.36	3.29	*	Microcommunity Dominant
Total Live Cover	56.13	34.32	*	

Veg_072 N = 100 (Total Taxa for Transect: 2009 = 27; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex douglasii* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_073 N = 75 (Total Taxa for Transect: 2009 = 22	; 2010 = 30) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)
--	---

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex nebrascensis	9.16	12.29	*	Transect Subdominant
Argentina anserina	7.36	10.84	*	Transect Subdominant
Deschampsia ceaspitosa	4.39	3.88		Microcommunity Dominant
Agrostis gigantea	4.29	3.29		Microcommunity Dominant
Carex sp.	2.59	0.40	*	Microcommunity Dominant
Juncus bufonius	2.17	0.16	*	Microcommunity Dominant
Juncus arcticus ssp. littoralis	1.29	4.24	*	Microcommunity Dominant
Erigeron lonchophyllus	0.44	2.11	*	Microcommunity Dominant
Cirsium scariosum	0.40	2.35	*	Microcommunity Dominant
Ranunculus cymbalaria	0.20	1.67	*	Microcommunity Dominant
Total Live Cover	35.49	47.23	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex douglasii* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

3.10.2.7 Blind Spring

The most dominant species, by mean live cover (MH), on the wetland/meadow transects at Blind Spring were *Utricularia macrorhiza*, *Zannichellia palustris*, *Hippuris vulgaris*, *Sparganium angustifolium*, *Typha latifolia*, *Distichlis spicata*, *Carex* sp., *Eleocharis rostellata*, and *Carex simulata* (Table 3-62). A total of 30 taxa occurred on the transects in 2010 and this total was lowest species richness value for eight sites. Mean live cover (MH) was about average for the eight wetland/ meadow sites.

Five species occurred on all five of the transects: *Distichlis spicata, Eleocharis palustris, Sparganium angustifolium, Typha latifolia*, and *Utricularia macrorhiza* (Table 3-62). *Utricularia macrorhiza* was the most dominant species on all five transects.

A number of species had lower cover during 2010, but some species responded with greater cover. *Chara* sp. declined at all locations where it was present (Table 3-62). *Utricularia macrorhiza*

declined significantly on three transects; whereas, it had insignificant changes on the two other transects where it was found. *Zannichellia palustris*, an aquatic perennial forb, was an abundant species on three transects in 2009, but was not even found at Blind Springs in 2010. *Sparganium angustifolium* had a significant decrease in cover on two transects in 2010, but showed little change in cover on three other transects. *Carex simulata*, on the other hand, had greater cover at locations where it was found in 2010 than it had in 2009. *Hippuris vulgaris* had a significant decline on two transects in 2010, and a significant increase on one transect where it was found in 2010.

Table 3-62. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Blind Spring for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_011 N = 43 (Total Taxa for Transect: 2009 = 21; 2010 = 23) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.5)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	46.77	12.21	*	Transect Dominant
Distichlis spicata	7.28	5.12		Transect Subdominant
Carex sp.	6.86	11.33	*	Transect Subdominant
Typha latifolia	6.40	4.28		Transect Subdominant
Eleocharis palustris	6.23	5.61		Transect Subdominant
Zannichellia palustris	5.47	0.00		Microcommunity Dominant
Carex simulata	5.07	12.00	*	Transect Subdominant
Hippuris vulgaris	4.47	2.72		Microcommunity Dominant
Schoenoplectus spp.	4.47	2.51		Microcommunity Dominant
Sparganium angustifolium	4.37	3.00		Microcommunity Dominant
Chara sp.	3.63	0.00	*	Microcommunity Dominant
Schoenoplectus acutus var. acutus	3.49	2.33		Microcommunity Dominant
Eleocharis rostellata	2.79	11.37	*	Transect Subdominant
Mimulus guttatus	2.44	1.56		Microcommunity Dominant
Total Live Cover	115.74	78.02	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex rostrata* in 2009 and *Carex nebrascensis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Schoenoplectus americanus* in 2009 and *Schoenoplectus pungens* in 2010 were analyzed as *Schoenoplectus* spp. for *t*-test analysis.

Veg_012 N = 43 (Total Taxa for Transect: 2009 = 17; 2010 = 16) (Mean Taxa for Transect: 2009 = 0.4; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	16.86	19.72		Transect Dominant
Typha latifolia	8.81	7.44		Transect Subdominant
Hippuris vulgaris	6.86	8.40		Transect Subdominant
Distichlis spicata	4.02	5.61		Microcommunity Dominant
Sparganium angustifolium	3.88	3.49		Microcommunity Dominant
Schoenoplectus acutus var. acutus	3.74	6.26	*	Microcommunity Dominant
Chara sp.	2.61	0.00		Microcommunity Dominant
Bidens cernua	1.14	0.00		Microcommunity Dominant
Potamogeton sp.	1.02	0.00		Microcommunity Dominant
Carex nebrascensis	0.95	8.70	*	Microcommunity Dominant
Eleocharis palustris	0.58	3.21	*	Microcommunity Dominant
Carex simulata	0.00	2.21		Microcommunity Dominant
Total Live Cover	53.47	71.02	*	

Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. in 2009 and *Typha domingensis* in 2010 were analyzed as *Typha latifolia* for *t*-test analysis.

Table 3-62. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/Meadow Transects at Blind Spring for 2009 and 2010 (Page 2 of 3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	17.62	7.05	*	Transect Subdominant
Distichlis spicata	5.05	5.80		Microcommunity Dominant
Chara sp.	4.62	0.00	*	Microcommunity Dominant
Carex simulata	4.46	9.54	*	Transect Subdominant
Schoenoplectus acutus var. acutus	3.56	3.69		Microcommunity Dominant
Typha latifolia	2.49	2.67		Microcommunity Dominant
Hippuris vulgaris	2.44	3.54	*	Microcommunity Dominant
Eleocharis rostellata	2.28	13.97	*	Transect Subdominant
Eleocharis palustris	2.00	1.23		Microcommunity Dominant
Schoenoplectus pungens	1.95	3.26		Microcommunity Dominant
Sparganium angustifolium	1.62	2.85		Microcommunity Dominant
Bassia scoparia	1.44	4.28		Microcommunity Dominant
Carex nebrascensis	0.85	2.54		Microcommunity Dominant
Mimulus guttatus	0.31	3.33	*	Microcommunity Dominant
Total Live Cover	51.62	68.72	*	

Veg_013 N = 39 (Total Taxa for Transect: 2009 = 19; 2010 = 22) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.6)

Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. or *Typha domingensis* in 2010 were analyzed as *Typha latifolia* for *t*-test analysis.

Veg_014 N = 47 (Total Taxa for Transect: 2009 = 15; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	54.49	41.87	*	Transect Dominant
Zannichellia palustris	14.06	0.00	*	Transect Subdominant
Hippuris vulgaris	10.47	6.19	*	Transect Subdominant
Carex sp.	9.60	9.32		Transect Subdominant
Sparganium angustifolium	8.09	5.26	*	Transect Subdominant
Typha latifolia	3.96	1.79	*	Microcommunity Dominant
Distichlis spicata	3.28	2.79		Microcommunity Dominant
Schoenoplectus sp.	3.26	3.49		Microcommunity Dominant
Bassia scoparia	1.92	0.70		Microcommunity Dominant
Schoenoplectus acutus var. acutus	1.83	1.60		Microcommunity Dominant
Chenopodium sp.	1.43	1.15		Microcommunity Dominant
Eleocharis palustris	1.02	2.55		Microcommunity Dominant
Sarcobatus vermiculatus	0.72	0.75		Microcommunity Dominant
Total Live Cover	115.28	81.66	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex rostrata* in 2009 and *Carex nebrascensis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. in 2010 was analyzed as *Typha latifolia* for *t*-test analysis.

Table 3-62. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/
Meadow Transects at Blind Spring for 2009 and 2010 (Page 3 of 3)

Species	Mean Liv Cover (Mi 2009		Significance at ≤0.05	Dominance Classification
Utricularia macrorhiza	38.29	39.94		Transect Dominant
Sparganium angustifolium	10.82	5.09	*	Transect Subdominant
Zannichellia palustris	10.77	0.00	*	Microcommunity Dominant
Hippuris vulgaris	6.35	3.21	*	Microcommunity Dominant
Carex sp.	5.00	4.79		Microcommunity Dominant
Eleocharis palustris	4.35	3.06	*	Microcommunity Dominant
Distichlis spicata	4.18	3.79		Microcommunity Dominant
Typha latifolia	3.18	1.62		Microcommunity Dominant
Bassia scoparia	2.82	5.32		Microcommunity Dominant
Total Li	ve Cover 92.35	73.50	*	

Veg_015 N = 34 (Total Taxa for Transect: 2009 = 18; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.5)

Based on field data and the distribution of hits along the transect, species listed as *Carex rostrata* or *Carex nebrascensis* in 2009 and *Carex nebrascensis* in 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Typha* sp. in 2010 was analyzed as *Typha latifolia* for *t*-test analysis.

3.10.2.8 Burbank Meadows

The most dominant species, by mean live cover (MH), on the wetland/meadow transects at Burbank Meadows were *Carex praegracilis, Juncus arcticus, Distichlis spicata, Argentina anserina, Puccinellia lemmonii, Leymus triticoides, Crepis runcinata, Spartina gracilis* and *Carex* sp. A total of 51 taxa occurred on the transects in 2010 and this was below average for the eight wetland/ meadow sites. Mean live cover (MH) was about average for the eight sites.

Distichlis spicata and *Juncus arcticus* were the only two species that occurred on all 10 transects at this site. *Leymus triticoides* occurred on nine transects, *Puccinellia lemmonii* occurred on eight transects and *Carex praegracilis* occurred on seven transects. *Distichlis spicata* was the most dominant species on three of the 10 transects at Burbank Meadows. It was also co-dominant on a number of the other transects (Table 3-63).

Argentina anserine had significantly greater cover in 2010 than 2009 on four transects, but had significantly less cover on three transects (Table 3-63). The two grasses, *Distichlis spicata* and *Puccinellia lemmonii*, both showed positive increases on eight and six transects, respectively. *Juncus arcticus* and *Carex praegracilis* also had greater cover on more transects in 2010 than 2009. These increases in cover resulted in significantly greater total live cover on all transects in 2010 compared to 2009.

Table 3-63. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Burbank Meadows for 2009 and 2010 (Page 1 of 3)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_139 N = 100 (Total Taxa for Transect: 2009 = 24; 2010 = 27) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juncus arcticus ssp. littoralis	9.72	11.50	*	Transect Subdominant
Argentina anserina	9.49	10.17		Transect Subdominant
Distichlis spicata	8.27	13.90	*	Transect Subdominant
Carex praegracilis	7.43	9.46	*	Transect Subdominant
Leymus triticoides	6.95	8.98	*	Transect Subdominant
Trifolium sp.	4.21	2.02	*	Microcommunity Dominant
Puccinellia lemmonii	2.20	3.69	*	Microcommunity Dominant
Hymenoxys lemmonii	1.66	0.46	*	Microcommunity Dominant
Sporobolus airoides	1.64	0.99	*	Microcommunity Dominant
Poa secunda	0.17	1.58	*	Microcommunity Dominant
Total Live C	over 54.08	65.87	*	

Veg_140 N = 100 (Total Taxa for Transect: 2009 = 25; 2010 = 29) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Argentina anserina	25.23	18.75	*	Transect Dominant
Carex praegracilis	11.25	17.38	*	Transect Subdominant
Puccinellia lemmonii	7.47	12.43	*	Transect Subdominant
Distichlis spicata	6.76	11.62	*	Transect Subdominant
Juncus arcticus ssp. littoralis	5.28	4.37		Microcommunity Dominant
Cirsium scariosum	2.30	3.38	*	Microcommunity Dominant
Crepis runcinata ssp. glauca	1.97	3.32	*	Microcommunity Dominant
Trifolium sp.	1.87	2.36		Microcommunity Dominant
Leymus triticoides	1.46	0.71	*	Microcommunity Dominant
Sporobolus airoides	1.18	1.00		Microcommunity Dominant
Glaux maritima	1.17	2.65	*	Microcommunity Dominant
Agrostis gigantea	0.16	2.02	*	Microcommunity Dominant
Total Live Cover	68.66	84.01	*	

Based on field data and the distribution of hits along the transect, species listed as *Trifolium fragiferum* in 2010 were analyzed as *Trifolium* sp. for *t*-test analysis.

Veg_141 N = 100 (Total Taxa for Transect: 2009 = 21; 2010 = 26) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Puccinellia lemmonii	15.85	14.26		Transect Subdominant
Crepis runcinata ssp. glauca	13.65	13.96		Transect Subdominant
Juncus arcticus ssp. littoralis	11.74	12.03		Transect Subdominant
Argentina anserina	8.58	13.28	*	Transect Subdominant
Carex sp.	5.59	13.79	*	Transect Subdominant
Distichlis spicata	3.41	4.99	*	Microcommunity Dominant
Spartina gracilis	2.99	2.50		Microcommunity Dominant
Leymus triticoides	2.21	3.69	*	Microcommunity Dominant
Glaux maritima	0.50	3.25	*	Microcommunity Dominant
Pyrrocoma lanceolata	0.00	2.72	*	Microcommunity Dominant
Total Live Cover	70.97	93.34	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Table 3-63. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Burbank Meadows for 2009 and 2010 (Page 2 of 3)

Veg_142 N = 100 (Total Taxa for Transect: 2009 = 21; 2010 = 28) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Distichlis spicata		12.36	15.42	*	Transect Subdominant
Leymus triticoides		9.10	9.82		Transect Subdominant
Carex sp.		8.89	9.10		Transect Subdominant
Juncus arcticus ssp. littoralis		8.82	5.63	*	Transect Subdominant
Hordeum jubatum		4.67	1.91	*	Microcommunity Dominant
Argentina anserina		4.45	5.76	*	Microcommunity Dominant
Trifolium sp.		3.65	7.50	*	Microcommunity Dominant
Puccinellia sp.		0.00	10.97		Microcommunity Dominant
	Total Live Cover	63.99	70.63	*	

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and 2010 were analyzed as *Carex* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* or *Puccinellia distans* in 2009 were analyzed as *Puccinellia* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *The transect* and the distribution of hits along the transect, species listed as *Trifolium fragiferum* in 2010 were analyzed as *Trifolium* sp. for *t*-test analysis.

Veg_143 N = 100 (Total Taxa for Transect: 2009 = 25; 2010 = 27) (Mean Taxa for Transect: 2009 = 0.3; 2010 = 0.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Puccinellia lemmonii	14.93	17.15		Transect Subdominant
Argentina anserina	12.74	9.93	*	Transect Subdominant
Carex praegracilis	11.76	13.86		Transect Subdominant
Spartina gracilis	9.60	5.17	*	Transect Subdominant
Crepis runcinata ssp. glauca	9.54	6.49	*	Transect Subdominant
Juncus arcticus ssp. littoralis	7.45	4.06	*	Transect Subdominant
Leymus triticoides	4.37	2.80		Microcommunity Dominant
Distichlis spicata	3.03	15.64	*	Transect Subdominant
Cirsium scariosum	3.00	3.94		Microcommunity Dominant
Polypogon monspeliensis	0.78	0.55		Microcommunity Dominant
Total Live Cover	80.69	85.35	*	·

Veg_144 N = 99 (Total Taxa for Transect: 2009 = 13; 2010 = 13)) (Mean Taxa for Transect: 2009 = 0.1; 2010 = 0.1)
--	--

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Spartina gracilis	13.02	16.57	*	Transect Subdominant
Distichlis spicata	6.44	8.30	*	Transect Subdominant
Puccinellia lemmonii	4.79	10.07	*	Transect Subdominant
Juncus arcticus ssp. littoralis	4.43	5.22		Microcommunity Dominant
Leymus triticoides	1.25	1.09		Microcommunity Dominant
Cirsium scariosum	0.44	0.18		Microcommunity Dominant
Total Live	Cover 31.58	43.66	*	

Meter interval 87-88 was not sampled in 2009, and was not used in *t*-test analysis.

Table 3-63. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Wetland/ Meadow Transects at Burbank Meadows for 2009 and 2010 (Page 3 of 3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis		25.07	23.01		Transect Dominant
Juncus arcticus ssp. littoralis		14.41	16.18		Transect Subdominant
Argentina anserina		4.29	9.20	*	Transect Subdominant
Glaux maritima		2.35	3.20		Microcommunity Dominant
Distichlis spicata		2.11	6.02	*	Microcommunity Dominant
Erigeron lonchophyllus		1.62	2.67	*	Microcommunity Dominant
Spartina gracilis		0.92	0.63		Microcommunity Dominant
Crepis runcinata ssp. glauca		0.49	1.43	*	Microcommunity Dominant
	Total Live Cover	55.94	68.04	*	
Veg_146 N = 100 (Total Taxa	a for Transect: 200	9 = 20; 2010 = 2	2) (Mean Taxa fo	or Transect: 2009	9 = 0.2; 2010 = 0.2)
		Mean Live	Mean Live	Cimulfinamen	Dominonoo

Species	Cover (MH) 2009	Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Distichlis spicata	11.42	16.05	*	Transect Subdominant
Puccinellia lemmonii	5.28	10.25	*	Transect Subdominant
Juncus arcticus ssp. littoralis	4.28	5.75	*	Microcommunity Dominant
Leymus triticoides	4.13	6.50	*	Microcommunity Dominant
Carex praegracilis	3.38	4.25		Microcommunity Dominant
Argentina anserina	2.00	3.29	*	Microcommunity Dominant
Sporobolus airoides	1.87	2.32		Microcommunity Dominant
Spartina gracilis	1.77	3.86	*	Microcommunity Dominant
Total Live C	over 35.87	56.73	*	

Veg_147 N = 100 (Total Taxa for Transect: 2009 = 17; 2010 = 18) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Carex praegracilis	27.99	25.93		Transect Dominant
Juncus arcticus ssp. littoralis	11.35	14.69	*	Transect Subdominant
Leymus triticoides	5.80	8.31	*	Transect Subdominant
Argentina anserina	3.69	2.51	*	Microcommunity Dominant
Puccinellia lemmonii	3.15	6.40	*	Microcommunity Dominant
Cirsium scariosum	2.91	2.08		Microcommunity Dominant
Hordeum jubatum	2.05	0.59	*	Microcommunity Dominant
Distichlis spicata	1.42	1.18		Microcommunity Dominant
Bassia scoparia	1.05	1.12		Microcommunity Dominant
Total Live Cover	60.85	64.80	*	

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Distichlis spicata	28.34	30.54		Transect Dominant
Juncus arcticus ssp. littoralis	11.28	13.58	*	Transect Subdominant
Argentina anserina	5.92	4.96		Microcommunity Dominant
Leymus triticoides	5.87	5.60		Microcommunity Dominant
Crepis runcinata ssp. glauca	5.15	5.51		Microcommunity Dominant
Carex praegracilis	4.60	4.39		Microcommunity Dominant
Nitrophila occidentalis	3.41	4.37	*	Microcommunity Dominant
Puccinellia lemmonii	3.19	5.19	*	Microcommunity Dominant
Glaux maritima	1.71	2.16		Microcommunity Dominant
Total Live Cover	71.04	79.79	*	

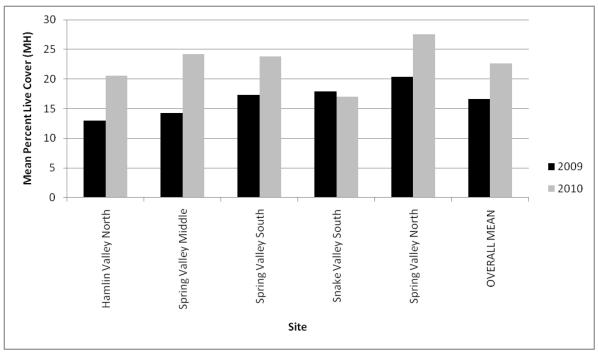
Meter interval 75-76 was not sampled in 2009, and was not used in *t*-test analysis.

3.10.3 Phreatophytic Shrubland Transects

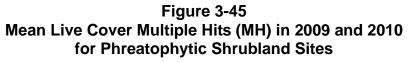
Mean live cover multiple hits (MH) overall for phreatophytic shrubland transects was 35% higher in 2010 than in 2009 (grand mean live cover (MH): 2009 = 17%, 2010 = 23%) (Table 3-64 and Figure 3-45). Four of the 5 regions showed a significant increase in mean live cover (MH) in 2010 (Spring Valley North: 40% increase; Spring Valley Middle: 71% increase; Spring Valley South: 41% increase; and Hamlin Valley North: 62% increase). Mean live cover (MH) ranged from 17% (Snake Valley South) to 28% (Spring Valley North) in 2010. This compares to a mean live cover (MH) in 2009 that ranged from 13% (Hamlin Valley South) to 20% (Spring Valley North).

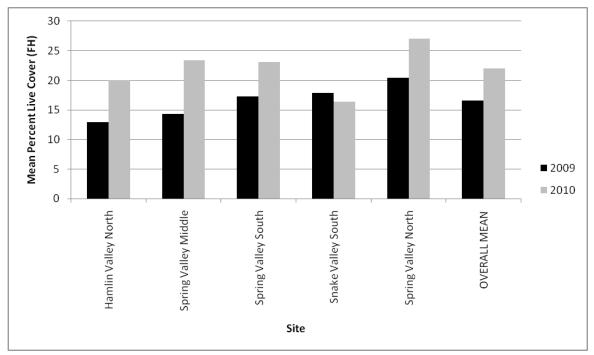
Table 3-64. Summary of Mean Live Cover Multiple Hits (MH), Mean Live Cover First Hit (FH), Total Number of Taxa and Mean Taxa Richness on the Phreatophytic Shrubland Transects in Spring and Snake Valleys for 2009 and 2010

Cover values are averages over all transects per site (grand mean). Total number of taxa is the total number of taxa or species observed across all transects per site. Mean taxa richness is the number of taxa divided by transect length, averaged across all transects per site (grand mean). Significance is for multiple hit (MH) cover between 2009 and 2010, and is based on an ANOVA test.

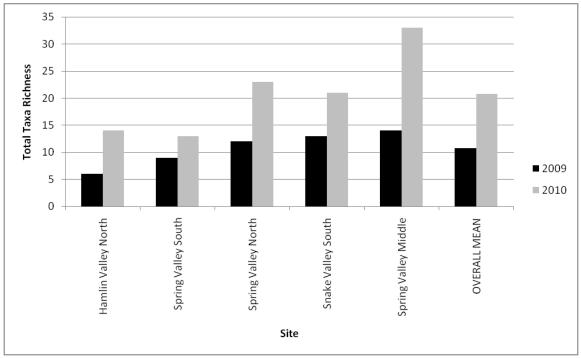

		an Live r (MH)		% Mean Live Cover (FH)		Total Number of Taxa ^a		Mean Transect	Mean Taxa Richness	
Site	2009	2010	P ≤0.05	2009	2010	2009	2010	Length (m)	2009	2010
Spring Valley North	20	28	*	20	27	12	23	100	0.04	0.09
Snake Valley South	18	17		18	16	13	21	100	0.06	0.09
Spring Valley South	17	24	*	17	23	9	13	100	0.05	0.06
Spring Valley Middle	14	24	*	14	23	14	33	100	0.05	0.10
Hamlin Valley North	13	21	*	13	20	6	14	100	0.03	0.06
GRAND MEAN	17	23		17	22	11	21		0.05	0.08

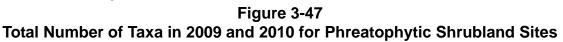
^aTotal number of taxa in the 2009 report tables may differ than those reported in the current summary table due to species that were combined based on similar species codes (e.g. Moss/ Sp. Moss) in the 2009 data analysis.


Mean live cover first hit (FH) overall for phreatophytic shrubland transects was 29% higher in 2010 than in 2009 (grand mean live cover (FH): 2009 = 17%, 2010 = 22%) (Table 3-64 and Figure 3-46). Mean live cover (FH) ranged from 16% (Snake Valley South) to 27% (Spring Valley North) in 2010. This compares to a mean live cover (MH) in 2009 that ranged from 13% (Hamlin Valley North) to 20% (Spring Valley North). Mean live cover (FH) was very similar to mean live cover (MH), changing in the same direction and to the same degree between years for each of the regions.


Total number of taxa overall for phreatophytic shrubland transects was 91% higher in 2010 than in 2009 (total: 2009 = 11, 2010 = 21), and mean taxa richness was 60% higher in 2010 than in 2009 (grand mean: 2009 = 0.05, 2010 = 0.08) (Table 3-64, Figures 3-47, and 3-48). [Although transect lengths are constant, the difference in total number of taxa is not the same as the difference in mean taxa richness. The grand mean for mean taxa richness takes into account the variation between transects, and that a species may occur on more than one transect]. Hamlin Valley North had the lowest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.03, 2010 = 0.06; total number of taxa: 2009 = 6, 2010 = 14), while Spring Valley Middle had the highest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.10; total number of taxa: 2009 = 14, 2010 = 33).

Sarcobatus vermiculatus (greasewood) was the dominant species at all of the phreatophytic shrubland transects, and there was a difference in magnitude between mean percent cover for Sarcobatus


Note: Shown in ascending order based on 2009 data.



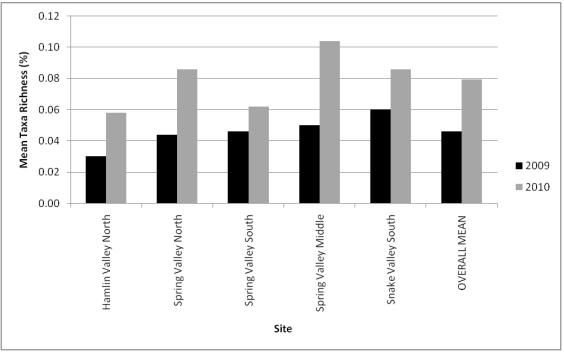

Note: Shown in ascending order based on 2009 data.

Figure 3-46 Mean Live Cover First Hits (FH) in 2009 and 2010 for Phreatophytic Shrubland Sites

Note: Shown in ascending order based on 2009 data.

Note: Shown in ascending order based on 2009 data. Total number of taxa divided by transect length, averaged across transects.

Figure 3-48 and 2010 for Phro

Mean Number of Taxa in 2009 and 2010 for Phreatophytic Shrubland Sites

Section 3.0

vermiculatus and any other species (Table 3-65, Appendix E, Tables E-4 and E-7). Within the Spring Valley regions, the shrub species *Atriplex confertifolia*, *Distichlis spicata*, *Artemisia tridentate*, and *Ericameria nauseosa* also consistently occurred and, although mean percent cover for these four species was a great degree lower compared to *Sarcobatus vermiculatus*, it was generally higher compared to other species. *Atriplex confertifolia* also occurred within the Hamlin Valley North and Snake Valley South transects, but *Distichlis spicata*, *Artemisia tridentate*, and *Ericameria nauseosa* were absent. Because most of the live plant cover was composed of shrub species, the increase in mean live cover from 2009 to 2010 is most likely due to an increase in plant growth.

3.10.3.1 Greasewood Spring Valley North

The most dominant species, by mean live cover (MH), on the phreatophytic shrubland transects at Spring Valley North in 2010 was *Sarcobatus vermiculatus* (Table 3-65). A total of 23 taxa occurred on the transects in 2010 and this total was average for the five phreatophytic shrubland sites and was substantially greater than the 12 taxa recorded in 2009. Mean live cover (MH) was above average for these phreatophytic shrubland sites.

A number of species increased significantly from 2009 to 2010 on a single transect and only one species, *Sarcobatus vermiculatus*, increased on three transects (Table 3-65). Species that showed a significant increase between 2009 and 2010 at Spring Valley North were *Distichlis spicata*, *Sarcobatus vermiculatus*, *Atriplex confertifolia*, *Elymus elymoides*, *Lepidium perfoliatum*, and *Descurainia Sophia*. *Halogeton glomeratus* significantly decreased on one transect in 2010. Mean live cover (MH) significantly increased from 2009 to 2010 on all five transects sampled.

Table 3-65. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley North, for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	23.37	30.05	*	Transect Dominant
Ericameria nauseosa	0.61	1.92		Microcommunity Dominant
Distichlis spicata	0.54	1.23	*	Microcommunity Dominant
Total Live Cover	24.54	33.78	*	
Veg_154 N = 100 (Total Taxa for Transect: 2009 Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Species	Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance
Species Sarcobatus vermiculatus	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance	Dominance Classification Transect Subdominant
Species Sarcobatus vermiculatus Atriplex confertifolia	Mean Live Cover (MH) 2009 10.74	Mean Live Cover (MH) 2010 12.61	Significance at ≤0.05	Dominance Classification Transect Subdominant Microcommunity Dominant
`	Mean Live Cover (MH) 2009 10.74 1.18	Mean Live Cover (MH) 2010 12.61 3.17	Significance at ≤0.05	Dominance Classification

Veg 153 N = 100 ((Total Taxa for Transect: 2009 :	= 4· 2010 = 6) (Mean Taxa for	Transect: 2009 = 0.04; 2010 = 0.06)
10g_100 H = 100 h	(Total Taxa for Transcott 2000	= 1, 2010 = 0) (mount taxa tor	

Table 3-65. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley North, for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	12.25	18.78	*	Transect Subdominant
Atriplex confertifolia	0.54	0.81		Microcommunity Dominant
Artemisia tridentata	0.35	0.68		Microcommunity Dominant
Chrysothamnus viscidiflorus	0.32	0.35		Microcommunity Dominant
Elymus elymoides	0.00	0.55	*	Microcommunity Dominant
Total Live Cover	13.56	21.78	*	
Veg_158 N = 100 (Total Taxa for Transect: 200	9 = 4; 2010 = 8) (Mean Taxa for T	ransect: 2009 =	0.04; 2010 = 0.08)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	16.58	17.25		Transect Subdominant
Artemisia tridentata	0.29	0.34		Microcommunity Dominant
Atriplex confertifolia	0.08	0.18		Microcommunity Dominant
Lepidium perfoliatum	0.00	2.15	*	Microcommunity Dominant
Total Live Cover	17.00	20.44	*	
Veg_185 N = 100 (Total Taxa for Transect: 200	9 = 4; 2010 = 9) (Mean Taxa for T	ransect: 2009 =	0.04; 2010 = 0.09)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	26.18	31.45	*	Transect Dominant
Halogeton glomeratus	7.02	5.15	*	Transect Subdominant
Chenopodium leptophyllum	0.70	0.23		Microcommunity Dominant
Tetradymia spinosa	0.27	0.89		Microcommunity Dominant
Descurainia sophia	0.00	5.81	*	Microcommunity Dominant
Total Live Cover	34.17	44.41	*	

Veg_157 N = 100 (Total Taxa for Transect: 2009 = 5; 2010 = 14) (Mean Taxa for Transect: 2009 = 0.05; 2010 = 0.14)

3.10.3.2 Greasewood Spring Valley Middle

The most dominant species, by mean live cover (MH), on the phreatophytic shrubland transects at Spring Valley Middle in 2010 was *Sarcobatus vermiculatus* (Table 3-66). A total of 33 taxa occurred on the transects in 2010 and this total was well above average for the five phreatophytic shrubland sites and was substantially greater than the 14 taxa recorded in 2009. Live cover (MH) was slightly above average for these phreatophytic shrubland sites.

As reported for Spring Valley North, a number of species increased significantly from 2009 to 2010 on a single transect and only one species, Sarcobatus vermiculatus, increased on more than one transect (four out of five transects) (Table 3-66). Species that showed a significant increase between 2009 and 2010 at Spring Valley Middle were *Erodium cicutarium, Eriastrum diffusum, Sarcobatus vermiculatus, Suaeda moquinii, Distichlis spicata, Suaeda calceoliformis,* and *Iva axillaris. Chenopodium incanum* significantly decreased on one transect in 2010. Mean live cover (MH) significantly increased from 2009 to 2010 on four of the five transects sampled.

Table 3-66. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover forPhreatophytic Shrubland Transects, Spring Valley Middle, for 2009 and 2010

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		9.88	8.89		Transect Subdominant
Artemisia tridentata		6.42	5.83		Transect Subdominant
Chenopodium incanum		0.87	0.00	*	Microcommunity Dominant
Erodium cicutarium		0.00	4.61	*	Microcommunity Dominant
Lappula occidentalis var. cup	oulata	0.00	1.52	*	Microcommunity Dominant
	Total Live Cover	17.30	21.60		
Veg_152 N = 100 (Total Taxa	a for Transect: 2009	= 5; 2010 = 12)	(Mean Taxa for	Transect: 2009 =	= 0.05; 2010 = 0.12)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		15.89	25.35	*	Transect Dominant
Suaeda moquinii		2.19	4.83	*	Microcommunity Dominant
Atriplex confertifolia		0.55	0.68		Microcommunity Dominant
Artemisia tridentata		0.55	0.88		Microcommunity Dominant
Tetradymia spinosa		0.54	0.40		Microcommunity Dominant
Eriastrum diffusum		0.19	2.52	*	Microcommunity Dominant
	Total Live Cover			*	
Veg_155 N = 100 (Total Taxa	Total Live Cover	19.36	34.86		- 0.07. 2010 - 0.12)
$veg_155 N = 100 (10tal 1ax)$	a for fransect. 2009		•	Transect. 2009 =	= 0.07, 2010 = 0.13j
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		9.35	15.53	*	Transect Subdominant
Sporobolus airoides		1.03	1.40		Microcommunity Dominant
Distichlis spicata		0.69	1.65	*	Microcommunity Dominant
Artemisia tridentata		0.44	0.99		Microcommunity Dominant
Atriplex confertifolia		0.40	0.81		Microcommunity Dominant
	Total Live Cover	11.98	21.80	*	
	a for Transect: 2009) = 5; 2010 = 6) (Mean Taxa for T	ransect: 2009 =	0.05; 2010 = 0.06)
$veg_156 N = 100 (10tal 1ax)$					
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Species		Cover (MH)	Cover (MH)	•	
Species Sarcobatus vermiculatus		Cover (MH) 2009	Cover (MH) 2010	at ≤0.05	Classification Transect Dominant
Species Sarcobatus vermiculatus Atriplex confertifolia		Cover (MH) 2009 16.51	Cover (MH) 2010 23.98	at ≤0.05	Classification Transect Dominant Microcommunity Dominant
		Cover (MH) 2009 16.51 1.11	Cover (MH) 2010 23.98 1.39	at ≤0.05	Classification
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii Suaeda calceoliformis	Total Live Cover	Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86	at ≤0.05 * *	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii Suaeda calceoliformis		Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87 0 = 4; 2010 = 10)	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86 (Mean Taxa for	at ≤0.05 * *	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii		Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86	at ≤0.05 * *	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii Suaeda calceoliformis Veg_184 N = 100 (Total Tax Species		Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87 9 = 4; 2010 = 10) Mean Live Cover (MH)	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86 (Mean Taxa for Mean Live Cover (MH)	at ≤0.05 * * Transect: 2009 = Significance	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant = 0.04; 2010 = 0.10) Dominance
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii Suaeda calceoliformis Veg_184 N = 100 (Total Taxa		Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87 9 = 4; 2010 = 10) Mean Live Cover (MH) 2009	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86 (Mean Taxa for Mean Live Cover (MH) 2010	at ≤0.05 * * Transect: 2009 = Significance at ≤0.05	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant 5 0.04; 2010 = 0.10) Classification Transect Subdominant
Species Sarcobatus vermiculatus Atriplex confertifolia Suaeda moquinii Suaeda calceoliformis Veg_184 N = 100 (Total Taxi Species Sarcobatus vermiculatus		Cover (MH) 2009 16.51 1.11 1.11 0.00 18.87 9 = 4; 2010 = 10) Mean Live Cover (MH) 2009 3.37	Cover (MH) 2010 23.98 1.39 1.21 1.24 27.86 (Mean Taxa for Mean Live Cover (MH) 2010 11.42	at ≤0.05 * * Transect: 2009 = Significance at ≤0.05	Classification Transect Dominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant 5 0.04; 2010 = 0.10) Dominance Classification

3.10.3.3 Greasewood Spring Valley South

The most dominant species, by mean live cover (MH), on the phreatophytic shrubland transects at Spring Valley South in 2010 was *Sarcobatus vermiculatus* (Table 3-67). A total of 13 taxa occurred on the transects in 2010 and this total was well below average for the five phreatophytic shrubland sites and was slightly greater than the 9 taxa recorded in 2009. Mean live cover (MH) was slightly above average for these phreatophytic shrubland sites.

A number of species increased significantly from 2009 to 2010 on a single transect and two species, *Sarcobatus vermiculatus* and *Ericameria nauseosa*, increased on more than one transect (Table 3-67). Species that showed a significant increase between 2009 and 2010 at Spring Valley South were *Distichlis spicata*, *Atriplex confertifolia*, *Elymus elymoides*, *Sarcobatus vermiculatus*, *Ericameria nauseosa*, and *Artemisia tridentata*. There were no species that showed a significant decrease between 2009 and 2010. Mean Live Cover (MH) significantly increased from 2009 to 2010 on all five transects sampled.

Table 3-67. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Spring Valley South, for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		11.46	12.17		Transect Subdominant
Distichlis spicata		5.35	8.19	*	Transect Subdominant
Ericameria nauseosa		0.70	0.68		Microcommunity Dominant
Atriplex confertifolia		0.64	0.87		Microcommunity Dominant
	Total Live Cover	18.18	22.08	*	
Veg_136 N = 100 (Total Taxa	for Transect: 2009) = 2; 2010 = 3) (Mean Taxa for T	ransect: 2009 =	0.02; 2010 = 0.03)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		15.58	19.09	*	Transect Subdominant
Atriplex confertifolia		1.32	2.91	*	Microcommunity Dominant
Elymus elymoides		0.00	0.32	*	Microcommunity Dominant
	Total Live Cover	16.90	22.32	*	
Veg_137 N = 100 (Total Taxa	for Transect: 2009) = 8; 2010 = 9) (Mean Taxa for T	ransect: 2009 =	0.08; 2010 = 0.09)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		19.76	20.75		Transect Dominant
Suaeda sp.		2.78	5.11	*	Microcommunity Dominant
Atriplex confertifolia		2.00	1.64		Microcommunity Dominant
Distichlis spicata		1.83	2.21		Microcommunity Dominant
Ericameria nauseosa		0.97	1.56	*	Microcommunity Dominant
Bassia scoparia		0.82	0.51		Microcommunity Dominant
.		0.46	0.61		Microcommunity Dominant
Sporobolus airoides		0.40	0.01		

Table 3-67. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover forPhreatophytic Shrubland Transects, Spring Valley South, for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	6.85	12.93	*	Transect Subdominant
Ericameria nauseosa	1.66	2.78	*	Microcommunity Dominant
Distichlis spicata	0.99	1.19		Microcommunity Dominant
Suaeda moquinii	0.00	2.55	*	Microcommunity Dominant
Total Live Cover	9.87	21.09	*	
Veg_149 N = 100 (Total Taxa for Transect: 200	9 = 3; 2010 = 4) (Mean Taxa for T	ransect: 2009 =	0.03; 2010 = 0.04)
Veg_149 N = 100 (Total Taxa for Transect: 200 Species	9 = 3; 2010 = 4) (Mean Live Cover (MH) 2009	Mean Taxa for T Mean Live Cover (MH) 2010	ransect: 2009 = Significance at ≤0.05	0.03; 2010 = 0.04) Dominance Classification
Species	Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance
Species Sarcobatus vermiculatus	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
	Mean Live Cover (MH) 2009 10.65	Mean Live Cover (MH) 2010 16.53	Significance at ≤0.05 ∗	Dominance Classification Transect Subdominant

Veg_138 N = 100 (Total Taxa for Transect: 2009 = 5; 2010 = 8) (Mean Taxa for Transect: 2009 = 0.05; 2010 = 0.08)

3.10.3.4 Greasewood Hamlin Valley North

The most dominant species, by mean live cover (MH), on the phreatophytic shrubland transects at Hamlin Valley North in 2010 were *Sarcobatus vermiculatus* and *Grayia spinosa* (Table 3-68). A total of 14 taxa occurred on the transects in 2010 and this total was well below average for the five phreatophytic shrubland sites and was greater than the 6 taxa recorded in 2009. Mean live cover (MH) was slightly below average for these phreatophytic shrubland sites.

A number of species increased significantly from 2009 to 2010 on a single transect and three species, *Sarcobatus vermiculatus*, *Atriplex confertifolia*, and *Halogeton glomeratus* increased on more than one transect (Table 3-68). Species that showed a significant increase between 2009 and 2010 at Hamlin Valley North were *Atriplex confertifolia*, *Elymus elymoides*, *Sarcobatus vermiculatus*, *Halogeton glomeratus*, *Grayia spinosa*, and *Picrothamnus desertorum*. There were no species that showed a significant decrease between 2009 and 2010. Mean live cover (MH) significantly increased from 2009 to 2010 on four of the five transects sampled.

Table 3-68. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Hamlin Valley North, for 2009 and 2010

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_159 N = 100 (Total Taxa for Transect: 2009 = 3; 2010 = 7) (Mean Taxa for Transect: 2009 = 0.03; 2010 = 0.07)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	16.51	19.95	*	Transect Subdominant
Atriplex confertifolia	0.48	1.33	*	Microcommunity Dominant
Elymus elymoides	0.00	0.76	*	Microcommunity Dominant
Total Live Cov	er 17.03	22.43	*	

Veg_160 N = 100 (Total Taxa for Transect: 2009 = 2; 2010 = 3) (Mean Taxa for Transect: 2009 = 0.02; 2010 = 0.03)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	3.11	8.45	*	Microcommunity Dominant
Atriplex confertifolia	1.22	1.72		Microcommunity Dominant
Total Live Cover	4.33	10.32	*	

Veg_161 N = 100 (Total Taxa for Transect: 2009 = 2; 2010 = 4) (Mean Taxa for Transect: 2009 = 0.02; 2010 = 0.04)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification	
Sarcobatus vermiculatus	5.50	13.72	*	Transect Subdominant	
Atriplex confertifolia	0.61	1.33	*	Microcommunity Dominant	
Total Live Cover	6.11	15.13	*		

Veg_162 N = 100 (Total Taxa for Transect: 2009 = 2; 2010 = 7) (Mean Taxa for Transect: 2009 = 0.02; 2010 = 0.07)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	23.86	25.43		Transect Dominant
Atriplex confertifolia	0.09	0.34		Microcommunity Dominant
Halogeton glomeratus	0.00	0.97	*	Microcommunity Dominant
Total Live Cover	23.95	27.47		

Veg_163 N = 100 (Total Taxa for Transect: 2009 = 6; 2010 = 8) (Mean Taxa for Transect: 2009 = 0.06; 2010 = 0.08)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	8.19	12.62	*	Transect Subdominant
Grayia spinosa	3.83	9.66	*	Transect Subdominant
Halogeton glomeratus	0.75	2.91	*	Microcommunity Dominant
Picrothamnus desertorum	0.31	1.22	*	Microcommunity Dominant
Total Live Cove	er 13.14	27.48	*	

3.10.3.5 Greasewood Snake Valley South

The most dominant species, by mean live cover (MH), on the phreatophytic shrubland transects at Snake Valley South in 2010 was *Sarcobatus vermiculatus* (Table 3-69). A total of 21 taxa occurred on the transects in 2010 and this total was average for the five phreatophytic shrubland sites and was greater than the 13 taxa recorded in 2009. Mean live cover (MH) was below average for these phreatophytic shrubland sites.

A number of species increased significantly from 2009 to 2010 on a single transect and one species, *Chrysothamnus humilis*, increased on three transects (Table 3-69). Species that showed a significant increase between 2009 and 2010 at Snake Valley South were *Chrysothamnus humilis*, *Achnatherum hymenoides, Halogeton glomeratus, Bassia americana*, and *Picrothamnus desertorum*. There were also two species that showed a significant decrease between 2009 and 2010, which included *Sarcobatus vermiculatus* and *Gutierrezia sarothrae*. Mean live cover (MH) showed no change on four of the five transects and significantly decreased from 2009 to 2010 on one transect sampled.

Table 3-69. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Snake Valley South, for 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		26.90	27.04		Transect Dominant
Tetradymia spinosa		1.42	0.00	*	Microcommunity Dominant
Halogeton glomeratus		0.23	0.41		Microcommunity Dominant
	Total Live Cover	29.22	29.57		
Veg_180 N = 100 (Total Taxa	for Transect: 2009) = 4; 2010 = 4) (Mean Taxa for T	ransect: 2009 =	0.04; 2010 = 0.04)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		16.33	14.36	*	Transect Subdominant
Bassia americana		2.12	2.65		Microcommunity Dominant
Atriplex confertifolia		0.42	0.72		Microcommunity Dominant
	Total Live Cover	19.08	17.95		
Veg_181 N = 100 (Total Taxa	for Transect: 2009) = 4; 2010 = 9) (Mean Taxa for T	ransect: 2009 =	0.04; 2010 = 0.09)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus		11.73	9.60		Transect Subdominant
Gutierrezia sarothrae		1.45	0.00	*	Microcommunity Dominant
Atriplex confertifolia		0.92	0.89		Microcommunity Dominant
Chrysothamnus humilis		0.00	1.05	*	Microcommunity Dominant
	Total Live Cover	14.52	12.97		

Veg_179 N = 100 (Total Taxa for Transect: 2009 = 6; 2010 = 11) (Mean Taxa for Transect: 2009 = 0.06; 2010 = 0.11)

Table 3-69. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for Phreatophytic Shrubland Transects, Snake Valley South, for 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Sarcobatus vermiculatus	10.11	9.80		Transect Subdominant
Gutierrezia sarothrae	1.14	0.00	*	Microcommunity Dominant
Atriplex confertifolia	0.75	0.53		Microcommunity Dominant
Picrothamnus desertorum	0.34	0.92		Microcommunity Dominant
Achnatherum hymenoides	0.16	0.89	*	Microcommunity Dominant
Halogeton glomeratus	0.09	0.50	*	Microcommunity Dominant
Chrysothamnus humilis	0.00	1.05	*	Microcommunity Dominant
Total Live Cove	12.62	14.13		
Veg_183 N = 100 (Total Taxa for Transect: 20	09 = 9; $2010 = 9$)	Mean Taxa for T	ransoct: 2000 -	0.00, 2010 - 0.00
			14113001. 2009 -	0.09, 2010 = 0.09)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Species	Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance
Species Sarcobatus vermiculatus	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
	Mean Live Cover (MH) 2009 11.91	Mean Live Cover (MH) 2010 6.94	Significance at ≤0.05	Dominance Classification Transect Subdominant
Species Sarcobatus vermiculatus Gutierrezia sarothrae Picrothamnus desertorum	Mean Live Cover (MH) 2009 11.91 0.64	Mean Live Cover (MH) 2010 6.94 0.00	Significance at ≤0.05 ∗	Dominance Classification Transect Subdominant Microcommunity Dominant
Species Sarcobatus vermiculatus Gutierrezia sarothrae Picrothamnus desertorum Atriplex confertifolia	Mean Live Cover (MH) 2009 11.91 0.64 0.55	Mean Live Cover (MH) 2010 6.94 0.00 1.22	Significance at ≤0.05 ∗	Dominance Classification Transect Subdominant Microcommunity Dominant Microcommunity Dominant
Species Sarcobatus vermiculatus Gutierrezia sarothrae	Mean Live Cover (MH) 2009 11.91 0.64 0.55 0.50	Mean Live Cover (MH) 2010 6.94 0.00 1.22 0.38	Significance at ≤0.05 * *	Dominance Classification Transect Subdominant Microcommunity Dominant Microcommunity Dominant Microcommunity Dominant

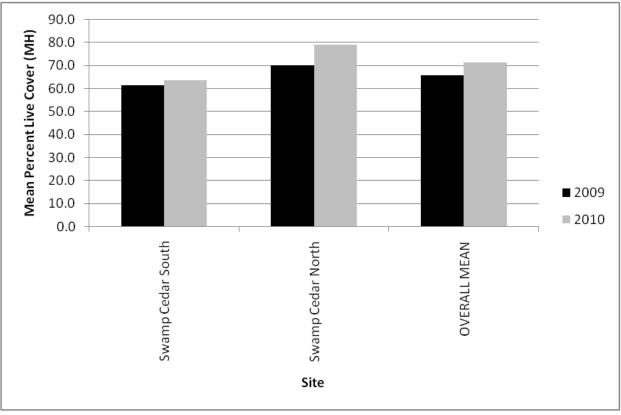
Veg_182 N = 100 (Total Taxa for Transect: 2009 = 7; 2010 = 10) (Mean Taxa for Transect: 2009 = 0.07; 2010 = 0.10)

3.10.4 VFRM Juniper Transects

For the VFRM juniper woodland transects, analyses were run on the two VFRM juniper woodland populations (Swamp Cedar North and Swamp Cedar South), as well as on Dry Sites and Wet Sites within each of the populations. Transects were categorized as Dry Site or Wet Site by using the understory vegetation composition to deduce typical moisture conditions (Swamp Cedar North: 8 Dry Sites, 8 Wet Sites; Swamp Cedar South: 8 Dry Sites, 8 Wet Sites).

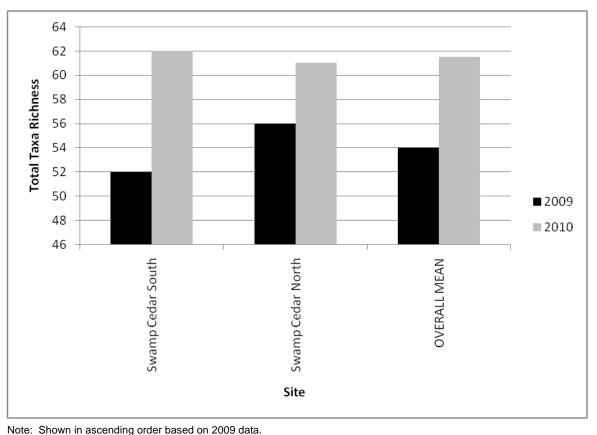
Mean live cover multiple hits (MH) overall for VFRM juniper woodland transects differed slightly from 2009 to 2010 (grand mean: 2009 = 65%, 2010 = 71%) (Table 3-70 and Figure 3-49). One of the two populations showed a significant increase in mean live cover (MH) in 2010 (Swamp Cedar North: 13% increase). The biggest difference in mean live cover (MH) between 2009 and 2010 was seen in the Swamp Cedar North – Wet Sites, which increased 16% in 2010 (2009: 83%, 2010: 96%).

Mean live cover (MH) at Swamp Cedar North was 15-25% higher than at Swamp Cedar South in both 2009 and 2010 (grand mean: Swamp Cedar North 2009 = 70%, 2010 = 79%; Swamp Cedar South 2009 = 61%, 2010 = 63%) (Table 3-70 and Figure 3-50). Across populations, mean live cover (MH) was 64-70% higher at Wet Sites than at Dry Sites in both 2009 and 2010 (grand mean: Dry Sites 2009 = 50%, 2010 = 53%; Wet Sites 2009 = 81%, 2010 = 90%). Swamp Cedar South – Dry Sites had the lowest mean live cover (MH) in both 2009 and 2010 (grand mean: 2009 = 43%, 2010 = 43%), while Swamp Cedar North – Wet Sites had the highest mean live cover (MH) in both 2009 and 2010 (grand mean: 2009 = 83%, 2010 = 96%).


Table 3-70. Summary of Mean Live Cover Multiple Hits (MH), Total Number of Taxa and Mean Taxa Richness on the VFRM Woodland Belt Transects in Spring Valley for 2009 and 2010

Cover values are averages over all transects per site (grand mean). Total number of taxa is the total number of taxa or species observed across all transects per site. Mean taxa richness is the number of taxa divided by transect length, averaged across all transects per site (grand mean). Significance is for multiple hit (MH) cover between 2009 and 2010, and is based on an ANOVA test.

		an Live r (MH)		Total Number of Taxa ^a		Mean Transect	Mean Taxa Richness	
Site	2009	2010	P ≤0.05	2009	2010	Length (m) ^b	2009	2010
Swamp Cedar North	70	79						
Overall	56	62	*	56	61	20	0.8	0.9
Dry Sites	83	96		27	34	20	0.7	0.8
Wet Sites				48	52	20	0.9	1.1
Swamp Cedar South	61	63						
Overall	43	43		52	62	20	0.5	0.6
Dry Sites	79	83		21	19	20	0.4	0.4
Wet Sites				46	56	20	0.6	0.7
	65	71						
GRAND MEAN	70	79		54	62		0.6	0.7


^aTotal number of taxa in the 2009 report tables may differ than those reported in the current summary table due to species that were combined based on similar species codes (e.g. Moss/ Sp. Moss) in the 2009 data analysis.

^bAnalysis were done at the belt transect level.

Note: Shown in ascending order based on 2009 data.

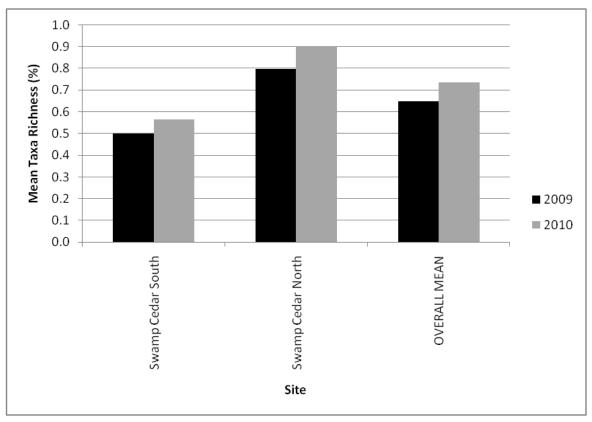

Figure 3-49 Mean Live Cover Multiple Hits (MH) in 2009 and 2010 for **VFRM Juniper Woodland Sites**

Figure 3-50 Total Number of Taxa in 2009 and 2010 for VFRM Juniper Woodland Sites

Total number of taxa overall for VFRM juniper woodland transects was 15% higher in 2010 than in 2009 (total: 2009 = 54, 2010 = 62), and mean taxa richness was 17% higher in 2010 than in 2009 (grand mean: 2009 = 0.6, 2010 = 0.7) (Table 3-70, Figures 3-50 and 3-51). Most notable is the increase in total number of taxa in 2010 for Swamp Cedar North – Dry Sites (26% increase) and Swamp Cedar South – Wet Sites (22% increase), and the increase in mean taxa richness in 2010 for Swamp Cedar North – Wet Sites (22% increase).

Mean taxa richness was 50-60% higher at Swamp Cedar North than at Swamp Cedar South in both 2009 and 2010 (grand mean: Swamp Cedar North 2009 = 0.8, 2010 = 0.9%; Swamp Cedar South 2009 = 0.5, 2010 = 0.6), although total number of taxa did not appreciably differ (total: Swamp Cedar North 2009 = 56, 2010 = 61; Swamp Cedar South 2009 = 52, 2010 = 62) (Table 3-70, Figures 3-50 and 3-51). Across populations, mean taxa richness was 36-50% higher at Wet Sites than at Dry Sites in both 2009 and 2010 (grand mean: Dry Sites 2009 = 0.6, 2010 = 0.6; Wet Sites 2009 = 0.8, 2010 = 0.9). Swamp Cedar South – Dry Sites had the lowest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.4, 2010 = 0.4; total number of taxa: 2009 = 21, 2010 = 19), while Swamp Cedar North – Wet Sites had the highest taxa richness in both 2009 and 2010 (mean taxa richness: 2009 = 0.1, 2010 = 1.1; total number of taxa: 2009 = 48, 2010 = 52).

Note: Shown in ascending order based on 2009 data. Total number of taxa divided by transect length, averaged across transects.

Figure 3-51 Mean Number of Taxa in 2009 and 2010 for VFRM Juniper Woodland Sites

The live cover of some individual species or taxa changed greatly between 2009 and 2010, whereas other species cover varied little between the two years (Appendix E, Table E-8). Juniperus scopulorum (VFRM juniper, or swamp cedar) was the dominant species at all of the VFRM juniper woodland transects, and there was a difference in magnitude between mean percent cover for Juniperus scopulorum and any other species (Table 3-70 and Appendix E, Table E-8). Across populations, Juniperus scopulorum had 37% greater mean percent cover at Wet Sites compared to Dry Sites in both 2009 and 2010 (grand mean: Wet Sites 2009 = 54%, 2010 = 56%; Dry Sites 2009 = 40%, 2010 = 41%). The grassland species *Sporobolus airoides* also consistently occurred across both populations and, although mean percent cover for this species was a great degree lower compared to Juniperus scopulorum, it was generally higher compared to the other understory species (Appendix E, Table E-8). In the Swamp Cedar North population, the shrub species Ericameria nauseosa and the grassland species Leymus triticoides and Puccinellia lemmonii were also common with relatively higher mean percent cover compared to the other understory species. The Swamp Cedar South population had less understory than the Swamp Cedar North population in both 2009 and 2010; this was especially true on the Swamp Cedar South – Dry Sites.

3.10.4.1 Swamp Cedar North Wet Sites

Overstory cover of *Juniperus scopulorum* showed an increase on five transects between 2009 and 2010 at the wet VFRM juniper woodland sites in Swamp Cedar North. A total of 11 understory species had significant changes in mean live cover (MH) between 2009 and 2010 (Table 3-71). Eight of these species had increases in cover in 2010, and only three species had less cover in 2010. Understory species that had more cover in 2010 included *Puccinellia lemmonii, Distichlis spicata, Poa* sp., *Spartina gracilis, Atriplex micrantha, Leymus triticoides, Bassia scoparia*, and *Poa secunda*. Understory species that had less cover in 2010 than in 2009 included *Argentina anserine, Sporobolus airoides*, and *Crepis runcinata*.

Table 3-71. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Wet Sites, 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg_098 N = 20 (Total Taxa for Transect: 2009 = 20; 2010 = 26) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.3)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	65.30	71.23	*	Transect Dominant
Puccinellia lemmonii	8.32	14.30	*	Transect Subdominant
Distichlis spicata	6.28	9.38	*	Transect Subdominant
Pyrrocoma lanceolata	5.98	5.90		Transect Subdominant
Carex sp.	3.78	3.92		Microcommunity Dominant
Total Live C	over 108.37	125.05	*	·

Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* in 2009 and *Carex parryana* in 2010 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_104 N = 20 (Total Taxa for Transect: $2009 = 24$; $2010 = 27$) (Mean Taxa for Transect: $2009 = 1.2$;	2010 = 1.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	31.82	34.58		Transect Dominant
Poa sp.	6.22	9.13	*	Transect Subdominant
Spartina gracilis	6.22	5.83		Transect Subdominant
Equisetum arvense	2.20	2.57		Microcommunity Dominant
Argentina anserina	1.78	0.23	*	Microcommunity Dominant
Rosa woodsii	1.48	1.67		Microcommunity Dominant
Ericameria nauseosa	0.72	1.17		Microcommunity Dominant
Total Live Cover	57.63	63.82	*	-

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Veg_105 N = 20 (Total Taxa for Transect: 2009 = 16; 2010 = 15) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.8)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	43.57	43.17		Transect Dominant
Ericameria nauseosa	4.80	2.90		Microcommunity Dominant
Sporobolus airoides	4.38	2.25	*	Microcommunity Dominant
Total Live Cover	55.80	51.93	*	

Table 3-71. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Wet Sites, 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	54.38	57.85		Transect Dominant
Leymus triticoides	31.32	48.88	*	Transect Dominant
Bassia scoparia	5.63	5.68		Transect Subdominant
Poa sp.	2.98	4.83		Microcommunity Dominant
Atriplex micrantha	0.10	5.72	*	Microcommunity Dominant
Total Live Cover	98.52	127.22	*	2

Based on field data and the distribution of hits along the transect, species listed as Poa secunda or Puccinellia lemmonii in 2009 and Poa pratensis or Poa secunda in 2010 were analyzed as Poa sp. for t-test analysis. D)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		51.53	59.33	*	Transect Dominant
Leymus triticoides		15.85	15.55		Transect Subdominant
Sporobolus airoides		10.02	11.87		Transect Subdominant
Spartina gracilis		4.68	2.42		Microcommunity Dominant
Poa sp.		3.02	8.53	*	Microcommunity Dominant
Bassia scoparia		2.33	7.83	*	Microcommunity Dominant
Sarcobatus vermiculatus		1.88	0.92		Microcommunity Dominant
	Total Live Cover	95.00	113.28	*	

Based on field data and the distribution of hits along the transect, species listed as Puccinellia lemmonii in 2009 and Poa secunda or Puccinellia lemmonii in 2010 were analyzed as Poa sp. for t-test analysis.

Veg_110 N = 20 (Total Taxa for Transect: 2009 = 19; 2010 = 21) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1	.1)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		163.15	173.10	*	Transect Dominant
Leymus triticoides		62.35	68.35		Transect Dominant
Distichlis spicata		32.35	37.55		Transect Dominant
Poa sp.		17.10	17.65		Transect Subdominant
Nitrophila occidentalis		14.40	10.40		Transect Subdominant
Sarcobatus vermiculatus		12.10	11.10		Transect Subdominant
Ericameria nauseosa		8.45	5.90		Transect Subdominant
Crepis runcinata ssp. glauca		6.05	4.25	*	Transect Subdominant
	Total Live Cover	108.63	114.20		

Based on field data and the distribution of hits along the transect, species listed as Poa secunda or Puccinellia lemmonii in 2009 and Poa secunda or Puccinellia lemmonii in 2010 were analyzed as Poa sp. for t-test analysis. Veg_111 N = 20 (Total Taxa for Transect: 2009 = 19; 2010 = 21) (Mean Taxa for Transect: 2009 = 1.0; 2010 = 1.1)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	56.17	61.17	*	Transect Dominant
Leymus triticoides	8.92	10.38		Transect Subdominant
Spartina gracilis	4.12	6.92	*	Transect Subdominant
Equisetum arvense	3.03	3.05		Microcommunity Dominant
Dodecatheon pulchellum	2.35	2.62		Microcommunity Dominant
Total Live Cover	87.20	99.22	*	
Veg_112 N = 20 (Total Taxa for Transect: 2009	= 12; 2010 = 17)	(Mean Taxa for	Transect: 2009 =	= 0.6; 2010 = 0.9)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	39.88	47.23	*	Transect Dominant
Puccinellia lemmonii	10.22	15.90	*	Transect Subdominant
Sporobolus airoides	2.90	2.83		Microcommunity Dominant
Ericameria nauseosa	2.68	3.12		Microcommunity Dominant
Poa secunda	0.00	2.78	*	Microcommunity Dominant

3.10.4.2 Swamp Cedar North Dry Sites

In contrast to changes observed among cover of individual species and mean live cover (MH) on wet sites in Swamp Cedar North, cover changes on drier sites were not as many and fewer species were involved. Only six understory species showed significant changes in cover on drier areas of Spring Valley North. Increases of cover between 2009 and 2010 occurred for Ericameria nauseosa, Sporobolus airoides, Leymus triticoides, Poa secunda, and Hymenoxys lemonii, and Poa sp. (Table 3-72). However, *Poa secunda* also had a decrease in cover on one belt transect between the two years. The overstory canopy of Juniperus scopulorum had increased cover on two transects between the two years. Total live cover of all vegetation increased significantly on four belt transects and did not change on the remaining transects in this same period (Table 3-72).

Table 3-72. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Dry Sites, 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired t-test comparison.

Veg 099 N = 20 (Total Taxa for Transect:	2009 = 12: 2010 = 14) (Mean Taxa	a for Transect: 2009 = 0.6: 2010 = 0.7)
$\mathbf{v} = \mathbf{v} = \mathbf{v} + $	2003 - 12, 2010 - 17 (inical) 1000	2 101 110100000 - 2000 - 0.0, 2010 - 0.7

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	38.88	45.33	*	Transect Dominant
Ericameria nauseosa	7.98	5.57	*	Transect Subdominant
Total Live Cover	50.75	55.37	*	
Veg_100 N = 20 (Total Taxa for Transect: 2009	= 11; 2010 = 12)	(Mean Taxa for	Transect: 2009 =	= 0.6; 2010 = 0.6)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	43.23	42.83		Transect Dominant
Ericameria nauseosa	4.45	3.23		Microcommunity Dominant
<i>Poa</i> sp.	1.80	1.60		Microcommunity Dominant
Leymus triticoides	1.78	3.90	*	Microcommunity Dominant
Total Live Cover	53.42	53.98		

Based on field data and the distribution of hits along the transect, species listed as Puccinellia lemmonii in 2009 and Poa secunda in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	37.85	41.67		Transect Dominant
Ericameria nauseosa	2.95	7.25	*	Microcommunity Dominant
Sporobolus airoides	1.58	4.92	*	Microcommunity Dominant
Poa secunda	1.00	4.38	*	Microcommunity Dominant
Total Live Cover	45.43	60.92	*	-

Veg_102 N = 20 (Total Taxa for Transect: 2009 = 13; 2010 = 14) (Mean Taxa for Transect: 2009 = 0.7; 2010 = 0.7)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	49.70	46.38		Transect Dominant
Ericameria nauseosa	4.97	6.38		Transect Subdominant
Poa sp.	4.48	5.55		Transect Subdominant
Sporobolus airoides	4.13	6.87	*	Transect Subdominant
Cirsium scariosum	2.02	1.15		Microcommunity Dominant
Leymus triticoides	1.98	3.13		Microcommunity Dominant
Hymenoxys lemmonii	1.43	2.13	*	Microcommunity Dominant
Total Live Cove	er 69.52	73.75		-

Table 3-72. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar North Dry Sites, 2009 and 2010 (Page 2 of 2)

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	48.67	51.97	ut 20.00	Transect Dominant
Sporobolus airoides	10.97	9.40	*	Transect Subdominant
Poa sp.	3.28	3.68		Microcommunity Dominant
Ericameria nauseosa	1.25	1.30		Microcommunity Dominant
Sarcobatus vermiculatus	0.63	1.13		Microcommunity Dominant
Total Live C	over 66.92	69.65		-

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Veg_106 N = 20 (Total Taxa for Transect: 2009 = 11; 2010 = 14) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.7) Mean Live Mean Live Cover (MH) Cover (MH) Significance Dominance 2009 2010 at ≤0.05 Classification Species Transect Dominant Juniperus scopulorum 28.25 24.83 Ericameria nauseosa 9.27 13.45 Transect Subdominant Sporobolus airoides 4.50 6.25 Transect Subdominant Poa sp. 1.75 2.63 **Microcommunity Dominant** Sarcobatus vermiculatus 1.63 2.83 **Microcommunity Dominant** 46.55 Total Live Cover 53.10

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Veg_109 N = 20 (Total Taxa for	r Transect: 2009 = 16; 2010 = 18) (Mean Taxa f	or Transect: 2009 = 0.8; 2010 = 0.9)
--------------------------------	--	--------------------------------------

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	54.82	58.15		Transect Dominant
Sporobolus airoides	6.05	6.52		Transect Subdominant
Poa sp.	1.18	4.47	*	Microcommunity Dominant
Ericameria nauseosa	0.78	2.00		Microcommunity Dominant
Total Live Cover	65.30	74.05	*	

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* or *Puccinellia lemmonii* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

Veg_113 N = 20 (Total Taxa for Transect: 2009 = 15; 2010 = 17) (Mean Taxa for Transect: 2009 = 0.8; 2010 = 0.9)

•- (Mean Live Cover (MH)	Mean Live Cover (MH)	Significance	Dominance Classification
Species	2009	2010	at ≤0.05	
Juniperus scopulorum	31.75	36.50	*	Transect Dominant
Sporobolus airoides	4.45	7.18	*	Transect Subdominant
Artemisia tridentata	2.68	3.72		Microcommunity Dominant
Ericameria nauseosa	1.82	2.00		Microcommunity Dominant
Poa sp.	1.27	2.87		Microcommunity Dominant
Carex praegracilis	0.93	1.08		Microcommunity Dominant
Cordylanthus ramosus	0.07	0.93		Microcommunity Dominant
Total Live Co	over 44.90	57.08	*	

Based on field data and the distribution of hits along the transect, species listed as *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

3.10.4.3 Swamp Cedar South Wet Sites

Eleven species had significant changes occur in mean live cover (MH) between 2009 and 2010 on wet sites in Swamp Cedar South (Table 3-73). The overstory species *Juniperus scopulorum* showed a decrease in cover on one transect between 2009 and 2010 and showed little change on the remaining belt transects. A total of nine species had increases in mean live cover (MH) between 2009 and 2010 and included *Sporobolus airoides, Muhlenbergia richardsonis, Ericameria nauseosa, Distichlis spicata, Agrostis gigantea, Cirsium* sp., *Schedonorus pratensis* and *Poa* sp. *Sporobolus airoides* also declined in cover on one belt transect between 2009 and 2010. Total live cover had significant increases between 2009 and 2010 on three transects and had significant declines on another three transects (Table 3-73). Therefore, the net effect of cover changes of vegetation between 2009 and 2010 in wet areas of VFRM juniper woodland communities was to the slight upside in Swamp Cedar South.

Table 3-73. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar South Wet Sites, 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		54.08	55.18		Transect Dominant
Poa pratensis		12.75	6.13	*	Transect Subdominant
Carex praegracilis		9.32	10.47		Transect Subdominant
Trifolium sp.		3.32	0.65		Microcommunity Dominant
	Total Live Cover	88.20	79.92	*	
Veg_122 N = 20 (Total Taxa f	or Transect: 2009	= 10; 2010 = 10)	(Mean Taxa for	Transect: 2009 =	= 0.5; 2010 = 0.5)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		56.58	53.47		Transect Dominant
Sporobolus airoides		1.82	1.95		Microcommunity Dominant
	Total Live Cover	59.05	55.78		
Veg_123 N = 20 (Total Taxa f	or Transect: 2009	= 7; 2010 = 10) (Mean Taxa for T	ransect: 2009 =	0.4; 2010 = 0.5)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		52.58	49.63		Transect Dominant
Sporobolus airoides		6.62	5.03	*	Transect Subdominant
Artemisia tridentata		2.05	2.00		Microcommunity Dominant
	Total Live Cover	63.18	58.70	*	
Veg_124 N = 20 (Total Taxa f	or Transect: 2009	= 8; 2010 = 10) (Mean Taxa for T	ransect: 2009 =	0.4; 2010 = 0.5)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		77.17	66.57	*	Transect Dominant
Sporobolus airoides		1.27	1.60		Microcommunity Dominant
Sporobolus alloides					
Muhlenbergia richardsonis		0.82	1.62	*	Microcommunity Dominant

Veg_115 N = 20 (Total Taxa for Transect: 2009 = 12; 2010 = 13) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.7)

Table 3-73. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar South Wet Sites, 2009 and 2010 (Page 2 of 2)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	58.50	56.67		Transect Dominant
Ericameria nauseosa	7.40	13.48	*	Transect Subdominant
Distichlis spicata	6.75	13.02	*	Transect Subdominant
Sporobolus airoides	5.42	4.88		Microcommunity Dominant
Sarcobatus vermiculatus	1.02	3.02	*	Microcommunity Dominant
Total Live Cove	r 82.92	98.85	*	

Veg_125 N = 20 (Total Taxa for Transect: 2009 = 12; 2010 = 17) (Mean Taxa for Transect: 2009 = 0.6; 2010 = 0.9)

Veg_126 N = 20 (Total Taxa for Transect: 2009 = 23; 2010 = 29) (Mean Taxa for Transect: 2009 = 1.2; 2010 = 1.5)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		86.67	86.08		Transect Dominant
Carex sp.		10.25	9.98		Transect Subdominant
Agrostis gigantea		7.03	15.32	*	Transect Subdominant
Rosa woodsii		6.47	6.45		Transect Subdominant
Poa pratensis		5.37	3.57		Microcommunity Dominant
Cirsium sp.		4.78	15.92	*	Microcommunity Dominant
Schedonorus pratensis		2.00	4.55	*	Microcommunity Dominant
Т	otal Live Cover	126.80	146.15	*	

Based on field data and the distribution of hits along the transect, species listed as *Cirsium scariosum* in 2009 and *Cirsium vulgare* in 2010 were analyzed as *Cirsium* sp. for *t*-test analysis. Based on field data and the distribution of hits along the transect, species listed as *Carex praegracilis* or *Carex nebrascensis* in 2009 were analyzed as *Carex* sp. for *t*-test analysis.

Veg_127 N = 20 (Total Taxa for Transect: 2009 = 13; 2010 = 12) (Mean Taxa for Transect: 2009 = 0.7; 2010 = 0.6)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	34.72	39.83		Transect Dominant
Bassia scoparia	17.03	16.25		Transect Subdominant
Sporobolus airoides	8.03	12.80	*	Transect Subdominant
Distichlis spicata	6.47	12.88	*	Transect Subdominant
Ericameria nauseosa	3.37	4.45		Microcommunity Dominant
Total Live Cov	er 72.73	89.82	*	

Veg_128 N = 20 (Total Taxa for Transect: 2009 = 18; 2010 = 17) (Mean Taxa for Transect: 2009 = 0.9; 2010 = 0.9)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification		
Juniperus scopulorum		53.90	54.77		Transect Dominant		
Poa sp.		4.12	5.92	*	Microcommunity Dominant		
Sporobolus airoides		1.48	1.05		Microcommunity Dominant		
	Total Live Cover	63.18	64.65				

Based on field data and the distribution of hits along the transect, species listed as *Poa secunda* or *Puccinellia lemmonii* in 2009 and *Poa secunda* in 2010 were analyzed as *Poa* sp. for *t*-test analysis.

3.10.4.4 Swamp Cedar South Dry Sites

No cover changes between 2009 and 2010 were found at dry sites in Swamp Cedar South (Table 3-74). *Juniperus scopulorum* was again the transect dominant on all belt transects and *Artemisia tridentata* was a transect subdominant on one belt transect (118). Total live cover did not change on any belt transect between the two years of sampling and the grand mean cover (MH) for the Swamp Cedar South dry sites was the same (43%) for both years (Table 3-74).

Table 3-74. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRM Juniper Woodland Belt Transects at Swamp Cedar South Dry Sites, 2009 and 2010 (Page 1 of 2)

Species are classified as to dominance along the transect as either transect dominant, transect subdominant, or microcommunity dominant. Taxa richness is indicated at the top of the table as total taxa and mean taxa for the transect. N represents the sample size for each species and the asterisk in the significance column represents a significant difference between years based on paired *t*-test comparison.

Veg 114 N = 20 (Total Taxa for Transect: 2009 = 4; 2010 = 6) (Mean Taxa for Transect: 2009 = 0.2; 2010 = 0.3)

Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		51.63	51.05		Transect Dominant
Sporobolus airoides		1.12	1.27		Microcommunity Dominant
Тот	tal Live Cover	53.12	52.87		
Veg_116 N = 20 (Total Taxa for 7	Fransect: 2009	= 7; 2010 = 8) (N	lean Taxa for Tra	ansect: 2009 = 0	.4; 2010 = 0.4)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		40.37	42.63		Transect Dominant
Artemisia tridentata		5.93	6.13		Transect Subdominant
Το	tal Live Cover	47.35	49.50		
Veg_117 N = 20 (Total Taxa for ⊺	Fransect: 2009	= 8; 2010 = 9) (N	lean Taxa for Tra	ansect: 2009 = 0	.4; 2010 = 0.5)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		52.08	50.52		Transect Dominant
Ericameria nauseosa		2.63	3.17		Microcommunity Dominant
Tot	tal Live Cover	55.55	54.63		· · · · · · · · · · · · · · · · · · ·
Veg_118 N = 20 (Total Taxa for T	Fransect: 2009	= 6; 2010 = 7) (N	lean Taxa for Tra	ansect: 2009 = 0	.3; 2010 = 0.4)
Species		Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum		34.22	36.00		Transect Dominant
Artemisia tridentata		7.21	8.65		Transect Subdominant
Sarcobatus vermiculatus		3.47	2.32		Microcommunity Dominant
Sporobolus airoides		2.15	1.55		Microcommunity Dominant
Tot	tal Live Cover	47.81	48.45		
Transect was 1-m longer in 2010,	therefore interv	al 20-21 in 2010	was not included	l in <i>t-</i> test analysis	
Veg_119 N = 20 (Total Taxa for 1	Fransect: 2009	= 5; 2010 = 8) (N	lean Taxa for Tra	ansect: 2009 = 0	.3; 2010 = 0.4)

Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	30.52	29.43		Transect Dominant
Ericameria nauseosa	0.97	0.75		Microcommunity Dominant
Artemisia tridentata	0.92	0.35		Microcommunity Dominant
Total Live Cov	ver 32.67	30.92		

Table 3-74. Mean Live Cover Multiple Hits (MH) for the Most Dominant Species and Total Live Cover for the VFRMJuniper Woodland Belt Transects at Swamp Cedar South Dry Sites, 2009 and 2010 (Page 2 of 2)

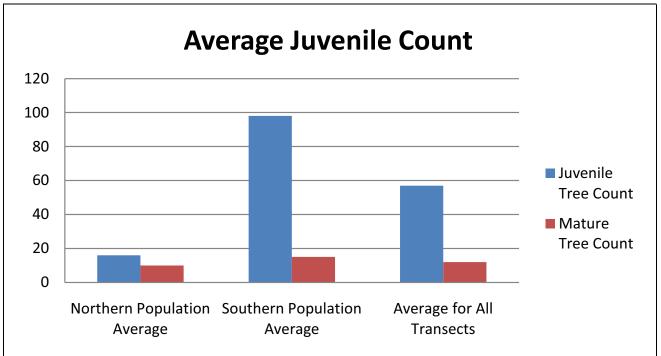
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	25.85	27.37		Transect Dominant
Ericameria nauseosa	5.20	4.98		Microcommunity Dominant
Artemisia tridentata	2.82	2.52		Microcommunity Dominant
Sporobolus airoides	1.98	1.53		Microcommunity Dominant
Sarcobatus vermiculatus	0.70	1.00		Microcommunity Dominant
Total Live Cover	37.32	38.37		
Veg_121 N = 20 (Total Taxa for Transect: 2009	= 6; 2010 = 5) (N	lean Taxa for Tr	ansect: 2009 = 0	.3; 2010 = 0.3)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	45.00	48.05		Transect Dominant
Sporobolus airoides	2.28	1.53		Microcommunity Dominant
Total Live Cover	47.93	50.63		
Veg_129 N = 20 (Total Taxa for Transect: 2009	= 11; 2010 = 11)	(Mean Taxa for	Transect: 2009 =	= 0.6; 2010 = 0.6)
Species	Mean Live Cover (MH) 2009	Mean Live Cover (MH) 2010	Significance at ≤0.05	Dominance Classification
Juniperus scopulorum	20.50	21.12		Transect Dominant
Sporobolus airoides	1.38	1.60		Microcommunity Dominant
Ericameria nauseosa	0.03	0.73		Microcommunity Dominant
Total Live Cover	23.12	24.30		

Veg_120 N = 20 (Total Taxa for Transect: 2009 = 10; 2010 = 9) (Mean Taxa for Transect: 2009 = 0.5; 2010 = 0.5)

3.11 Valley Floor Rocky Mountain (VFRM) Juniper (Juniperus scopulorum)

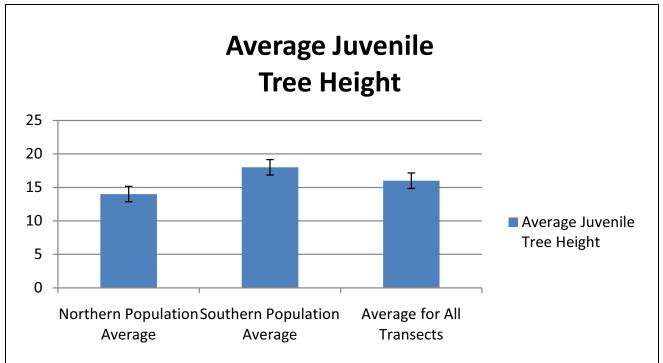
Data collected at the 32 VFRM Juniper transects are summarized in Table 3-75, Figures 3-52 through 3-56. Juvenile tree counts per transect ranged from 0 to 727, with a mean juvenile tree count across all transects of 57. The data suggest recent seedling establishment has been stronger in the southern population (northern population mean juvenile tree count = 16; southern population, mean = 98), although these means did not have a statistically significant difference (p-value >0.1). Mature tree counts did not statistically vary across populations. Mature tree counts per transect ranged from 2 to 135, with a mean mature tree count across all transects of 12 (northern population, mean = 10; southern population, mean = 15).

Juvenile tree height did not statistically vary across populations. There was a mean juvenile tree height across all transects of 16 cm (northern population, mean = 14 cm; southern population, mean = 18 cm). Juvenile tree height analyzed in a paired *t*-test by transect was not significantly different from 2009 to 2010. The mean mature tree height across all transects was 543 cm (northern population, mean = 514 cm; southern population, mean = 567 cm). Although, the northern population mean is lower than the southern, the northern and southern populations were not significantly different (p-value >0.1). In the northern population, the majority of mature trees with smaller heights were observed in Transect 114, which had a mean mature tree height of 210 cm. Mature trees near this height, 210 cm, were not often found in any of the other transects. Average mature tree height by transects was slightly higher in 2010 than in 2009 (594 and 563, respectively) (paired *t*-test, p-value <0.03). No significant difference was found in mature tree circumference measurements from 2010 to 2009 or between the northern and southern populations. Additional years of data collection and the tagging of mature trees for height and circumference measurements to allow for a more specific paired t-test, should give the analysis for these measurement additional power in the future.


Paired *t*-tests of the stem elongation data showed a significant difference between the 2009 and 2010 branch lengths (p-value <0.00). The mean stem elongation for all transects was 12 mm. The mean stem elongation for the northern population was 14 mm and the southern population was 10 mm. A *t*-test between the northern and southern populations showed that growth was significantly different between the two populations (p-value <0.00).

The intent of collecting VFRM Juniper tree measurements is to monitor growth and reproduction. The southern population had higher tree counts for both juvenile and mature trees and higher tree heights for both juvenile and mature trees. However, the northern population experienced higher growth regarding stem elongation than the southern population.

Population	Transect Number	Juvenile Tree Count	Mature Tree Count	Average Juvenile Tree Height	Average Mature Tree Height	Average Circumference of Mature Trees	Average Stem Elongation
Northern	98	0	4	N/A	510.0	277.0	13.8
Northern	99	0	3	N/A	511.3	174.0	15.7
Northern	100	0	2	N/A	640.0	267.0	11.4
Northern	101	43	4	7.2	654.0	195.0	18.7
Northern	102	84	3	6.2	657.3	205.0	14.1
Northern	103	16	2	16.4	664.0	226.5	10.1
Northern	104	15	82	56.7	210.4	26.6	16.9
Northern	105	48	3	6.4	655.7	206.0	10.2
Northern	106	0	3	N/A	421.7	112.0	23.3
Northern	107	0	3	N/A	614.0	157.7	22.4
Northern	108	44	5	5.2	559.8	165.0	8.6
Northern	109	0	10	N/A	625.3	68.8	13.7
Northern	110	0	11	N/A	689.1	110.6	10.6
Northern	111	0	9	N/A	832.8	118.5	8
Northern	112	0	6	N/A	528.0	150.4	9.7
Northern	113	0	7	N/A	423.3	131.8	8.8
Southern	114	0	2	N/A	729.0	272.5	16.1
Southern	115	727	135	42.3	297.3	55.6	15.1
Southern	116	0	6	N/A	432.0	99.3	16.8
Southern	117	78	11	18.6	405.9	77.0	12.7
Southern	118	14	3	25.2	576.7	216.7	11.7
Southern	119	0	9	N/A	431.9	69.9	9.3
Southern	120	0	8	N/A	506.5	83.8	7.3
Southern	121	11	8	12.2	531.6	80.4	6.3
Southern	122	1	19	N/A	733.3	63.5	1.9
Southern	123	3	4	5.7	741.3	147.8	12
Southern	124	444	9	6.08	874.8	127.2	7.8
Southern	125	0	5	N/A	890.0	135.2	13.1
Southern	126	268	8	11.7	846.4	175.6	17.2
Southern	127	0	5	N/A	724.8	185.2	6.7
Southern	128	1	4	N/A	628.5	184.3	4.1
Southern	129	15	5	7.1	448.4	96.6	3.9
Northern Populati	on Average	16	10	14	514	162.0	14
Southern Populati	on Average	98	15	18	567	129.4	10
Average for A	II Transects	57	12	16	543	145.7	12


Table 3-75VFRM Juniper Summary Table

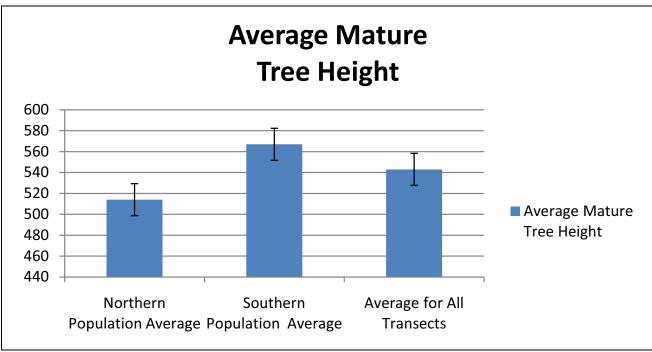

Note: Juvenile trees are <1 m in height, mature tress are ≥ 1 m in height.

Figure 3-52 VFRM Juniper Tree Count

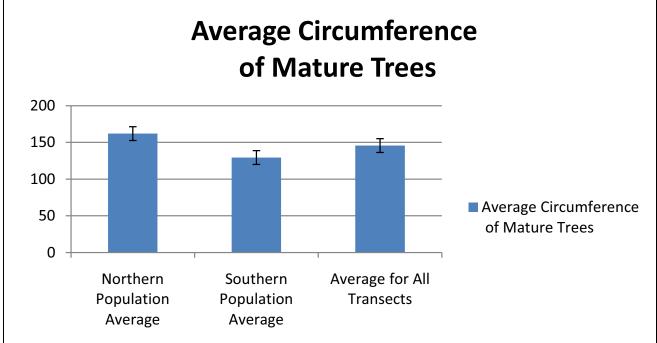

Note: Juvenile trees are <1 m in height, mature tress are \geq 1 m in height.

Figure 3-53 VFRM Juniper Juvenile Tree Height

Note: Juvenile trees are <1 m in height, mature tress are \geq 1 m in height.

Figure 3-54 VFRM Juniper Mature Tree Height

Note: Juvenile trees are <1 m in height, mature tress are ≥1 m in height.

Figure 3-55 VFRM Juniper Mature Tree Circumference

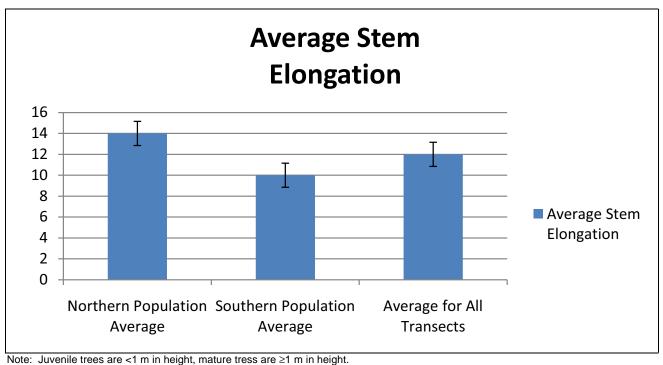


Figure 3-56 VFRM Juniper Stem Elongation

3.12 Fixed Station Photography

Photographs taken in 2010 are available upon request.

4.0 ANTICIPATED BIOLOGICAL MONITORING PLAN-RELATED ACTIVITIES FOR 2011

In 2011, the BWG will begin an evaluation of the Plan. SNWA efforts to support BWG Plan evaluation and future revision may include 2009-2010 data exploration, testing of field methods and sampling designs, and targeted studies to better clarify relationships between indicators and usefulness of indicators.

In accordance with the Plan, an SNWA Data Management Plan detailing data management and storage (described briefly in Section 2.13) will be finalized.

This Page Left Intentionally Blank

5.0 REFERENCES

- Biological Work Group. 2009. Biological Monitoring Plan for the Spring Valley Stipulation. February 2009.
- BIO-WEST. 2007. Ecological Evaluation of Selected Aquatic Ecosystems in the Biological Resources Study Area for the Southern Nevada Water Authority's Proposed Clark, Lincoln, and White Pine Counties Groundwater Development Project. Final Report. Volume 1.
- BIO-WEST. 2009. Ecological Evaluation of Selected Springs within Spring Valley and Southern Snake Valley, Nevada and Utah. Final Report.
- DeGraaf, R.M., and M. Yamasaki. 2001. New England Wildlife: Habitat, Natural History, and Distribution. University Press of New England, Hanover, New Hampshire, USA.
- Gilbert, Mireille, Raymond Leclair, Jr., and Rejean Fortin. 1994. Reproduction of the Northern Leopard Frog (*Rana pipiens*) in Floodplain Habitat in the Richelieu River, P. Quebec, Canada. Journal of Herpetology, Vol. 28, No. 4, pp. 465-470.
- Hammerson, G.A. 1999. Amphibians and Reptiles in Colorado. University Press of Colorado and Colorado Division of Wildlife, Denver, Colorado, USA.
- Hine, R.L., B.L. Les, and B.F. Hellmich. 1981. Leopard Frog Populations and Mortality in Wisconsin, 1974-76. Department of Natural Resources, Madison, Wisconsin, USA.
- Hunter, M.L., A. Calhoun, and M. McCollough. 1999. Maine Amphibians and Reptiles. The University of Maine Press, Orono, Maine, USA.
- Sada, D.W., and Pohlmann K.F. 2006. U.S. National Park Service Mojave Inventory and Monitoring Network Spring Survey Protocols: Level I and Level II. Desert Research Institute, Nevada, USA. Final draft.
- SNWA [Southern Nevada Water Authority]. 2009. Clark, Lincoln, and White Pine Counties Groundwater Development Project: 2008 Wildlife Surveys. Final Report August 2009.
- SNWA [Southern Nevada Water Authority]. 2010. Spring Valley Stipulation Biological Monitoring Plan 2009 Annual Report. Southern Nevada Water Authority, Las Vegas, Nevada, USA.
- UDWR [Utah Division of Wildlife Resources]. 2009. WCFO [Washington County Field Office] Field Report. Subject: North Clay Spring visit and Longitudinal Gland Springsnail Assessment. October 9, 2009.

This Page Left Intentionally Blank

Appendix A

Macroinvertebrate Metric Results

(as provided by Rhithron Laboratories)

Analysis of biological samples: Technical summary of methods and quality assurance procedures Prepared for Southern Nevada Watershed Authority Allen Cattell, Project Manager August 5, 2010

by W. Bollman, Chief Biologist Rhithron Associates, Inc. Missoula, Montana

METHODS

Sample processing

Thirteen macroinvertebrate samples in 27 jars were delivered to Rhithron's laboratory facility in Missoula, Montana on June 23, 2010. All sample jars arrived in good condition. An inventory document containing sample identification information was provided by the Southern Nevada Watershed Authority (SNWA) Project Manager. Upon arrival, samples were unpacked and examined, and checked against the SNWA inventory. An inventory spreadsheet was created and sent to the SNWA Project Manager. This spreadsheet included project code and internal laboratory identification numbers and was verified by the SNWA Project Manager prior to upload into the Rhithron database.

Standard sorting protocols were applied to achieve representative subsamples of a minimum of 300 organisms. Caton sub-sampling devices (Caton 1991), divided into 30 grids, each approximately 5 cm by 6 cm were used. Each individual sample was thoroughly mixed in its jar(s), poured out and evenly spread into the Caton tray, and individual grids were randomly selected. The contents of each grid were examined under stereoscopic microscopes using 10x-30x magnification. All aquatic invertebrates from each selected grid were sorted from the substrate, and placed in 95% ethanol for subsequent identification. Grid selection, examination, and sorting continued until at least 300 organisms were sorted. The final grid was completely sorted of all organisms. All unsorted sample fractions were retained and stored at the Rhithron laboratory.

Organisms were individually examined by certified taxonomists, using 10x - 80x stereoscopic dissecting scopes (Leica S8E and S6E) and identified to the lowest possible level consistent with California Department of Fish and Game Standard Taxonomic Effort (CAMLnet 2003), using appropriate published taxonomic references and keys. The CAMLnet taxonomic effort criteria are recommended by the Nevada Department of Environmental Protection (Karen Vargas, NDEP, personal communication.) However, a finer taxonomic resolution was applied to midges (Diptera: Chironomidae), which were identified to genus.

Midges were carefully morphotyped using 10x - 80x stereoscopic dissecting microscopes (Leica S8E and S6E) and representative specimens were slide mounted and examined at 200x - 1000x magnification using an Olympus BX 51 compound microscope. Slide mounted organisms were archived at the Rhithron laboratory.

Identification, counts, life stages, and information about the condition of specimens were recorded on bench sheets. Organisms that could not be identified to the taxonomic targets because of immaturity, poor condition, or lack of complete current regionally-applicable published keys were left at appropriate taxonomic levels that were coarser than those specified. To obtain accuracy in richness measures, these organisms were designated as "not unique" if other specimens from the same group could be taken to target levels. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 95% ethanol in labeled vials, and archived at the Rhithron laboratory.

Macroinvertebrate Survey for Spring 2010; Laboratory Methods and Quality Control Procedures (Page 1 of 3)

Quality control procedures

Quality control procedures for initial sample processing and subsampling involved checking sorting efficiency. These checks were conducted on 100% of the samples by independent observers who microscopically re-examined at least 20% of sorted substrate from each sample. Quality control procedures for each sample proceeded as follows:

The quality control technician poured the sorted substrate from a processed sample out into a Caton tray, redistributing the substrate so that 20% of it could be accurately lifted out by removing entire grids in a random fashion. Grids were selected, and re-examined until 20% of the substrate was re-sorted. All organisms that were missed were counted and this number was added to the total number obtained in the original sort. Sorting efficiency was evaluated by applying the following calculation:

$$SE = \frac{n_1}{n_1 + n_2} \times 100$$

where: SE is the sorting efficiency, expressed as a percentage, n_1 is the total number of specimens in the first sort, and n_2 is the total number of specimens expected in the second sort, based on the results of the re-sorted 20%.

Quality control procedures for taxonomic determinations of invertebrates involved checking accuracy, precision and enumeration. Two samples were randomly selected and all organisms re-identified and counted by an independent taxonomist. Taxa lists and enumerations were compared by calculating a Bray-Curtis similarity statistic (Bray and Curtis 1957) for each selected sample. Routinely, discrepancies between the original identifications and the QC identifications are discussed among the taxonomists, and necessary rectifications to the data are made. Discrepancies that cannot be rectified by discussions are routinely sent out to taxonomic specialists for identification.

One taxon in these samples was not identifiable to target level, because it is not described in the taxonomic literature. These specimens were sent to taxonomic specialists for identification. The taxon was assigned a provisional laboratory identifier, until definitive identifications could be made. This was: Hydroptilidae sp. (RAI Taxon # 0001), 4 specimens in sample SNWA10CW012, Stateline Springs, STL: Sample 503-504.

Data analysis

Taxa lists and counts for each sample were constructed. Standard metric calculations for aquatic invertebrate assemblages were made using Rhithron's customized database software. Electronic spreadsheets containing identification and metric data were formatted following specifications made by the SNWA Project Manager.

RESULTS

Quality Control Procedures

Results of quality control procedures for subsampling and taxonomy are given in Table 1. Sorting efficiency averaged 97.19%, taxonomic precision for identification and enumeration averaged 97.29% for the randomly selected QA samples, and data entry efficiency averaged 100% for the project. These similarity statistics fall within acceptable industry criteria (Stribling et al. 2003).

Data analysis

Taxa lists and counts, and values and scores for various standard bioassessment metrics and indices calculated by Rhithron are given in the appendix. Electronic spreadsheets were provided to the SNWA Project Manager via e-mail.

Macroinvertebrate Survey for Spring 2010; Laboratory Methods and Quality Control Procedures (Page 2 of 3)

Rhithron ID	Site Name	Sorting efficiency	Bray-Curtis similarity for taxonomy and enumeration
SNWA10CW001	KR: Sample 59-60	92.87%	
SNWA10CW002	MSS: Sample 657-658	96.96%	
SNWA10CW003	MS North: Sample 403-404	98.46%	
SNWA10CW004	SM: Sample 154-155	96.91%	
SNWA10CW005	ST: Sample 10-12	91.20%	96.94%
SNWA10CW006	SS: Sample 356	100.00%	
SNWA10CW007	U5: Sample 108-111	100.00%	97.63%
SNWA10CW008	WV: Sample 309-311	100.00%	
SNWA10CW009	WS: Sample 257	95.57%	
SNWA10CW010	UN: Sample 455	97.00%	
SNWA10CW011	BS: Sample 555	99.07%	
SNWA10CW012	STL: Sample 503-504	98.46%	
SNWA10CW013	CSN: Sample 701-703	97.00%	

Table 1. *Results of internal quality control procedures for subsampling and taxonomy.* Southern Nevada Watershed Authority, Spring 2010.

REFERENCES

Bray, J. R. and J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.

CAMLnet. 2003. List of Californian Macroinvertebrate Taxa and Standard Taxonomic Effort. Revision date: 27 January 2003.

Caton, L. W. 1991. Improving subsampling methods for the EPA's "Rapid Bioassessment" benthic protocols. Bulletin of the North American Benthological Society. 8(3): 317-319.

Stribling, J.B., S.R Moulton II and G.T. Lester. 2003. Determining the quality of taxonomic data. J.N. Am. Benthol. Soc. 22(4): 621-631.

Macroinvertebrate Survey for Spring 2010; Laboratory Methods and Quality Control Procedures (Page 3 of 3)

Analysis of biological samples: Technical summary of methods and quality assurance procedures Prepared for Southern Nevada Watershed Authority Allen Cattell, Project Manager January 28, 2011

by W. Bollman, Chief Biologist Rhithron Associates, Inc. Missoula, Montana

METHODS

Sample processing

Nineteen macroinvertebrate samples in 34 jars were delivered to Rhithron's laboratory facility in Missoula, Montana on November 11, 2010. All sample jars arrived in good condition. An inventory document containing sample identification information was provided by the Southern Nevada Watershed Authority (SNWA) Project Manager. Upon arrival, samples were unpacked and examined, and checked against the SNWA inventory. An inventory spreadsheet was created and sent to the SNWA Project Manager. This spreadsheet included project code and internal laboratory identification numbers and was verified by the SNWA Project Manager prior to upload into the Rhithron database.

Standard sorting protocols were applied to achieve representative subsamples of a minimum of 300 organisms. Caton sub-sampling devices (Caton 1991), divided into 30 grids, each approximately 5 cm by 6 cm were used. Each individual sample was thoroughly mixed in its jar(s), poured out and evenly spread into the Caton tray, and individual grids were randomly selected. The contents of each grid were examined under stereoscopic microscopes using 10x-30x magnification. All aquatic invertebrates from each selected grid were sorted from the substrate, and placed in 95% ethanol for subsequent identification. Grid selection, examination, and sorting continued until at least 300 organisms were sorted. The final grid was completely sorted of all organisms. All unsorted sample fractions were retained and stored at the Rhithron laboratory.

Organisms were individually examined by certified taxonomists, using 10x - 80x stereoscopic dissecting scopes (Leica S8E and S6E) and identified to the lowest possible level consistent with California Department of Fish and Game Standard Taxonomic Effort (CAMLnet 2003), using appropriate published taxonomic references and keys. The CAMLnet taxonomic effort criteria are recommended by the Nevada Department of Environmental Protection (Karen Vargas, NDEP, personal communication.) However, a finer taxonomic resolution was applied to midges (Diptera: Chironomidae), which were identified to genus.

Midges were carefully morphotyped using 10x - 80x stereoscopic dissecting microscopes (Leica S8E and S6E) and representative specimens were slide mounted and examined at 200x - 1000x magnification using an Olympus BX 51 compound microscope. Slide mounted organisms were archived at the Rhithron laboratory.

Identification, counts, life stages, and information about the condition of specimens were recorded on bench sheets. Organisms that could not be identified to the taxonomic targets because of immaturity, poor condition, or lack of complete current regionally-applicable published keys were left at appropriate taxonomic levels that were coarser than those specified. To obtain accuracy in richness measures, these organisms were designated as "not unique" if other specimens from the same group could be taken to target levels. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 95% ethanol in labeled vials, and archived at the Rhithron laboratory.

Macroinvertebrate Survey for Fall 2010; Laboratory Methods and Quality Control Procedures (Page 1 of 3)

Quality control procedures

Quality control procedures for initial sample processing and subsampling involved checking sorting efficiency. These checks were conducted on 100% of the samples by independent observers who microscopically re-examined at least 20% of sorted substrate from each sample. Quality control procedures for each sample proceeded as follows:

The quality control technician poured the sorted substrate from a processed sample out into a Caton tray, redistributing the substrate so that 20% of it could be accurately lifted out by removing entire grids in a random fashion. Grids were selected, and re-examined until 20% of the substrate was re-sorted. All organisms that were missed were counted and this number was added to the total number obtained in the original sort. Sorting efficiency was evaluated by applying the following calculation:

$$SE = \frac{n_1}{n_1 + n_2} \times 100$$

where: SE is the sorting efficiency, expressed as a percentage, n_1 is the total number of specimens in the first sort, and n_2 is the total number of specimens expected in the second sort, based on the results of the re-sorted 20%.

Quality control procedures for taxonomic determinations of invertebrates involved checking accuracy, precision and enumeration. Two samples were randomly selected and all organisms re-identified and counted by an independent taxonomist. Taxa lists and enumerations were compared by calculating a Bray-Curtis similarity statistic (Bray and Curtis 1957) for each selected sample. Routinely, discrepancies between the original identifications and the QC identifications are discussed among the taxonomists, and necessary rectifications to the data are made. Discrepancies that cannot be rectified by discussions are routinely sent out to taxonomic specialists for identification.

One taxon in these samples was not identifiable to target level, because it is not described in the taxonomic literature. These specimens were sent to taxonomic specialists for identification. The taxon was assigned a provisional laboratory identifier, until definitive identifications could be made. This was: Hydroptilidae sp. (RAI Taxon # 0001), 23 specimens total in 7 different samples.

Data analysis

Taxa lists and counts for each sample were constructed. Standard metric calculations for aquatic invertebrate assemblages were made using Rhithron's customized database software. Electronic spreadsheets containing identification and metric data were formatted following specifications made by the SNWA Project Manager.

RESULTS

Quality Control Procedures

Results of quality control procedures for subsampling and taxonomy are given in Table 1. Sorting efficiency averaged 96.54%, taxonomic precision for identification and enumeration averaged 96.41% for the randomly selected QA samples, and data entry efficiency averaged 100% for the project. These similarity statistics fall within acceptable industry criteria (Stribling et al. 2003).

Data analysis

Taxa lists and counts, and values and scores for various standard bioassessment metrics and indices calculated by Rhithron are given in the appendix. Electronic spreadsheets were provided to the SNWA Project Manager via e-mail.

Macroinvertebrate Survey for Fall 2010; Laboratory Methods and Quality Control Procedures (Page 2 of 3)

Table 1. *Results of internal quality control procedures for subsampling and taxonomy.* Southern Nevada Watershed Authority, Fall 2010.

Rhithron ID	Site Name	Sorting efficiency	Bray-Curtis similarity for taxonomy and enumeration
SNWA10CW2001	ST: Sample 13-17	95.54%	
SNWA10CW2002	KR: Sample 61-65	94.03%	
SNWA10CW2003	U5: Sample 112	100.00%	
SNWA10CW2004	SM: Sample 156-158	100.00%	
SNWA10CW2005	WS: Sample 258	91.50%	
SNWA10CW2006	WV: Sample 312-314	94.04%	
SNWA10CW2007	SS: Sample 357	100.00%	97.63%
SNWA10CW2008	MS-North: Sample 405-406	92.83%	95.19%
SNWA10CW2009	UN: Sample 456	99.68%	
SNWA10CW2010	STL: Sample 505	96.97%	
SNWA10CW2011	BS: Sample 556	94.20%	
SNWA10CW2012	MSS: Sample 659-661	97.00%	
SNWA10CW2013	CSN: Sample 704	97.60%	
SNWA10CW2014	CC Reach 1: Sample 614	91.14%	
SNWA10CW2015	CC Reach 2: Sample 617	100.00%	
SNWA10CW2016	CC Reach 3: Sample 620	100.00%	
SNWA10CW2017	CC Reach 4: Sample 623	94.18%	
SNWA10CW2018	CC Reach 5: Sample 626	100.00%	
SNWA10CW2019	CC Reach 6: Sample 629	95.60%	

REFERENCES

Bray, J. R. and J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.

CAMLnet. 2003. List of Californian Macroinvertebrate Taxa and Standard Taxonomic Effort. Revision date: 27 January 2003.

Caton, L. W. 1991. Improving subsampling methods for the EPA's "Rapid Bioassessment" benthic protocols. Bulletin of the North American Benthological Society. 8(3): 317-319.

Stribling, J.B., S.R Moulton II and G.T. Lester. 2003. Determining the quality of taxonomic data. J.N. Am. Benthol. Soc. 22(4): 621-631.

Macroinvertebrate Survey for Fall 2010; Laboratory Methods and Quality Control Procedures (Page 3 of 3)

Metrics Report

3.33% of sample used

Chir onomi dae Coleopter a Dipter a Ephemer opter a Lepidopter a Non-Insect Odonata Plecopter a Trichopter a

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2014
Sta. Name:	CC Reach 1: Sample 614
Client ID:	Big Spring Creek/Lake Creek
STORET ID:	
Coll. Date:	

Abundance Measures

Sample Count:	320
Sample Abundance:	9,600.00

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	Α	PRA
Non-Insect	4	158	49.38%
Odonata	2	13	4.06%
Ephemeroptera	3	106	33.13%
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	4	20	6.25%
Lepidoptera			
Coleoptera			
Diptera	2	2	0.63%
Chironomidae	7	21	6.56%

Dominant Taxa

Category	Α	PRA
Hyalella	142	44.38%
Fallceon	82	25.63%
Baetis tricaudatus	19	5.94%
Protoptila	11	3.44%
Ostracoda	10	3.13%
Coenagrionidae	10	3.13%
Eukiefferiella Claripennis Gr.	6	1.88%
Hydropsyche	5	1.56%
Tricorythodes	4	1.25%
Thienemanniella	4	1.25%
Amphipoda	4	1.25%
Orthocladius	3	0.94%
Hydroptilidae sp. (RAI Taxon # 00	3	0.94%
Cricotopus (Cricotopus)	3	0.94%
Aeshnidae	3	0.94%

Functional Composition

Category	R	Α	PRA
Predator	4	15	4.69%
Parasite			
Collector Gatherer	11	280	87.50%
Collector Filterer	2	6	1.88%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	2	12	3.75%
Shredder	2	6	1.88%
Omivore	1	1	0.31%
Linknown			

Collector Filter er	
Collector Gatherer	
Macr ophyte Her bi vor e	
Omivore	
Parasite	
Piercer Herbivore	
Predator	\mathbf{A}
Scr aper	
Shr edder	
Unknown	
Xylophage	

Metric Values and Score	s				
Metric	Value	BIBI	MTP	MTV	МТМ
Composition					
Taxa Richness Non-Insect Percent E Richness	22 49.38% 3	3 1	2	1	1
P Richness T Richness	0 4 7	1 1	0	0 2	0
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	7 39.38% 0.31% 0.962 0.250		2 2		0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	44.38% 70.00% 75.94% 91.56%	1	2		1
Diversity					
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.787 2.578 3.657 0.282 0.091		2		
Function Predator Richness Predator Percent	4 4.69%	1	2		
Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer	2 1.88% 89.38% 5.63% 2.000		1 1	3	0 0
Scraper/Scraper+Filterer Habit	0.667				
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	1 0.31% 2 31.88% 5 6.56%	1			
Characteristics	0.50%				
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent	0 0.00%				
Air Breather Richness Air Breather Percent Voltinism	0 0.00%				
Univoltine Richness Semivoltine Richness Multivoltine Percent	9 1 41.56%	1	2		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index	2 1.56% 0 0.00% 3.359 0 5.63% 6.397	1 5	1	0 2	0
Intolerant Percent Supertolerant Percent CTQa	3.75% 50.31% 92.133				

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% 16 32.00% BIBI B-IBI (Karr et al.) 60% Montana DEQ Plains (Bukantis 1998) MTP 17 56.67% Slight 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 8 44.44% Moderate 0% MTM Montana DEQ Mountains (Bukantis 1998) 2 9.52% Severe BIBI мтм МТР мτν Bioassessment Indices

Friday, January 28, 2011

Figure A-1

Metrics Report Metric Values and Scores Metric MTP MTV мтм Value BIBI Composition Project ID: SNWA10CW2 RAI No.: SNWA10CW2015 Taxa Richness 11 0 0 Non-Insect Percent 8.00% Sta. Name: CC Reach 2: Sample 617 E Richness 1 Client ID: Big Spring Creek/Lake Creek 0 P Richness 0 STORET ID: T Richness EPT Richness 0 Coll. Date: 0 0 EPT Percent 16.00% Abundance Measures Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera 1.000 Sample Count: 25 Hydropsychidae/Trichoptera 0.000 Sample Abundance: 25.00 100.00% of sample used Dominance Coll Procedure: Dominant Taxon Percent 24.00% 3 3 Sample Notes: Fall 2010 Dominant Taxa (2) Percent 40.00% Dominant Taxa (3) Percent 52.00% 3 Dominant Taxa (10) Percent 92.00% **Taxonomic Composition** Diversity Category R A PRA Shannon H (loge) 2.188 Non-Insect 1 2 8.00% 3.157 3 Shannon H (log2) Odonata Margalef D 3.147 Chironomidae Coleoptera Diptera Ephemeroptera Heteroptera Ephemeroptera 3 2 12.00% Simpson D 0.098 Plecontera Evenness 0.104 Heteroptera Function Megaloptera Heteroptera Lepidoptera Megaloptera Non-Insect Odonata Plecoptera Trichoptera 4.00% Trichoptera 1 1 Predator Richness 0 Lepidoptera Predator Percent 4.00% Filterer Richness Filterer Percent Coleoptera Diptera 20.00% 20.00% 2 5 14 Chironomidae 5 56.00% Collector Percent 92.00% 0 0 Scraper+Shredder Percent 0.00% 0 Scraper/Filterer 0.000 Scraper/Scraper+Filterer 0.000 Dominant Taxa Hahit Category A PRA Burrower Richness 0 24.00% Cladotanytarsus 6 4 3 2 2 2 Burrower Percent 0.00% 16.00% 12.00% Simulium Swimmer Richness Orthocladius 2 12.00% Swimmer Percent Parakiefferiella 8.00% 8.00% Hyalella Fallceon Clinger Richness 8.00% Clinger Percent 20.00% Tanvtarsini 4.00% Characteristics Odontomvia / Hedriodiscus 4 00% 4.00% Hydroptila Cold Stenotherm Richness 0 Cryptochironomus 4.00% Cold Stenotherm Percent 0.00% Chaetocladius Baetis 4.00% Hemoglobin Bearer Richness 4.00% 4.00% Hemoglobin Bearer Percent Air Breather Richness 0.00% Air Breather Percent Voltinism Univoltine Richness Semivoltine Richness 2 0 1 Multivoltine Percent 72.00% 1 Functional Composition Tolerance R Category A PRA Sediment Tolerant Richness Predator 1 1 4.00% Sediment Tolerant Percent 0.00% Collector Filter er Parasite Sediment Sensitive Richness Collector Gatherer 0 18 72.00% Collector Gatherer 8 Macrophyte Herbivore Omivore Sediment Sensitive Percent 0.00% 5 Collector Filterer 1 20.00% Metals Tolerance Index 4.000 Macrophyte Herbivore Piercer Herbivore Par asite Parasite Piercer Herbivore Predator Scraper Shredder Unknown Pollution Sensitive Richness 0 1 0 1 3 1 1 4.00% 32.00% Pollution Tolerant Percent Xylophage Hilsenhoff Biotic Index 6.375 0 Scraper Intolerant Percent 0.00% Shredder Supertolerant Percent 12.00% Omivore 🗖 X yl ophage CTQa 103.500 Unknown Bioassessment Indices 100% BioIndex Description Pct Rating Score 80% BIBI B-IBI (Karr et al.) 14 28.00% 60% Montana DEQ Plains (Bukantis 1998) 11 MTP 36.67% Moderate 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 3 16.67% Severe 0% MTM Montana DEQ Mountains (Bukantis 1998) 3 14.29% Severe BIBI мтм МТР мту Bioassessment Indices

Friday, January 28, 2011

Figure A-2

Metrics I	Keno	rt		Metric Values and Scores	,				
				Metric	Value	BIBI	MTP	MTV	МП
roject ID: SNWA10CW2				Composition					
AI No.: SNWA10CW2016				Taxa Richness	17	1	1		C
ta. Name: CC Reach 3: Sample	620			Non-Insect Percent	10.77%				
lient ID: Big Spring Creek/Lake				E Richness	4	1		2	
TORET ID:	Oreen			P Richness	0	1		0	
coll. Date:				T Richness	0	1		0	
on. Date.				EPT Richness	4		1		C
Abundance Measures				EPT Percent	44.62%		2		1
				Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera	3.08% 0.828				
ample Count:	65			Hydropsychidae/Trichoptera	0.020				
ample Abundance:	65.00 100.00%	of sample used			0.000				
				Dominance					
oll. Procedure:				Dominant Taxon Percent	24.62%		3		3
ample Notes: Fall 2010				Dominant Taxa (2) Percent	38.46%	5			
				Dominant Taxa (3) Percent Dominant Taxa (10) Percent	46.15% 83.08%	5			
axonomic Composition					00.00%				
				Diversity					
ategory R	A PRA			Shannon H (loge)	2.472				
lon-Insect 3	7 10.77%			Shannon H (log2)	3.567		3		
donata 1	1 1.54%	Chir onomidae		Margalef D	3.877				
phemeroptera 4 lecoptera	29 44.62%	Coleopter a		Simpson D	0.104				
iecoptera eteroptera		Diptera Ephemeroptera		Evenness	0.077				
legaloptera		Heter opter a		Function					
richoptera		 Lepidopter a Megalopter a 		Predator Richness	3		1		
epidoptera		Non-Insect	1	Predator Percent	7.69%	1			
oleoptera		Odonata Plecopter a		Filterer Richness	1				
iptera 1	9 13.85%	Trichoptera		Filterer Percent	13.85%			1	
hironomidae 8	19 29.23%			Collector Percent	83.08%		1		(
		·		Scraper+Shredder Percent	6.15%		1		(
				Scraper/Filterer	0.222				
ominant Taxa				Scraper/Scraper+Filterer	0.182				
etenony	A PRA			Habit					
ategory aetis tricaudatus	A PRA 16 24.62%			Burrower Richness	1				
aetis tricaudatus imulium	9 13.85%			Burrower Percent	1.54%				
ricorythodes	5 7.69%			Swimmer Richness	2				
allceon	5 7.69%			Swimmer Percent	32.31%				
hienemanniella	4 6.15%			Clinger Richness	3	1			
ladotanytarsus yalella	4 6.15% 3 4.62%			Clinger Percent	18.46%				
ryptochironomus	3 4.62%			Characteristics					
aetidae	3 4.62%			Cold Stenotherm Richness	0				
haenopsectra	2 3.08%			Cold Stenotherm Percent	0.00%				
arakiefferiella	2 3.08% 2 3.08%			Hemoglobin Bearer Richness	3				
Nigochaeta Cambaridae	2 3.08%			Hemoglobin Bearer Percent	9.23%				
olypedilum	1 1.54%			Air Breather Richness	0				
entaneura	1 1.54%			Air Breather Percent	0.00%				
				Voltinism					
				Univoltine Richness	4				
				Semivoltine Richness	4	1			
				Multivoltine Percent	66.15%		1		
unctional Composition				Tolerance					
ategory R	A PRA								
redator 3	5 7.69%]	Sediment Tolerant Richness	2				
arasite	0 1.0370	Collector Filterer		Sediment Tolerant Percent	10.77%				
ollector Gatherer 9	45 69.23%	Collector Gatherer Macrophyte Herbivore		Sediment Sensitive Richness	0				
ollector Filterer 1	9 13.85%	Macrophyte Herbivore Omivore		Sediment Sensitive Percent	0.00%				
acrophyte Herbivore		Parasite		Metals Tolerance Index Pollution Sensitive Richness	4.396 0	1		0	
iercer Herbivore		Piercer Herbivore Predator		Pollution Tolerant Percent	18.46%	5		1	
lophage	0 0.000/	Scraper		Hilsenhoff Biotic Index	5.546		2		(
craper 1	2 3.08%	Shr edder		Intolerant Percent	0.00%				
hredder 2 mivore 1	2 3.08% 2 3.08%	Unknown Xylophage		Supertolerant Percent	12.31%				
nknown	2 3.0076	- A yrophinge		CTQa	102.462				
ioassessment Indices				100%					
olndex Description		Score Po	t Rating	80%					
BI B-IBI (Karr et al.)		18 36.0	0%	60%					
TP Montana DEQ Plains	(Bukantic 1009)			40%					
			3% Moderate	20%					_
	eys/Foothills (Bollma	n 1998) 4 22.2	2% Moderate	20%					
				U /0 T					
		4 19.0	5% Severe	BIRI	мтм	МТР		MTV	
TV Montana Revised Vall		4 19.0	5% Severe		MTM bassessmen	MTP t Indic	es	MTV	

Figure A-3

eek

329

40.00% of sample used

822.50

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2017
Sta. Name:	CC Reach 4: Sample 623
Client ID:	Big Spring Creek/Lake Cr
STORET ID:	
Coll. Date:	

Abundance Measures

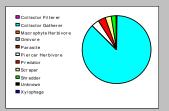
Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes:

Taxonomic Composition

Category	R	A	PRA
Non-Insect	9	139	42.25%
Odonata			
Ephemeroptera	3	24	7.29%
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	3	15	4.56%
Lepidoptera			
Coleoptera			
Diptera	4	10	3.04%
Chironomidae	13	141	42.86%

Fall 2010


Dominant Taxa

Category	A	PRA
Ostracoda	89	27.05%
Orthocladius	71	21.58%
Parakiefferiella	29	8.81%
Oligochaeta	21	6.38%
Hyalella	19	5.78%
Tricorythodes	15	4.56%
Cladotanytarsus	15	4.56%
Oxyethira	12	3.65%
Baetis	7	2.13%
Ceratopogoninae	5	1.52%
Thienemanniella	4	1.22%
Cladopelma	4	1.22%
Phaenopsectra	3	0.91%
Ephydridae	3	0.91%
Cricotonus (Cricotonus)	3	0.91%

2/

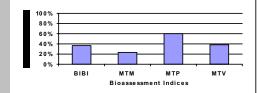
Functional Composition

Category	R	Α	PRA
Predator	5	12	3.65%
Parasite			
Collector Gatherer	17	287	87.23%
Collector Filterer	1	1	0.30%
Macrophyte Herbivore			
Piercer Herbivore	1	12	3.65%
Xylophage			
Scraper	5	10	3.04%
Shredder	3	7	2.13%
Omivore			
Unknown			

Rating

Pct

18 60.00% Slight 7 38.89% Moderate


23.81% Moderate

18 36.00%

Score

5

Metric	Value	BIBI	MTP	MTV	МТМ
Composition					
Taxa Richness	32	3	3		3
Non-Insect Percent	42.25%				
E Richness	3	1		1	
P Richness T Richness	0 3	1 1		0	
EPT Richness	6	1	2	2	0
EPT Percent	11.85%		1		0
Oligochaeta+Hirudinea Percent	6.38%				
Baetidae/Ephemeroptera	0.375 0.000				
Hydropsychidae/Trichoptera	0.000				
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent	27.05% 48.63%		3		2
Dominant Taxa (3) Percent	48.03 % 57.45%	3			
Dominant Taxa (10) Percent	86.02%				
Diversity					
Shannon H (loge)	2.462				
Shannon H (log2)	3.552		3		
Margalef D	5.354				
Simpson D Evenness	0.141 0.067				
	0.067				
Function	_				
Predator Richness Predator Percent	5 3.65%	1	2		
Filterer Richness	3.05%	1			
Filterer Percent	0.30%			3	
Collector Percent	87.54%		1		0
Scraper+Shredder Percent	5.17% 10.000		1		0
Scraper/Filterer Scraper/Scraper+Filterer	0.909				
Habit	0.000				
Burrower Richness	4				
Burrower Percent	3.34%				
Swimmer Richness	2				
Swimmer Percent	2.74%				
Clinger Richness Clinger Percent	4 2.74%	1			
Characteristics	2.1470				
	0				
Cold Stenotherm Richness Cold Stenotherm Percent	0 0.00%				
Hemoglobin Bearer Richness	6				
Hemoglobin Bearer Percent	4.86%				
Air Breather Richness	0				
Air Breather Percent	0.00%				
Voltinism					
Univoltine Richness Semivoltine Richness	12 0	1			
Multivoltine Percent	76.60%	1	1		
Tolerance					
Sediment Tolerant Richness	4				
Sediment Tolerant Percent	12.16%				
Sediment Sensitive Richness	1				
Sediment Sensitive Percent	0.30%				
Metals Tolerance Index Pollution Sensitive Richness	4.056	4		0	
Pollution Sensitive Richness Pollution Tolerant Percent	0 17.02%	1 5		0 1	
Hilsenhoff Biotic Index	6.870		1		0
Intolerant Percent	0.30%				
Supertolerant Percent	44.07%				
CTQa	102.545				

Friday, January 28, 2011

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

Montana DEQ Mountains (Bukantis 1998)

Montana Revised Valleys/Foothills (Bollman 1998)

BioIndex Description

BIBI

MTP

MTV

MTM

Figure A-4

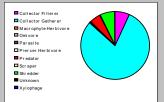
	rics					Metric	Value	BIBI	MTP	MTV	мт
						Composition	value	BIDI	мпр	MIV	MI
Project ID: SI											
	NWA10CW2018 C Reach 5: Sample	626				Taxa Richness Non-Insect Percent	14 69.74%	1	1		C
	g Spring Creek/Lak		¢			E Richness	2	1		1	
STORET ID:	g opining orectiveau	0 01001	`			P Richness	0	1		0	
Coll. Date:						T Richness	0	1		0	
						EPT Richness EPT Percent	2 3.95%		0 0		0
Abundance	e Measures					Oligochaeta+Hirudinea Percent	2.63%		Ŭ		
Sample Count	:	7	6			Baetidae/Ephemeroptera	0.333				
Sample Abund	ance:	76.0	0 100.00%	of sample used		Hydropsychidae/Trichoptera	0.000				
						Dominance					
Coll. Procedur						Dominant Taxon Percent	22.37%		3		3
Sample Notes:	Fall 2010					Dominant Taxa (2) Percent Dominant Taxa (3) Percent	44.74% 64.47%	3			
						Dominant Taxa (0) Percent	94.74%	U			
Taxonomio	Composition					Diversity					
Category	R	A	PRA			Shannon H (loge)	1.988				
Non-Insect	5	53	69.74%		~	Shannon H (log2)	2.868		2		
Odonata	2	2	2.63%	Chir onomidae		Margalef D	3.002				
Ephemeroptera Plecoptera	2	3	3.95%	Coleopter a Dipter a		Simpson D	0.165				
Heteroptera				Ephemer opter a		Evenness	0.107				
Megaloptera				Heter opter a Lepi dopter a		Function					
Trichoptera				Megalopter a Non-Insect		Predator Richness	3		1		
Lepidoptera Coleoptera				Odonata		Predator Percent Filterer Richness	3.95% 0	1			
Diptera	1	1	1.32%	Plecopter a Trichopter a		Filterer Percent	0.00%			3	
Chironomidae	4	17	22.37%			Collector Percent	71.05%		2		
						Scraper+Shredder Percent	22.37%		2		(
Dominant	Farra					Scraper/Filterer Scraper/Scraper+Filterer	0.000 0.000				
Dominant	axa					Habit					
Category		A	PRA			Burrower Richness	2				
Hvalella Ferrissia		17 17	22.37% 22.37%			Burrower Richness Burrower Percent	2 2.63%				
Ostracoda		15	19.74%			Swimmer Richness	0				
Orthocladius		14	18.42%			Swimmer Percent	0.00%				
Tricorythodes Orconectes		2 2	2.63% 2.63%			Clinger Richness Clinger Percent	1 22.37%	1			
Oligochaeta		2	2.63%			Characteristics	22.37 /0				
Pseudochirono Coenagrionidae		1 1	1.32% 1.32%								
Cladotanytarsu		1	1.32%			Cold Stenotherm Richness Cold Stenotherm Percent	0 0.00%				
Chironomus		1	1.32%			Hemoglobin Bearer Richness	2				
Ceratopogonina Baetidae	ie	1 1	1.32% 1.32%			Hemoglobin Bearer Percent	2.63%				
Argia		1	1.32%			Air Breather Richness Air Breather Percent	0				
							0.00%				
						Voltinism					
						Univoltine Richness	7				
						Semivoltine Richness Multivoltine Percent	1 43.42%	1	2		
Functional	Composition					Tolerance	.0.4270		-		
Category	R	A	PRA								
Predator	3	3	3.95%	Portuge Tri	_	Sediment Tolerant Richness Sediment Tolerant Percent	3 27.63%				
Parasite			74.050	Collector Filter er		Sediment Sensitive Richness	27.63%				
Collector Gathe Collector Filtere		54	71.05%	Macrophyte Herbivor		Sediment Sensitive Percent	0.00%				
Macrophyte He				■ Omivore ■ Parasite		Metals Tolerance Index	2.982	4		0	
Piercer Herbivo				Piercer Herbivore		Pollution Sensitive Richness Pollution Tolerant Percent	0 30.26%	1 3		0 1	
Xylophage		47	00.07%	Predator Scraper		Hilsenhoff Biotic Index	6.947	, in the second s	1		(
Scraper Shredder	1	17	22.37%	Shr edder		Intolerant Percent	0.00%				
Omivore	1	2	2.63%	Unknown Xylophage		Supertolerant Percent CTQa	46.05% 104.727				
Unknown						orga	104.727				
Bioassess	ment Indices										
	escription			Soore	Pct Rating	100%					
	•			Score		80%					
	IBI (Karr et al.)				28.00%	60%		_			
MTP M	ontana DEQ Plains	(Bukan	ntis 1998)	14	46.67% Moderate	40%					
MTV M	ontana Revised Va	leys/Fo	othills (Bollman	1998) 5	27.78% Moderate	20%					
	ontana DEQ Mount	ains (B	ukantis 1998)	4	19.05% Severe	BIBI	мтм	MTP	-	мту	
MTM M			altantis 1000)			5.5.					

Figure A-5

Project ID:	SNWA10CW2		
RAI No.:	SNWA10CW2019		
Sta. Name:	CC Reach 6: Sample	629	
Client ID:	Big Spring Creek/Lak	e Creek	
STORET ID:			
Coll. Date:			
Abundan	ce Measures		
Sample Cou	int:	306	
Sample Abu	ndance:	336.88	90.83% of sample used
Coll. Proced Sample Note	lure:		

Taxonomic Composition

Category	R	A	PRA
Non-Insect	4	61	19.93%
Odonata	2	4	1.31%
Ephemeroptera	3	127	41.50%
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	3	3	0.98%
Lepidoptera			
Coleoptera			
Diptera	1	21	6.86%
Chironomidae	7	90	29.41%



Dominant Taxa

Category	A	PRA
Baetis tricaudatus	83	27.12%
Hyalella	48	15.69%
Orthocladius	28	9.15%
Tricorythodes	26	8.50%
Simulium	21	6.86%
Cricotopus (Cricotopus)	18	5.88%
Thienemanniella	16	5.23%
Cryptochironomus	11	3.59%
Oligochaeta	10	3.27%
Fallceon	9	2.94%
Baetidae	9	2.94%
Paratanytarsus	4	1.31%
Parametriocnemus	4	1.31%
Orthocladiinae	4	1.31%
Parakiefferiella	3	0.98%

Functional Composition

Category	R	A	PRA
Predator	3	15	4.90%
Parasite			
Collector Gatherer	10	244	79.74%
Collector Filterer	1	21	6.86%
Macrophyte Herbivore			
Piercer Herbivore	1	1	0.33%
Xylophage			
Scraper	2	2	0.65%
Shredder	2	21	6.86%
Omivore	1	2	0.65%
Unknown			

N	Value	PIRI		MTV
Metric Composition	Value	BIBI	MTP	MTV
Composition	20	2	0	
Taxa Richness Non-Insect Percent	20 19.93%	3	2	
E Richness	3	1		1
PRichness	0	1		0
T Richness	3	1		2
EPT Richness	6		2	
EPT Percent	42.48%		2	
Oligochaeta+Hirudinea Percent	3.27%			
Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	0.795 0.000			
	0.000			
Dominance				
Dominant Taxon Percent	27.12%		3	
Dominant Taxa (2) Percent	42.81%	2		
Dominant Taxa (3) Percent Dominant Taxa (10) Percent	51.96% 88.24%	3		
	00.24 /0			
Diversity				
Shannon H (loge)	2.297			
Shannon H (log2)	3.314		3	
Margalef D Simpson D	3.359			
Simpson D Evenness	0.142 0.081			
Function	0.001			
Predator Richness	3	4	1	
Predator Percent Filterer Richness	4.90% 1	1		
Filterer Percent	6.86%			2
Collector Percent	86.60%		1	-
Scraper+Shredder Percent	7.52%		1	
Scraper/Filterer	0.095			
Scraper/Scraper+Filterer	0.087			
Habit				
Burrower Richness	1			
Burrower Percent	0.65%			
Swimmer Richness	2			
Swimmer Percent	30.07%			
Clinger Richness	3	1		
Clinger Percent	13.73%			
Characteristics				
Cold Stenotherm Richness	0			
Cold Stenotherm Percent	0.00%			
Hemoglobin Bearer Richness Hemoglobin Bearer Percent	1 3.59%			
Air Breather Richness	3.59%			
Air Breather Percent	0.00%			
Voltinism				
	-			
Univoltine Richness Semivoltine Richness	7	1		
Semivoltine Richness Multivoltine Percent	2 62.75%	1	1	
	02.1070			
Tolerance				
Sediment Tolerant Richness	4			
Sediment Tolerant Percent	12.75%			
Sediment Sensitive Richness Sediment Sensitive Percent	0 0.00%			
Vetals Tolerance Index	4.389			
Pollution Sensitive Richness	4.309	1		1
Pollution Tolerant Percent	14.05%	5		1
Hilsenhoff Biotic Index	5.754		2	
ntolerant Percent	0.33%			
Supertolerant Percent	22.55%			
CTQa	105.429			

Friday, January 28, 2011

Figure A-6

Metrics	Rebo		Metric Values and Score	5				
			Metric	Value	BIBI	MTP	MTV	M
roject ID: SNWA10CW			Composition					
AI No.: SNWA10CW011			Taxa Richness	12	1	1		
a. Name: BS: Sample 555			Non-Insect Percent	81.07%				
lient ID: Big Springs			E Richness	0	1		0	
TORET ID:			P Richness	0	1		0	
oll. Date:			T Richness EPT Richness	1 1	1	0	0	
			EPT Richness EPT Percent	0.32%		0		
bundance Measures			Oligochaeta+Hirudinea Percent	0.0270		U		
ample Count:	317		Baetidae/Ephemeroptera	0.000				
		of sample used	Hydropsychidae/Trichoptera	0.000				
ampie roundance.	2,20.00 0.00%		Dominance					
oll. Procedure:			Dominant Taxon Percent	45.74%		1		
ample Notes: Spring 201	D		Dominant Taxa (2) Percent	80.76%				
			Dominant Taxa (3) Percent	91.17%	1			
			Dominant Taxa (10) Percent	99.05%				
axonomic Composition			Diversity					
ategory R	A PRA		Shannon H (loge)	1.306				
on-Insect 3	257 81.07%		Shannon H (log2)	1.884		1		
donata		Chir onomidae	Margalef D	1.911				
ohemeroptera		Coleopter a	Simpson D	0.345				
ecoptera		Dipter a	Evenness	0.131				
eteroptera 1	1 0.32%	Ephemer opter a Heter opter a	Function					
egaloptera	1 0.000/	Lepidopter a		~		~		
ichoptera 1 pidoptera	1 0.32%	Megaloptera Non-Insect	Predator Richness Predator Percent	2 0.63%	1	0		
pleoptera 1	1 0.32%	Odonata	Filterer Richness	0.63%				
iptera 1	1 0.32%	Plecopter a Trichopter a	Filterer Percent	0.00%			3	
nironomidae 5	56 17.67%		Collector Percent	53.00%		3		
			Scraper+Shredder Percent	35.65%		3		
			Scraper/Filterer	0.000				
ominant Taxa			Scraper/Scraper+Filterer	0.000				
ategory	A PRA		Habit					
/alella	145 45.74%		Burrower Richness	1				
/drobiidae	111 35.02%		Burrower Percent	10.41%				
etriocnemus	33 10.41%		Swimmer Richness	0				
nienemanniella	14 4.42%		Swimmer Percent	0.00%				
mnophyes Jkiefferiella Claripennis Gr.	5 1.58% 2 0.63%		Clinger Richness	3	1			
rthocladiinae	2 0.63%		Clinger Percent	0.95%				
chrotrichia	1 0.32%		Characteristics					
vdrophilidae	1 0.32% 1 0.32%		Cold Stenotherm Richness	0				
vraulus ohydridae	1 0.32% 1 0.32%		Cold Stenotherm Percent	0.00%				
ricotopus (Cricotopus)	1 0.32%		Hemoglobin Bearer Richness	1				
mbrysus	1 0.32%		Hemoglobin Bearer Percent Air Breather Richness	0.32% 1				
			Air Breather Richness Air Breather Percent	0.32%				
				0.0270				
			Voltinism					
			Univoltine Richness	5				
			Semivoltine Richness	1	1	~		
unctional Composition			Multivoltine Percent	17.98%		3		
			Tolerance					
ategory R	A PRA		Sediment Tolerant Richness	1				
edator 2 arasite	2 0.63%	Collector Filterer	Sediment Tolerant Percent	0.32%				
ollector Gatherer 5	168 53.00%	Collector Gatherer	Sediment Sensitive Richness	0				
ollector Filterer		Macrophyte Herbivore Omivore	Sediment Sensitive Percent	0.00%				
acrophyte Herbivore		■ Parasite	Metals Tolerance Index	3.110	4		0	
ercer Herbivore 1	1 0.32%	Piercer Herbivore	Pollution Sensitive Richness Pollution Tolerant Percent	0 2.21%	1 5		0 3	
lophage		Predator Scraper	Hilsenhoff Biotic Index	7.650	5	0	3	
praper 2	112 35.33%	Shr edder	Intolerant Percent	0.00%		v		
nredder 1 mivore 1	1 0.32% 33 10.41%	Unknown	Supertolerant Percent	83.28%				
mivore 1 hknown	33 10.41%	Xylophage	CTQa	100.000				
								_
ioassessment Indices								
olndex Description		Score Pct Rating	100%					
•		-	80%					
BI B-IBI (Karr et al.)		14 28.00%	60%					
TP Montana DEQ Plains	(Bukantis 1998)	12 40.00% Moderate	40%			1	_	1
TV Montana Revised Val	levs/Foothills (Bollma	1998) 6 33.33% Moderate	20%		-	<u> </u>		-
			0%			L		-
TM Montana DEQ Mount	ains (Bukantis 1998)	4 19.05% Severe	BIBI	MTM	MTP		MTV	
				oassessmen	LINDIC	# S		

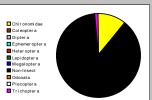
Figure A-7 Spring 2010 Macroinvertebrate Metric Results for Big Springs

309 2,060.00

15.00% of sample used

SNWA10CW2
SNWA10CW2011
BS: Sample 556
Big Springs

Abundance Measures


Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes:

Taxonomic Composition

Category	R	Α	PRA	
Non-Insect	4	270	87.38%	
Odonata				
Ephemeroptera				
Plecoptera				
Heteroptera				
Megaloptera				
Trichoptera	1	4	1.29%	
Lepidoptera				
Coleoptera				
Diptera	1	1	0.32%	
Chironomidae	7	34	11.00%	

Fall 2010

Dominant Taxa

Category	A	PRA
Hyalella	194	62.789
Hydrobiidae	74	23.95%
Metriocnemus	14	4.53%
Cricotopus (Cricotopus)	8	2.59%
Limnophyes	5	1.62%
Oxyethira	4	1.29%
Orthocladius	3	0.97%
Thienemanniella	2	0.65%
Sperchon	1	0.32%
Paraphaenocladius	1	0.32%
Forcipomvia	1	0.32%
Eukiefferiella Claripennis Gr.	1	0.32%
Copepoda	1	0.32%

Functional Composition

Category	R	Α	PRA
Predator	1	1	0.32%
Parasite			
Collector Gatherer	7	207	66.99%
Collector Filterer			
Macrophyte Herbivore			
Piercer Herbivore	1	4	1.29%
Xylophage			
Scraper	2	75	24.27%
Shredder	1	8	2.59%
Omivore	1	14	4.53%
Unknown			

Collector Filterer Collector Gatherer Macrophyte Herbivore	
Macrophyte Herbivore Omivore	
Parasite	
Piercer Herbivore	
Pr edator	
Scr aper	
Shr edder	
Unknown	
Xylophage	

Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	13 87.38% 0 0 1	1 1 1	1	0 0 0	0
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	1 1.29% 0.000 0.000	I	0 0	U	0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent <i>Diversity</i>	62.78% 86.73% 91.26% 99.03%	1	0		0
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.149 1.658 2.094 0.456 0.108		0		
Function					
Predator Richness Predator Percent Filterer Richness Filterer Percent	1 0.32% 0 0.00%	1	0	3	
Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer Habit	66.99% 26.86% 0.000 0.000		2 2		2 1
Burrower Richness	1				
Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness	4.53% 0 0.00% 1	1			
Clinger Percent Characteristics	2.59%				
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 1 0.32% 0 0.00%				
Univoltine Richness	3				
Semivoltine Richness Multivoltine Percent	0 12.95%	1	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent	0 0.00% 0 0.00% 3.025 0 2.91% 7.766 0.00%	1 5	0	0 3	0

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% B-IBI (Karr et al.) 14 28.00% 60% Montana DEQ Plains (Bukantis 1998) 8 26.67% Moderate 40% 20% Montana Revised Valleys/Foothills (Bollman 1998) 6 33.33% Moderate 0% 3 14.29% Severe Montana DEQ Mountains (Bukantis 1998) віві мтм МТР Bioassessment Indices

Friday, January 28, 2011

Figure A-8 Fall 2010 Macroinvertebrate Metric Results for Big Springs

мτν

BIBI

MTP

MTV

MTM

Metrics Report Metric Values and Scores Metric Value BIBI MTP MTV MTM Composition Project ID: SNWA10CW RAI No.: SNWA10CW001 Taxa Richness 3 3 3 Sta. Name: KR: Sample 59-60 Non-Insect Percent 54.26% E Richness 0 0 Client ID: Keegan Spring P Richness STORET ID: T Richness 0 1 1 Coll. Date: EPT Richness EPT Percent 0 0 1.26% 0 0 Abundance Measures Oligochaeta+Hirudinea Percent 3.47% Baetidae/Ephemeroptera Hydropsychidae/Trichoptera 0.000 Sample Count: 317 0.000 317.00 100.00% of sample used Sample Abundance: Dominance Coll. Procedure: Dominant Taxon Percent 18.61% 3 3 Spring 2010 Dominant Taxa (2) Percent 32.18% Sample Notes: 5 Dominant Taxa (3) Percent 42.59% Dominant Taxa (10) Percent 73.82% Taxonomic Composition Diversity R Category Α PRA Shannon H (loge) 2.899 172 54.26% Non-Insect 12 Shannon H (log2) 4.182 3 Odonata 0.32% 1 1 Margalef D 6.446 Ephemeroptera Chir onomidae Coleopter a Dipter a Ephemer opter a Heter opter a Lepidopter a Simpson D 0.084 Plecoptera 2 0.63% Evenness 0.051 Heteroptera 1 2 0.63% Function Megaloptera 1 Trichoptera 2 0.63% Predator Richness 12 3 Non-Insect Lepidoptera Predator Percent 14.51% 3 Odonata Odonata Plecopter a Trichopter: Coleoptera Filterer Richness 9.46% Diptera 30 Filterer Percent 10.73% 1 Chironomidae 18 108 34.07% Collector Percent 61.51% 2 2 0 22.71% Scraper+Shredder Percent 2 Scraper/Filterer 1.147 Scraper/Scraper+Filterer 0.534 Dominant Taxa Habit Category A PRA Burrower Richness Hvalella Paratendipes 59 43 18.61% 13.56% Burrower Percent 23.03% Swimmer Richness Sphaeriidae Gammarus Ceratopogoninae 10.41% 33 25 19 18 11 10 7.89% 5.99% Swimmer Percent 0.95% Clinger Richness Hvdrobiidae 5.68% Clinger Percent 3 47% Gyraulus Thienemanniella 3.47% 3.15% Characteristics Chaetocladius 2.84% Cold Stenotherm Richness 9 7 6 6 0 Cladopelma Stagnicola 2.21% 1.89% Cold Stenotherm Percent Hemoglobin Bearer Richness 0.00% 8 Procladius 1.89% Hemoglobin Bearer Percent 25.87% Oligochaeta Ablabesmyia Corynoneura 1.89% 1.89% 1.58% 6 6 Air Breather Richness 0 Air Breather Percent 0.00% Voltinism Univoltine Richness 16 Semivoltine Richness 0 1 Multivoltine Percent 35.96% 3 Functional Composition Tolerance Category R PRA A Sediment Tolerant Richness 3 12 46 14.51% Predator Sediment Tolerant Percent 7.26% Collector Filterer Parasite Collector Filterer Collector Gatherer Macrophyte Herbivore Omivore Parasite Piercer Herbivore Sediment Sensitive Richness 0 Collector Gatherer 15 161 50.79% Sediment Sensitive Percent 0.00% Collector Filterer 2 34 10.73% Metals Tolerance Index 3.092 Macrophyte Herbivore Pollution Sensitive Richness 0 Piercer Herbivore 2 4 1.26% Pollution Tolerant Percent 36.59% 3 0 Pr edator Xylophage 7.567 Hilsenhoff Biotic Index 0 0 Scr aper Scraper 39 33 4 12.30% Intolerant Percent Shredder 0.63% 3 10.41% Shredder Supertolerant Percent 66.25% Xylophage Omivore CTQa 106.000 Unknown **Bioassessment Indices** 100% BioIndex Description Score Pct Rating 80% BIBI B-IBI (Karr et al.) 20 40.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 63.33% Slight 40% 19 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 2 11.11% Severe 0% мтм Montana DEQ Mountains (Bukantis 1998) 8 38.10% Moderate віві мтм мτν MTP Bioassessment Indices Thursday, August 05, 2010

Figure A-9 Spring 2010 Macroinvertebrate Metric Results for Keegan

302

13.33% of sample used

2,265.00

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2002
Sta. Name:	KR: Sample 61-65
Client ID:	Keegan Ranch Spring
STORET ID:	
Coll. Date:	

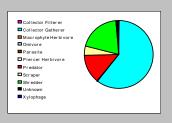
Abundance Measures

Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	A	PRA
Non-Insect	9	182	60.26%
Odonata	2	16	5.30%
Ephemeroptera	1	4	1.32%
Plecoptera			
Heteroptera	1	1	0.33%
Megaloptera			
Trichoptera	1	4	1.32%
Lepidoptera			
Coleoptera	2	3	0.99%
Diptera	4	5	1.66%
Chironomidae	14	87	28.81%


Chironomidae Coleoptera Diptera Ephemeroptera Heteroptera Megaloptera Non-Insect Odonata Ptecoptera Trichoptera		
--	--	--

Dominant Taxa

Category	Α	PRA
Hyalella	126	41.72%
Cricotopus (Cricotopus)	47	15.56%
Amphipoda	35	11.59%
Coenagrionidae	15	4.97%
Radotanypus	14	4.64%
Physa	6	1.99%
Gammarus	6	1.99%
Thienemanniella	4	1.32%
Derotanypus	4	1.32%
Callibaetis	4	1.32%
Agrypnia	4	1.32%
Acricotopus	3	0.99%
Zavrelimyia	2	0.66%
Lymnaeidae	2	0.66%
Larsia	2	0.66%

Functional Composition

R	Α	PRA
11	42	13.91%
12	181	59.93%
1	2	0.66%
1	1	0.33%
4	12	3.97%
4	60	19.87%
1	4	1.32%
	11 12 1 1	11 42 12 181 1 2 1 1 4 12

Metric Values and Scores					
Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness	34 60.26% 1 0	3 1 1	3	0	3
T Richness EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	1 2 2.65% 0.33% 1.000 0.000	1	0 0	0	0 0
Dominance Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent	41.72% 57.28% 68.87% 86.42%	3	2		1
Dominant Taxa (10) Percent Diversity	86.42%				
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	2.057 2.967 5.922 0.267 0.072		2		
Function			0		
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent	11 13.91% 1 0.66% 60.60%	3	3	3	2
Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer Habit	23.84% 6.000 0.857		2		0
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	3 0.99% 5 3.31% 3 16.89%	1			
Characteristics					
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 6 6.62% 2 0.99%				
Voltinism					
Univoltine Richness Semivoltine Richness Multivoltine Percent	13 3 29.14%	3	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Tolerant Percent Hilsenhoff Biotic Index	2 1.66% 0 0.00% 2.977 0 14.57% 7.010	1 5	0	0 1	0
Intolerant Percent Supertolerant Percent CTQa	0.00% 50.00% 104.211				

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% BIBI B-IBI (Karr et al.) 22 44.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 17 56.67% Slight 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 4 22.22% Moderate 0% MTM Montana DEQ Mountains (Bukantis 1998) 6 28.57% Moderate BIBI мтм МТР Bioassessment Indices

Friday, January 28, 2011

Figure A-10 Fall 2010 Macroinvertebrate Metric Results for Keegan

мту

Metrics Report

Project ID:	SNWA10CW
RAI No.:	SNWA10CW002
Sta. Name:	MSS: Sample 657-658
Client ID:	Middle Minerva Spring
STORET ID:	
Coll. Date:	

Abundance Measures

Sample Count:	329	
Sample Abundance:	2,467.50	13.33% of sa

ample used

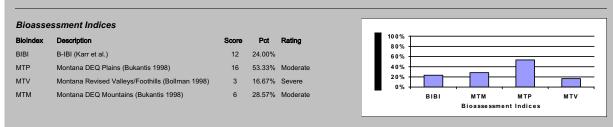
Chiror

Coleopter a Dipter a Ephemer opter a Heter opter a Lepi dopter a Non-Insect Odonata Plecopter a

Coll. Procedure: Sample Notes: Spring 2010

Taxonomic Composition

Category	R	A	PRA	
Non-Insect	7	306	93.01%	
Odonata				
Ephemeroptera	1	8	2.43%	
Plecoptera				
Heteroptera				
Megaloptera				
Trichoptera	1	5	1.52%	
Lepidoptera				
Coleoptera				
Diptera	1	4	1.22%	
Chironomidae	5	6	1.82%	


Category	Α	PRA
Gammarus	136	41.34%
Ostracoda	83	25.23%
Hyalella	63	19.15%
Hydrobiidae	19	5.78%
Hesperophylax	4	1.22%
Ephemerellidae	3	0.91%
Ephemerella infrequens	3	0.91%
Paratendipes	2	0.61%
Glossiphoniidae	2	0.61%
Ephemerella	2	0.61%
Ceratopogoninae	2	0.61%
Ceratopogonidae	2	0.61%
Limnephilidae	1	0.30%
Acricotopus	1	0.30%
Acari	1	0.30%

Functional Composition

Category	R	A	PRA
Predator	5	10	3.04%
Parasite			
Collector Gatherer	5	155	47.11%
Collector Filterer	1	1	0.30%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	1	21	6.38%
Shredder	3	142	43.16%
Omivore			
Unknown			

Collector Filter er	
Collector Gatherer	
Macrophyte Her bivor e	
Omivore	
Parasite	
Pier cer Her bivor e	
Predator	
Scr aper	
Shr edder	
Unknown	
Xylophage	

Metric Values and Scores Metric Value BIBI MTP MTV MTM Composition Taxa Richness 15 0 1 Non-Insect Percent 93.01% 0 0 E Richness 1 P Richness 0 T Richness 1 1 0 EPT Richness EPT Percent 0 0 3.95% 0 0 Oligochaeta+Hirudinea Percent 0.61% Baetidae/Ephemeroptera Hydropsychidae/Trichoptera 0.000 0.000 Dominance Dominant Taxon Percent 41 34% 2 1 Dominant Taxa (2) Percent 66.57% Dominant Taxa (3) Percent Dominant Taxa (10) Percent 85.71% 1 96.35% Diversitv Shannon H (loge) Shannon H (log2) 1.503 2.169 1 Margalef D 2.427 0.288 Simpson D Evenness 0.118 Function Predator Richness 2 Predator Percent 3.04% 1 Filterer Richness 1 Filterer Percent 0.30% 3 Collector Percent 47.42% 3 3 Scraper+Shredder Percent 49.54% 3 2 21.000 Scraper/Filterer Scraper/Scraper+Filterer 0.955 Habit Burrower Richness 2 Burrower Percent Swimmer Richness 1.22% 0 Swimmer Percent 0.00% Clinger Richness 2 1 Clinger Percent 2.74% Characteristics Cold Stenotherm Richness 0 Cold Stenotherm Percent 0.00% Hemoglobin Bearer Richness Hemoglobin Bearer Percent 0.91% Air Breather Richness 0 Air Breather Percent 0.00% Voltinism Univoltine Richness 8 Semivoltine Richness 0 Multivoltine Percent 27.66% 3 Tolerance Sediment Tolerant Richness 0 0.00% Sediment Tolerant Percent Sediment Sensitive Richness 0 0.00% Sediment Sensitive Percent Metals Tolerance Index 1.734 Pollution Sensitive Richness 0 0 Pollution Tolerant Percent 43.47% 3 0 Hilsenhoff Biotic Index 6.088 2.43% 1 0 Intolerant Percent Supertolerant Percent CTQa 52.58% 108.000

Thursday, August 05, 2010

Figure A-11 Spring 2010 Macroinvertebrate Metric Results for Minerva Middle

Metric Values and Scores

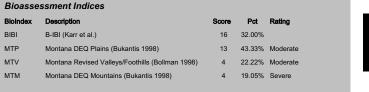
BIBI MTP MTV MTM

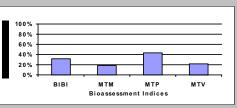
0

0 0

1

2 1


0


Value

Metric

Metrics Report

				moulo	value	0.01		
Project ID: SNWA10CW2 RAI No.: SNWA10CW2012 Sta. Name: MSS: Sample 659				Composition Taxa Richness Non-Insect Percent	15 63.07%	1	1	
Client ID: Minerva Spring Co		idle		E Richness	1	1		0
STORET ID:				P Richness	0	1		0
Coll. Date:				T Richness	1	1		0
oon. Dute.				EPT Richness	2		0	
Abundance Measures				EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera	1.96% 0.65% 1.000		0	
Sample Count:	30			Hydropsychidae/Trichoptera	0.000			
Sample Abundance:	2,824.6	2 10.83%	o of sample used	Dominance	0.000			
Coll. Procedure:				Dominant Taxon Percent	41.50%		2	
Sample Notes: Fall 201 Taxonomic Compositi				Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	59.15% 74.84% 97.39%	3		
				Diversity				
Category F		PRA	r	Shannon H (loge)	1.704			
Non-Insect 4	193	63.07%		Shannon H (log2)	2.459		2	
Odonata Ephemeroptera 1	1	0.33%	Chironomidae	Margalef D	2.462			
Ephemeroptera 1 Plecoptera		0.33%	Coleoptera Diptera	Simpson D	0.255			
Heteroptera Megaloptera			Ephemer opter a Heter opter a	Evenness Function	0.109			
Trichoptera 1	5	1.63%	Ecpidopter a Megalopter a	Predator Richness	4		2	
Lepidoptera			Non-Insect Odonata	Predator Percent	2.61%	1		
Coleoptera 1		0.33%	Plecopter a	Filterer Richness	0			
Diptera 1		0.65%	Trichopter a	Filterer Percent	0.00%			3
Chironomidae 7	' 104	33.99%		Collector Percent	69.28%		2	
				Scraper+Shredder Percent	28.10%		2	
				Scraper/Filterer Scraper/Scraper+Filterer	0.000 0.000			
Dominant Taxa				Habit	0.000			
Category	A	PRA		Burrower Richness	2			
Ostracoda Gammarus	127 54	41.50% 17.65%		Burrower Percent	1.96%			
Thienemanniella	48	15.69%		Swimmer Richness	2			
Cricotopus (Isocladius)	27	8.82%		Swimmer Percent	0.65%			
Orthocladius	17	5.56%		Clinger Richness	2	1		
Amphipoda	10 4	3.27% 1.31%		Clinger Percent	10.13%			
Micropsectra Hydatophylax	4	1.31%		Characteristics				
Apsectrotanypus	4	1.31%		Cold Stenotherm Richness	0			
Corynoneura	3	0.98%		Cold Stenotherm Percent	0.00%			
Serromyia	2	0.65%		Hemoglobin Bearer Richness	1			
Oligochaeta Liodessus	1	0.33% 0.33%		Hemoglobin Bearer Percent	1.31%			
Limnophyes	1	0.33%		Air Breather Richness	1			
Limnephilidae	1	0.33%		Air Breather Percent	0.33%			
				Voltinism				
				Univoltine Richness	4			
				Semivoltine Richness	1	1		
Functional Composition	on			Multivoltine Percent Tolerance	75.82%		1	
Category F	A S	PRA						
Predator 4		2.61%		Sediment Tolerant Richness	1			
Parasite			Collector Filterer Collector Gatherer	Sediment Tolerant Percent Sediment Sensitive Richness	0.33% 0			
Collector Gatherer 8	3 212	69.28%	Collector Gatherer Macrophyte Herbivore	Sediment Sensitive Percent	0.00%			
Collector Filterer			Comivor e	Metals Tolerance Index	2.750			
Macrophyte Herbivore			Parasite Piercer Herbivore	Pollution Sensitive Richness	0	1		0
Piercer Herbivore			Piercer Herbivore	Pollution Tolerant Percent	18.63%	5		1
Xylophage Scraper			■ Scr aper	Hilsenhoff Biotic Index	6.477		1	
Scraper 3	86	28.10%	Shr edder Unknown	Intolerant Percent	1.31%			
Omivore		20.1070	■ Unknown ■ Xylophage	Supertolerant Percent	44.12%			
Unknown				CTQa	104.400			

Friday, January 28, 2011

Figure A-12 Fall 2010 Macroinvertebrate Metric Results for Minerva Middle

Metrio	-2		<u> </u>	I L			Matria	Value	ומום	MTD	MTM	
							Metric	Value	BIBI	MTP	MTV	MI
roject ID: SNWA100							Composition					
Al No.: SNWA100							Taxa Richness	26	3	3		2
ta. Name: MS North:		3-404					Non-Insect Percent E Richness	91.21% 1	1		0	
	erva Spring						P Richness	0	1		0	
TORET ID:							T Richness	0	1		0	
oll. Date:							EPT Richness	1		0		(
bundance Meas	sures						EPT Percent	0.33%		0		(
							Oligochaeta+Hirudinea Percer Baetidae/Ephemeroptera	nt 0.65% 0.000				
ample Count:	-	307 302.50,		of sample used			Hydropsychidae/Trichoptera	0.000				
ample Abundance:	2	,302.50	/ 13.33%	of sample used			Dominance					
oll. Procedure:							Dominant Taxon Percent	56.35%		1		(
	Spring 2010						Dominant Taxa (2) Percent	69.71%				
							Dominant Taxa (3) Percent	78.83%	1			
axonomic Com	nosition						Dominant Taxa (10) Percent	93.81%				
							Diversity					
ategory	R	A	PRA	[Shannon H (loge)	1.578				
on-Insect	9	280	91.21%		_		Shannon H (log2)	2.276		1		
donata phemeroptera	1 1	1 1	0.33% 0.33%	Chironomidae			Margalef D	4.381				
ecoptera			0.0070	Coleoptera Diptera			Simpson D Evenness	0.364 0.081				
eteroptera	1	1	0.33%	Ephemer opter a Heter opter a		//	Function	3.001				
egaloptera				Lepidopter a								
ichoptera pidoptera				Megal opter a Non-Insect			Predator Richness Predator Percent	7	1	3		
pidoptera pleoptera	3	7	2.28%	Odonata			Filterer Richness	4.56% 2	1			
ptera	4	8	2.61%	Plecopter a Trichopter a			Filterer Percent	0.65%			3	
nironomidae	7	9	2.93%				Collector Percent	26.06%		3		
							Scraper+Shredder Percent	68.73%		3		:
							Scraper/Filterer Scraper/Scraper+Filterer	90.000 0.989				
ominant Taxa							Habit	0.000				
ategory		A	PRA									
ydrobiidae		173	56.35%				Burrower Richness	3				
stracoda		41 28	13.36%				Burrower Percent Swimmer Richness	2.28% 3				
valella ammarus		28 27	9.12% 8.79%				Swimmer Percent	1.95%				
/mnaeidae		5	1.63%				Clinger Richness	4	1			
eratopogoninae		5	1.63%				Clinger Percent	1.63%				
odessus eltodytes		3 2	0.98% 0.65%				Characteristics					
ligochaeta		2	0.65%				Cold Stenotherm Richness	0				
ricotopus (Isocladius) haetocladius		2 2	0.65% 0.65%				Cold Stenotherm Percent	0.00%				
haetocladius phemerellidae		2	0.65%				Hemoglobin Bearer Richness	3				
nallagma		1	0.33%				Hemoglobin Bearer Percent Air Breather Richness	0.98% 2				
vtiscidae		1	0.33%				Air Breather Richness Air Breather Percent	2 1.63%				
ezzia / Palpomyia		1	0.33%				Voltinism					
							Univoltine Richness Semivoltine Richness	13	2			
							Semivoltine Richness Multivoltine Percent	3 16.94%	3	3		
unctional Comp	osition						Tolerance	10.0470		U		
ategory	R	A	PRA									
redator	7	14	4.56%	_			Sediment Tolerant Richness	3				
arasite	1	1	0.33%	Collector Filterer			Sediment Tolerant Percent Sediment Sensitive Richness	2.93% 0				
ollector Gatherer	9	78	25.41%	Macr ophyte Her bive	ore 🦯		Sediment Sensitive Percent	0.00%				
ollector Filterer acrophyte Herbivore	2	2	0.65%	□ Omivore ■ Parasite			Metals Tolerance Index	2.419				
acrophyte Herbivore ercer Herbivore	1	1	0.33%	Pier cer Herbivore			Pollution Sensitive Richness	0	1		0	
lophage				Predator			Pollution Tolerant Percent	12.70%	5	0	1	
craper	3	180	58.63%	Scraper Shredder			Hilsenhoff Biotic Index Intolerant Percent	7.418 0.33%		0		(
nredder	3	31	10.10%	Unknown			Supertolerant Percent	80.46%				
mivore nknown				Xylophage			CTQa	108.000				
KIIOWII				L								
ioassessment I	ndices											
olndex Descriptio				Score	Pct	Rating	100%					
BI B-IBI (Karı				18	36.00%		80%					
,							60%			1		
	DEQ Plains			17	56.67%	Slight	40%					
TV Montana F	Revised Vall	eys/Foo	othills (Bollmar	n 1998) 4	22.22%	Moderate	20%					
TM Montana D	EQ Mounta	ins (Bu	kantis 1998)	8	38.10%	Moderate	BIBI	мтм	МТР		мту	_
								Bioassessmen		es		

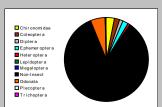
Figure A-13 Spring 2010 Macroinvertebrate Metric Results for Minerva North

318

13.33% of sample used

2,385.00

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2008
Sta. Name:	MS-North: Sample 405-406
Client ID:	Minerva Spring Complex North
STORET ID:	
Coll. Date:	


Abundance Measures

Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	Α	PRA
Non-Insect	12	268	84.28%
Odonata	2	18	5.66%
Ephemeroptera	2	7	2.20%
Plecoptera			
Heteroptera	1	3	0.94%
Megaloptera			
Trichoptera	1	1	0.31%
Lepidoptera			
Coleoptera	3	6	1.89%
Diptera	4	4	1.26%
Chironomidae	7	11	3.46%

Dominant Taxa

Category	Α	PRA
Ostracoda	104	32.70%
Hyalella	54	16.98%
Hydrobiidae	52	16.35%
Gammarus	22	6.92%
Coenagrionidae	17	5.35%
Amphipoda	14	4.40%
Copepoda	6	1.89%
Callibaetis	6	1.89%
Derotanypus	4	1.26%
Cladocera	4	1.26%
Thyas	3	0.94%
Sperchonopsis	3	0.94%
Optioservus	3	0.94%
Hesperocorixa	3	0.94%
Gyraulus	3	0.94%

Functional Composition

Category	R	A	PRA
Predator	8	29	9.12%
Parasite			
Collector Gatherer	13	194	61.01%
Collector Filterer	2	5	1.57%
Macrophyte Herbivore			
Piercer Herbivore	2	4	1.26%
Xylophage			
Scraper	4	59	18.55%
Shredder	1	22	6.92%
Omivore	1	1	0.31%
Unknown	1	4	1.26%

Callector Filter er Callector Gather er Macrophyte Her bivore Omivore Parasite Piercer Her bivore Piercer Her bivore Skredder Unknown Xylophage		
--	--	--

Metric	Value	BIBI	MTP	MTV	MTM
Composition					
Taxa Richness Non-Insect Percent E Richness	32 84.28% 2	3 1	3	1	3
P Richness I Richness EPT Richness EPT Percent Dilgochaeta+Hirudinea Percent 3aetidae/Ephemeroptera 4ydropsychidae/Trichoptera	0 1 3 2.52% 0.31% 0.857 0.000	1	1 0	0	0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	32.70% 49.69% 66.04% 88.99%	3	2		2
Diversity Shannon H (loge) Shannon H (log2) Vargalef D Simpson D Evenness	2.191 3.161 5.422 0.185 0.076		3		
Function					
Predator Richness Predator Percent "litterer Richness "litterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper+Filterer	8 9.12% 2 1.57% 62.58% 25.47% 11.800 0.922	1	3 2 2	3	2 1
Habit					
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Percent Characteristics	2 0.63% 3 3.46% 4 1.89%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 3 1.57% 1 0.63%				
Voltinism					
Jnivoltine Richness Semivoltine Richness Multivoltine Percent	11 4 41.82%	3	2		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Vetals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent	2 1.26% 0 0.00% 2.625 0 16.98% 7.328 0.63% 73.58% 101.333	1 5	0	0 1	0

Friday, January 28, 2011

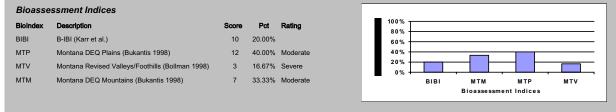
Figure A-14 Fall 2010 Macroinvertebrate Metric Results for Minerva North

BIBI

MTP

MTV

MTM


BIBI

1 0

1 3

 MTP MTV MTM

Metric	S	R	<u>no</u>	rt	Metric Values and Score	s
			- 20	16	Metric	Val
Project ID: SNWA10CV	v				Composition	
RAI No.: SNWA10CW					Taxa Richness	11
Sta. Name: SM: Sample	154-155				Non-Insect Percent	94.37
Client ID: South Millich					E Richness	0
STORET ID:	Coping				P Richness	0
Coll. Date:					T Richness	1
Coll. Date:					EPT Richness	1
Abundance Measu	iroc				EPT Percent	1.99
Abunuance measu	nes				Oligochaeta+Hirudinea Percent	1.32
Sample Count:		302	2		Baetidae/Ephemeroptera	0.00
Sample Abundance:		476.84	4 63.33%	of sample used	Hydropsychidae/Trichoptera	0.00
					Dominance	
Coll. Procedure:					Dominant Taxon Percent	79.4
Sample Notes: S	pring 2010				Dominant Taxa (2) Percent	85.7
•					Dominant Taxa (3) Percent	90.73
					Dominant Taxa (10) Percent	98.34
Taxonomic Comp	osition				Diversity	
Category	R	A	PRA			
Non-Insect	7	A 285	94.37%		Shannon H (loge)	0.76
Odonata	1	205	34.37 %		Shannon H (log2)	1.10
Ephemeroptera				Chironomidae	Margalef D Simpson D	1.70 0.68
Plecoptera				Coleoptera Diptera	Evenness	0.00
Heteroptera				Ephemer opter a		0.00
Megaloptera				Heter opter a	Function	
Trichoptera	1	6	1.99%	Megal opter a	Predator Richness	2
Lepidoptera				Non-Insect Odonata	Predator Percent	1.66
Coleoptera	1	7	2.32%	Odonata Plecopter a	Filterer Richness	1
Diptera	1	1	0.33%	Trichoptera	Filterer Percent	4.97
Chironomidae	1	3	0.99%		Collector Percent	13.9
					Scraper+Shredder Percent	83.4
					Scraper/Filterer	0.40
Dominant Taxa					Scraper/Scraper+Filterer	0.28
					Habit	
Category		Α	PRA		Burrower Richness	2
Gammarus		240	79.47%		Burrower Percent	1.32
Hvalella Sphaeriidae		19	6.29%		Swimmer Richness	0
Elmidae		15 6	4.97% 1.99%		Swimmer Percent	0.00
Limnephilus		5	1.66%		Clinger Richness	1
Physidae		4	1.32%		Clinger Percent	2.32
Metriocnemus		3	0.99%			
Glossiphoniidae		3	0.99%		Characteristics	
Theromyzon		1	0.33%		Cold Stenotherm Richness	0
Limnephilidae Hydrobiidae		1 1	0.33% 0.33%		Cold Stenotherm Percent	0.00
Fossaria		1	0.33%		Hemoglobin Bearer Richness	
Cleptelmis addenda		1	0.33%		Hemoglobin Bearer Percent	
Ceratopogoninae		1	0.33%		Air Breather Richness	0
Amphipoda		1	0.33%		Air Breather Percent	0.00
					Voltinism	
					Univoltine Richness	9
					Semivoltine Richness	9
					Multivoltine Percent	0.99
Functional Compo	osition				Tolerance	
Category	R	A	PRA			
Predator	2	5	1.66%		Sediment Tolerant Richness	1
Parasite	4	3	1.0070	Collector Filterer	Sediment Tolerant Percent	0.33
Collector Gatherer	2	27	8.94%	Collector Gather er	Sediment Sensitive Richness	0
Collector Filterer	1	15	4.97%	Macrophyte Herbivore Omivore	Sediment Sensitive Percent	0.00
Macrophyte Herbivore				Parasite	Metals Tolerance Index	1.3
Piercer Herbivore				Piercer Herbivore	Pollution Sensitive Richness	0
Xylophage				Predator	Pollution Tolerant Percent	82.7
Scraper	3	6	1.99%	Stradder	Hilsenhoff Biotic Index	4.59
Shredder	2	246	81.46%	Shredder	Intolerant Percent	0.00
Omivore	1	3	0.99%	Xylophage	Supertolerant Percent	14.2
Unknown					CTQa	107.5

Thursday, August 05, 2010

Figure A-15 Spring 2010 Macroinvertebrate Metric Results for South Millick

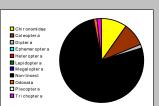
322

6.67% of sample used

4,830.00

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2004
Sta. Name:	SM: Sample 156-15
Client ID:	South Millick Spring
STORET ID:	
Coll. Date:	

Abundance Measures


Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes:

Taxonomic Composition

Category	R	A	PRA
Non-Insect	5	246	76.40%
Odonata	2	4	1.24%
Ephemeroptera			
Plecoptera			
Heteroptera	1	1	0.31%
Megaloptera			
Trichoptera	1	5	1.55%
Lepidoptera			
Coleoptera	1	29	9.01%
Diptera	3	5	1.55%
Chironomidae	3	32	9.94%

Fall 2010

Dominant Taxa

Category	A	PRA
Gammarus	160	49.69%
Amphipoda	47	14.60%
Hyalella	34	10.56%
Corynoneura	29	9.01%
Cleptelmis addenda	29	9.01%
Pericoma / Telmatoscopus	3	0.93%
Limnephilus	3	0.93%
Argia	3	0.93%
Sphaeriidae	2	0.62%
Physa	2	0.62%
Limnophyes	2	0.62%
Limnephilidae	2	0.62%
Ephydridae	1	0.31%
Copepoda	1	0.31%
Coenagrionidae	1	0.31%

Functional Composition

Category	R	A	PRA
Predator	3	5	1.55%
Parasite			
Collector Gatherer	8	147	45.65%
Collector Filterer	2	3	0.93%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	1	2	0.62%
Shredder	2	165	51.24%
Omivore			
Unknown			

Metric	Value	BIBI	MTP	MTV	MTM
Composition					
Taxa Richness	16	1	1		0
Non-Insect Percent	76.40%				
E Richness	0	1		0	
P Richness T Richness	0 1	1 1		0	
EPT Richness	1	1	0	0	0
EPT Percent	1.55%		0		0
Oligochaeta+Hirudinea Percent					
Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	0.000 0.000				
Dominance	0.000				
	40.00%				0
Dominant Taxon Percent Dominant Taxa (2) Percent	49.69% 64.29%		1		0
Dominant Taxa (3) Percent	74.84%	3			
Dominant Taxa (10) Percent	96.89%	Ŭ			
Diversity					
Shannon H (loge)	1.242				
Shannon H (log2)	1.242		0		
Margalef D	2.727				
Simpson D	0.458				
Evenness	0.091				
Function					
Predator Richness	3		1		
Predator Percent	1.55%	1			
Filterer Richness Filterer Percent	2 0.93%			3	
Collector Percent	46.58%		3	3	3
Scraper+Shredder Percent	51.86%		3		2
Scraper/Filterer	0.667				
Scraper/Scraper+Filterer	0.400				
Habit					
Burrower Richness	2				
Burrower Percent Swimmer Richness	1.24%				
Swimmer Percent	1 0.31%				
Clinger Richness	2	1			
Clinger Percent	9.32%				
Characteristics					
Cold Stenotherm Richness	0				
Cold Stenotherm Percent	0.00%				
Hemoglobin Bearer Richness	1				
Hemoglobin Bearer Percent Air Breather Richness	0.31% 0				
Air Breather Percent	0.00%				
Voltinism					
Univoltine Richness	10				
Semivoltine Richness	1	1			
Multivoltine Percent	10.25%		3		
Tolerance					
Sediment Tolerant Richness	0				
Sediment Tolerant Percent	0.00%				
Sediment Sensitive Richness	0				
Sediment Sensitive Percent Metals Tolerance Index	0.00% 1.774				
Pollution Sensitive Richness	0	1		0	
Pollution Tolerant Percent	53.11%	1		0	
Hilsenhoff Biotic Index	4.814		3		1
Intolerant Percent	0.00%				
Supertolerant Percent CTQa	12.73% 107.636				
0.00	107.000				

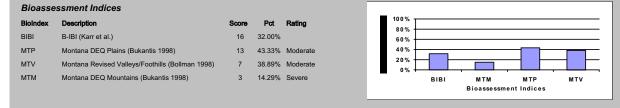

Friday, January 28, 2011

Figure A-16 Fall 2010 Macroinvertebrate Metric Results for South Millick

Metric Values and Scores

Metrics Report

weinc	5	Rθ	epo	T L		Metric	Value	BIBI	мтр	мту	мтм
							value	DIDI	WIT	IVIIV	
Project ID: SNWA10CV						Composition					
RAI No.: SNWA10CV						Taxa Richness Non-Insect Percent	17 62.26%	1	1		0
Sta. Name: STL: Sample Client ID: Stateline Sp		•				E Richness	1	1		0	
STORET ID:	nings					P Richness	0	1		0	
Coll. Date:						T Richness	2	1		1	
oon. Dute.						EPT Richness EPT Percent	3 2.20%		1 0		0 0
Abundance Measu	ures					Oligochaeta+Hirudinea Percent	0.31%		0		0
Sample Count:		318	2			Baetidae/Ephemeroptera	1.000				
Sample Abundance:	:	2,385.00		o of sample used		Hydropsychidae/Trichoptera	0.000				
oumple Abundance.	-	_,000.00		, or campic acca		Dominance					
Coll. Procedure:						Dominant Taxon Percent	26.10%		3		2
Sample Notes: Sp	pring 2010	C				Dominant Taxa (2) Percent	45.28%				
						Dominant Taxa (3) Percent	60.06%	3			
Taxonomic Comp	osition					Dominant Taxa (10) Percent	97.80%				
			PRA			Diversity					
Category Non-Insect	R 5	A 198	62.26%	[Shannon H (loge)	1.980				
Odonata	5	130	02.2070			Shannon H (log2) Margalef D	2.856 2.777		2		
Ephemeroptera	1	1	0.31%	Chironomidae		Simpson D	0.168				
Plecoptera				Diptera		Evenness	0.100				
Heteroptera Megaloptera				Heter opter a		Function					
Trichoptera	2	6	1.89%	Lepidopter a Megalopter a		Predator Richness	2		0		
Lepidoptera	-	-		Non-Insect	/	Predator Percent	0.63%	1			
Coleoptera	1	1	0.31%	Plecopter a	, 	Filterer Richness	1				
Diptera Chironomidae	1 7	1 111	0.31% 34.91%	Trichoptera		Filterer Percent	0.31%		0	3	
Chironomidae	'		34.9170			Collector Percent Scraper+Shredder Percent	72.96% 22.96%		2 2		1 0
						Scraper/Filterer	69.000		-		Ū
Dominant Taxa						Scraper/Scraper+Filterer	0.986				
Category		A	PRA			Habit					
Hyalella		83	26.10%			Burrower Richness	2				
Hydrobiidae		61	19.18%			Burrower Percent	3.77%				
Ostracoda Chaetocladius		47 47	14.78% 14.78%			Swimmer Richness Swimmer Percent	1 0.31%				
Thienemanniella		45	14.15%			Clinger Richness	2	1			
Metriocnemus		11	3.46%			Clinger Percent	0.94%				
Physidae Paracladius		6 5	1.89% 1.57%			Characteristics					
Hydroptilidae sp. (RAI Tax	xon # 00	4	1.26%			Cold Stenotherm Richness	0				
Helicopsyche		2	0.63%			Cold Stenotherm Percent	0.00%				
Oligochaeta Microtendipes		1	0.31% 0.31%			Hemoglobin Bearer Richness	1				
Limnophyes		1	0.31%			Hemoglobin Bearer Percent Air Breather Richness	0.31% 0				
Eukiefferiella Pseudomon Ceratopogoninae	itana Gr.	1	0.31% 0.31%			Air Breather Percent	0.00%				
Ceratopogoninae			0.31%			Voltinism	0.0070				
							0				
						Univoltine Richness Semivoltine Richness	6 0	1			
Functional Compo	ncition					Multivoltine Percent	50.00%	·	2		
						Tolerance					
Category	R	A	PRA			Sediment Tolerant Richness	1				
Predator Parasite	2	2	0.63%	Collector Filterer		Sediment Tolerant Percent	0.31%				
Collector Gatherer	9	231	72.64%	Collector Gatherer		Sediment Sensitive Richness Sediment Sensitive Percent	0 0.00%				
Collector Filterer	1	1	0.31%	Omivore		Sediment Sensitive Percent Metals Tolerance Index	0.00%				
Macrophyte Herbivore				Parasite		Pollution Sensitive Richness	0	1		0	
Piercer Herbivore Xylophage				Predator	/	Pollution Tolerant Percent	3.14%	5		3	
Scraper	3	69	21.70%	Scr aper	/	Hilsenhoff Biotic Index	7.284		0		0
Shredder	1	4	1.26%	Shr edder Unknown		Intolerant Percent Supertolerant Percent	0.31% 64.47%				
Omivore	1	11	3.46%	Xylophage		CTQa	93.273				
Unknown											

Thursday, August 05, 2010

Figure A-17 Spring 2010 Macroinvertebrate Metric Results for Stateline

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2010
Sta. Name:	STL: Sample 505
Client ID:	Stateline Springs
STORET ID:	
Coll. Date:	

Abundance Measures


 Sample Count:
 310

 Sample Abundance:
 9,300.00
 3.33% of sample used

Coll. Procedure: Fall 2010 Sample Notes:

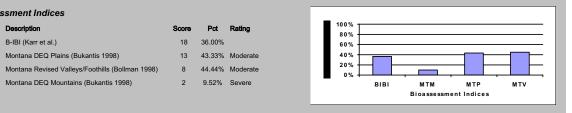
Taxonomic Composition

Category	R	A	PRA
Non-Insect	6	244	78.71%
Odonata			
Ephemeroptera	1	3	0.97%
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	3	13	4.19%
Lepidoptera			
Coleoptera			
Diptera	4	7	2.26%
Chironomidae	7	43	13.87%

Dominant Taxa

Category	Α	PRA
Hyalella	138	44.52%
Oligochaeta	46	14.84%
Ostracoda	44	14.19%
Metriocnemus	18	5.81%
Physa	12	3.87%
Thienemanniella	9	2.90%
Hydroptilidae sp. (RAI Taxon # 00	8	2.58%
Pentaneura	7	2.26%
Cricotopus (Isocladius)	4	1.29%
Simulium	3	0.97%
Oxyethira	3	0.97%
Hydrobiidae	3	0.97%
Fallceon	3	0.97%
Paratanytarsus	2	0.65%
Apedilum	2	0.65%

Functional Composition


Category	R	Α	PRA
Predator	3	10	3.23%
Parasite			
Collector Gatherer	9	246	79.35%
Collector Filterer	1	3	0.97%
Macrophyte Herbivore			
Piercer Herbivore	1	4	1.29%
Xylophage			
Scraper	3	16	5.16%
Shredder	3	13	4.19%
Omivore	1	18	5.81%
Unknown			

Collector Filter er Collector Gather er	
Macrophyte Herbivore	
Omi vor e	
Parasite	
Piercer Herbivore	
Pr edator	
Scr aper	
Shr edder	
Unknown	
Xylophage	

18 36.00%

2

Metric	Value	BIBI	MTP	MTV	мтм
Composition	, and a	2.2.			
Taxa Richness Non-Insect Percent E Richness P Richness	21 78.71% 1 0	3 1 1	2	0	1
T Richness EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	3 4 5.16% 14.84% 1.000 0.000	1	1 0	2	0 0
Dominance Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	44.52% 59.35% 73.55% 93.23%	3	2		1
Diversity Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.923 2.775 3.488 0.247 0.088		2		
<i>Function</i> Predator Richness Predator Percent	3 3.23%	1	1		
Filterer Richness Filterer Percent Collector Percent Scraper-Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	1 0.97% 80.32% 9.35% 5.333 0.842		1 1	3	0 0
Habit Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent <i>Characteristics</i>	3 6.45% 1 0.97% 4 3.23%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoqlobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 1 0.65% 1 0.32%				
Univoltine Richness Semivoltine Richness Multivoltine Percent <i>Tolerance</i>	9 0 30.32%	1	3		
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness	2 15.16% 0 0.00% 3.012 0	1		0	
Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent	4.84% 7.863 0.32% 78.39%	5	0	3	0

Friday, January 28, 2011

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

Montana DEQ Mountains (Bukantis 1998)

BioIndex Description

BIBI

MTP

MTV

MTM

Figure A-18 Fall 2010 Macroinvertebrate Metric Results for Stateline

Metrics Report Metric Values and Scores Metric BIBI MTP MTV MTM Value Composition Project ID: SNWA10CW RAI No.: SNWA10CW005 Taxa Richness 0 16 Sta. Name: ST: Sample 10-12 Non-Insect Percent 93 44% E Richness 0 1 Client ID: Stonehouse Spring 0 P Richness 0 0 STORET ID-T Richness 0 Coll Date: EPT Richness 0 0 0 0 EPT Percent 0.63% Abundance Measures Oligochaeta+Hirudinea Percent 0.63% Baetidae/Ephemeroptera 0.000 Sample Count: 320 Hydropsychidae/Trichoptera 0.000 1,828.57 17.50% of sample used Sample Abundance: Dominance Coll. Procedure: Dominant Taxon Percent 52.50% 0 1 Spring 2010 Dominant Taxa (2) Percent 74.06% Sample Notes: Dominant Taxa (3) Percent 85.63% 1 Dominant Taxa (10) Percent 97.19% Taxonomic Composition Diversitv Category R A PRA Shannon H (loge) 1.431 Non-Insect 299 93.44% Shannon H (log2) 8 2.064 Odonata Margalef D 2.612 Chir onomidae Ephemeroptera Coleopter a Dipter a Ephemer opter a Heter opter a Lepidopter a Megal opter a Simpson D 0.354 Plecoptera 0.106 Evenness Heteroptera Function Megaloptera Trichoptera Lepidoptera 1 2 0.63% Predator Richness 2 2.50% 1 Predator Percent Odonata Coleoptera Filterer Richness Plecoptera Trichoptera 1.88% Diptera 3 6 4.06% Filterer Percent 3 Chironomidae 4 13 4.06% Collector Percent 74.38% 2 1 0 Scraper+Shredder Percent 22 50% 2 Scraper/Filterer 5.385 Scraper/Scraper+Filterer 0.843 Dominant Taxa Habit Category A PRA Burrower Richness Hyalella Hydrobiidae 52.50% 21.56% 168 69 37 13 8 7 3 2 2 2 2 2 3.44% Burrower Percent Swimmer Richness Ostracoda Sphaeriidae Paratendipes 11.56% 0 4.06% 2.50% Swimmer Percent 0.00% Clinger Richness Amphipoda Ceratopogoninae Oxyethira 2.19% Clinger Percent 0.31% 0.94% Characteristics Micropsectra 0.63% Cold Stenotherm Richness 0 Glossiphoniidae Chaetocladius 0.63% 0.00% Cold Stenotherm Percent Hemoglobin Bearer Richness Hydryphantes 0.31% Hemoglobin Bearer Percent 2 50% Gammarus Ephydridae 0.31% Air Breather Richness 0.31% Air Breather Percent 0.31% Ceratopogonidae Voltinism Univoltine Richness 9 Semivoltine Richness Multivoltine Percent 0 16.25% 3 **Functional Composition** Tolerance Category R A PRA Sediment Tolerant Richness 0 2.50% Predator 4 8 Sediment Tolerant Percent 0.00% Collector Filterer Parasite Collector Gatherer Collector Gather Macrophyte Herb Sediment Sensitive Richness Sediment Sensitive Percent 0 6 225 70.31% 0.00% Collector Filterer 1 13 4.06% Metals Tolerance Index 2.995 Macrophyte Herbivore Par asite Pollution Sensitive Richness 0 0 Piercer He 1 2 Piercer Herbivore 0.63% Pollution Tolerant Percent Hilsenhoff Biotic Index 4.06% 7.846 5 3 Pr edator Xylophage 0 0 Scr aper Scraper 2 70 21 88% Shr edder Intolerant Percent 0.00% Shredder 2 2 0.63% Unknowr Supertolerant Percent 93.13% Omivore Xylophage CTQa 108.000 Unknown **Bioassessment Indices** 100% BioIndex Description Pct Rating Score 80% BIBI B-IBI (Karr et al.) 14 28.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 12 40.00% Moderate 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 6 33.33% Moderate 0% мтм Montana DEQ Mountains (Bukantis 1998) 1 4.76% Severe віві мтм мтр мτν Bioassessment Indices

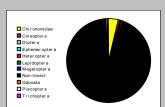
Figure A-19 Spring 2010 Macroinvertebrate Metric Results for Stonehouse

Thursday, August 05, 2010

319 1,914.00

16.67% of sample used

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2001
Sta. Name:	ST: Sample 13-17
Client ID:	Stonehouse Spring
STORET ID	
Coll. Date:	

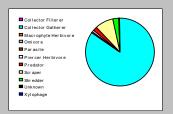

Abundance Measures

Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	Α	PRA
Non-Insect	6	297	93.10%
Odonata	1	2	0.63%
Ephemeroptera	1	1	0.31%
Plecoptera			
Heteroptera	1	2	0.63%
Megaloptera			
Trichoptera	1	1	0.31%
Lepidoptera			
Coleoptera	2	2	0.63%
Diptera	2	2	0.63%
Chironomidae	6	12	3.76%



Dominant Taxa

Category	Α	PRA
Hyalella	254	79.62%
Hydrobiidae	21	6.58%
Ostracoda	10	3.13%
Physa	7	2.19%
Gammarus	4	1.25%
Cricotopus (Isocladius)	4	1.25%
Metriocnemus	2	0.63%
Limnophyes	2	0.63%
Corixidae	2	0.63%
Acricotopus	2	0.63%
Sciomyzidae	1	0.31%
Dytiscidae	1	0.31%
Derotanypus	1	0.31%
Argia	1	0.31%
Apedilum	1	0.31%

Functional Composition

Category	R	A	PRA
Predator	5	6	1.88%
Parasite			
Collector Gatherer	6	270	84.64%
Collector Filterer			
Macrophyte Herbivore			
Piercer Herbivore	2	3	0.94%
Xylophage			
Scraper	2	28	8.78%
Shredder	3	9	2.82%
Omivore	1	2	0.63%
Unknown	1	1	0.31%

Metric Values and Scores					
Metric	Value	BIBI	MTP	MTV	МТМ
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness EPT Richness EPT Percent	20 93.10% 1 0 1 2 0.63%	3 1 1 1	2 0 0	0 0 0	1 0 0
Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance	0.31% 0.000 0.000				
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	79.62% 86.21% 89.34% 96.55%	1	0		0
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function	0.971 1.400 3.297 0.643 0.054		0		
Predator Richness Predator Percent	5 1.88%	1	2		
Filterer Richness Filterer Percent Collector Percent Scraper/Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	0 0.00% 84.64% 11.60% 0.000 0.000		1 1	3	0 0
Habit Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics	1 0.63% 3 1.25% 1 1.25%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 1 0.31% 1 0.31%				
Voltinism					
Univoltine Richness Semivoltine Richness Multivoltine Percent	10 2 6.90%	1	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Richness Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent	0 0.00% 0 0.00% 3.008 0 5.96% 7.896 0.00% 93.73%	1 5	0	0 2	0

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% BIBI B-IBI (Karr et al.) 16 32.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 9 30.00% Moderate 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 5 27.78% Moderate 0% MTM Montana DEQ Mountains (Bukantis 1998) 1 4.76% Severe BIBI мтм МТР мτν Bioassessment Indices

Friday, January 28, 2011

Figure A-20 Fall 2010 Macroinvertebrate Metric Results for Stonehouse

Metrics Report

0.73% of sample used

Chir onomidae Coleoptera Diptera Heteroptera Lepidoptera Non-Insect Odonata Plecoptera Trichoptera

Project ID:	SNWA10CW
RAI No.:	SNWA10CW006
Sta. Name:	SS: Sample 356
Client ID:	Swallow Spring
STORET ID:	
Coll. Date:	

Abundance Measures

Sample Count:	320
Sample Abundance:	43,885.71
Coll. Procedure:	

Sample Notes: Spring 2010

Taxonomic Composition

Category	R	A	PRA
Non-Insect	3	306	95.63%
Odonata			
Ephemeroptera	2	4	1.25%
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	1	4	1.25%
Lepidoptera			
Coleoptera	1	1	0.31%
Diptera	1	1	0.31%
Chironomidae	2	4	1.25%

Dominant Taxa

Category	Α	PRA
Ostracoda	299	93.44%
Gammarus	6	1.88%
Lepidostoma	4	1.25%
Thienemanniella	3	0.94%
Ephemerellidae	2	0.63%
Baetis adonis	2	0.63%
Heterotrissocladius	1	0.31%
Heterlimnius	1	0.31%
Ceratopogoninae	1	0.31%
Acari	1	0.31%

Functional Composition

Category	R	A	PRA
Predator	2	2	0.63%
Parasite			
Collector Gatherer	6	308	96.25%
Collector Filterer			
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper			
Shredder	2	10	3.13%
Omivore			
Unknown			

Collector Filter er Collector Gather er Macrophyte Her bivor e Ornivor e Piercer Her bivor e Predator Ser aper Shr edder Urknown Xytophage

Metric Values and Scores					
Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	10 95.63% 2 0 1	1 1 1 1	0	1 0 0	0
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	3 2.50% 0.500 0.000		1 0		0 0
Dominance Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	93.44% 95.31% 96.56% 100.00%	1	0		0
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	0.372 0.537 1.560 0.873 0.027		0		
Function Predator Richness Predator Percent Filterer Richness	2 0.63% 0	1	0	2	
Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	0.00% 96.25% 3.13% 0.000 0.000		0 1	3	0 0
Habit					
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	1 0.31% 0 0.00% 2 0.94%	1			
Characteristics					
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent	0 0.00%				
Air Breather Richness Air Breather Percent <i>Voltinism</i>	0 0.00%				
Univoltine Richness Semivoltine Richness Multivoltine Percent	4 1 95.00%	1	0		
Tolerance					
Sediment Tolerant Richness Sediment Jolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent	0 0.00% 0 2.125 1 1.88% 7.717 2.19%	1 5	0	1 3	0
Supertolerant Percent CTQa	93.44% 94.571				

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% BIBI B-IBI (Karr et al.) 14 28.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 2 6.67% Severe 40% _ 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 8 44.44% Moderate 0% 0 MTM Montana DEQ Mountains (Bukantis 1998) 0.00% Severe BIBI мтм МТР мτν Bioassessment Indices

Thursday, August 05, 2010

Figure A-21 Spring 2010 Macroinvertebrate Metric Results for Swallow

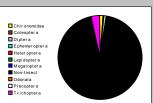
Metrics Report

313

2.92% of sample used

10,731.43

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2007
Sta. Name:	SS: Sample 357
Client ID:	Swallow Spring
STORET ID:	
Coll. Date:	

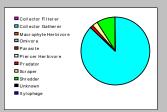

Abundance Measures

Sample Count: Sample Abundance:

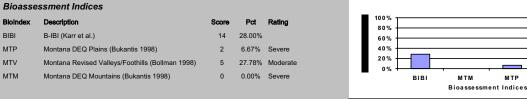
Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	A	PRA	_
Non-Insect	5	295	94.25%	
Odonata				
Ephemeroptera				
Plecoptera				
Heteroptera				
Megaloptera				
Trichoptera	1	10	3.19%	
Lepidoptera				
Coleoptera	1	1	0.32%	
Diptera	1	3	0.96%	
Chironomidae	2	4	1.28%	



Dominant Taxa


Α	PRA
264	84.359
17	5.43%
10	3.19%
9	2.88%
4	1.28%
3	0.96%
2	0.64%
1	0.32%
1	0.32%
1	0.32%
1	0.32%
	264 17 10 9 4 3 2 1 1

Functional Composition

Category	R	Α	PRA	
Predator	1	4	1.28%	
Parasite				
Collector Gatherer	6	273	87.22%	
Collector Filterer				
Macrophyte Herbivore				
Piercer Herbivore				
Xylophage				
Scraper	1	9	2.88%	
Shredder	2	27	8.63%	
Omivore				
Unknown				
Xylophaqe Scraper Shredder Omivore		-		

Metric	Value	BIBI	MTP	MTV	MTN
Composition					
Taxa Richness Non-Insect Percent E Richness	10 94.25% 0	1	0	0	0
P Richness T Richness EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera	0 1 3.19% 0.000	1 1	0 0	0	0 0
Hydropsychidae/Trichoptera	0.000				
Dominance Dominant Taxon Percent Dominant Taxa (2) Percent	84.35% 89.78%		0		0
Dominant Taxa (3) Percent Dominant Taxa (10) Percent <i>Diversity</i>	92.97% 99.68%	1			
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	0.701 1.011 1.567 0.720 0.059		0		
Function Predator Richness	1		0		
Predator Percent Filterer Richness Filterer Percent	1.28% 0 0.00%	1	0	3	
Collector Percent Scraper/Shredder Percent Scraper/Filterer Scraper/Filterer	87.22% 11.50% 0.000 0.000		1 1	3	0 0
Habit					
Burrower Richness Burrower Percent Swimmer Richness Clinger Percent Clinger Percent Characteristics	0 0.00% 1 0.96% 1 0.32%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent	0 0.00%				
Air Breather Richness Air Breather Percent	0 0.00%				
Voltinism	4				
Univoltine Richness Semivoltine Richness Multivoltine Percent	4 1 85.94%	1	0		
Tolerance					
Sediment Tolerant Richness Sediment Sensitive Richness Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index	0 0.00% 0.00% 1.355 0 5.75% 7.479	1 5	0	0 2	0
Intolerant Percent Supertolerant Percent CTQa	3.19% 87.86% 94.571				

Friday, January 28, 2011

Figure A-22 Fall 2010 Macroinvertebrate Metric Results for Swallow

МТР

мτν

BIBI

MTP

MTV

MTM

Metrics Report Metric Values and Scores Metric Value BIBI MTP MTV MTM Composition Project ID: SNWA10CW RAI No.: SNWA10CW010 Taxa Richness 16 0 1 1 Sta. Name: UN: Sample 455 Non-Insect Percent 93.56% E Richness 0 1 0 Client ID: Unnamed #1 Spring P Richness 0 0 STORET ID: T Richness 0 Coll. Date: EPT Richness 0 0 EPT Percent 0.61% 0 0 Abundance Measures Oligochaeta+Hirudinea Percent 0.31% Baetidae/Ephemeroptera 0.000 Sample Count: 326 Hydropsychidae/Trichoptera 0.000 Sample Abundance: 2,794.29 11.67% of sample used Dominance Coll. Procedure: Dominant Taxon Percent 59.20% 0 1 Spring 2010 Dominant Taxa (2) Percent Sample Notes: 76.99% Dominant Taxa (3) Percent 88.34% 1 Dominant Taxa (10) Percent 98.16% Taxonomic Composition Diversity Category R PRA A Shannon H (loge) 1.374 Non-Insect 8 305 93.56% 1.982 Shannon H (log2) 1 1.53% Odonata 1 5 Margalef D 2.592 Chir onomida Ephemeroptera Colir onomidae Colicopter a Dipter a Ephemer opter a Heter opter a Lepidopter a Negalopter a Non-insect Odonata Plecopter a Trichopter a Simpson D 0.395 Plecoptera 0.099 Evenness Heteroptera Function Megaloptera Trichoptera 1 2 0.61% Predator Richness 1 Lepidoptera Predator Percent 3.37% 1 Coleoptera Filterer Richness 1 Diptera 2 6 8 1.84% Filterer Percent 0.31% 3 Chironomidae 4 2.45% Collector Percent 30.98% 3 3 3 Scraper+Shredder Percent 64.11% 3 Scraper/Filterer Scraper/Scraper+Filterer 197.000 0.995 Dominant Taxa Habit Category **A** 193 PRA Burrower Richness Hydrobiidae 59.20% Burrower Percent 1.53% 58 37 11 17.79% 11.35% 3.37% Hyalella Ostracoda Swimmer Richness 0 Swimmer Percent 0.00% Gammarus 1.53% 1.53% Sciomyzidae Clinger Richness 5 5 3 Argia Physidae 2.45% Clinger Percent 0.92% Characteristics Metriocnemus 3 0.92% 0.92% 0.61% 0.31% Chaetocladius Ochrotrichia Cold Stenotherm Richness 0 Cold Stenotherm Percent 0.00% Pseudosuccinea Hemoglobin Bearer Richness Pseudochironomus Polypedilum 0.31% 0.31% Hemoglobin Bearer Percent 0.61% Air Breather Richness Oligochaeta 1 0.31% 0.00% Air Breather Percent 0.31% Ceratopogoninae Voltinism Univoltine Richness 9 Semivoltine Richness 1 Multivoltine Percent 14 42% 3 Functional Composition Tolerance Category R Α PRA Sediment Tolerant Richness 11 Predator 3 3.37% Collector Filter er Sediment Tolerant Percent 0.31% Parasite Sediment Sensitive Richness 0 Collector Gathere Collector Gatherer 5 100 30.67% Macrophyte Herbivore Omivore Sediment Sensitive Percent 0.00% Collector Filterer 1 0.31% 1 Metals Tolerance Index 2.756 Macrophyte Herbivore Par asite Pollution Sensitive Richness Pollution Tolerant Percent 0 0 Piercer Herbivore 1 2 0.61% Piercer Herbivore 6.44% 5 Predato 2 Xylophage Predator Scraper Shredder Unknown Xylophage 7.736 0.00% Hilsenhoff Biotic Index 0 0 3 197 60.43% Scraper Intolerant Percent 2 1 Shredder 12 3.68% Supertolerant Percent 89.88% 0.92% Omivore 3 CTQa 108.154 Unknown Bioassessment Indices 100% Rating BioIndex Description Score Pct 80% BIBI B-IBI (Karr et al.) 14 28.00% 60% 40% MTP Montana DEO Plains (Bukantis 1998) 13 43.33% Moderate 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 5 27.78% Moderate мтм Montana DEQ Mountains (Bukantis 1998) 6 28.57% Moderate віві мтм мтр мту Bioassessment Indices Thursday, August 05, 2010

Figure A-23

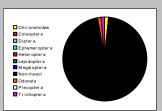
Spring 2010 Macroinvertebrate Metric Results for Unnamed 1 North of Big

1.67% of sample used

Metrics Report

Project ID: SNWA10CW2

RAI No.: SNWA10CW2009 Sta. Name: UN: Sample 456 Client ID: Unnamed 1 Spring North of Big STORET ID: Coll. Date:

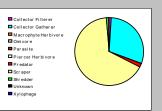

Abundance Measures

Sample Count:311Sample Abundance:18,660.00

Coll. Procedure: Fall 2010 Sample Notes:

Taxonomic Composition

Category	R	A	PRA
Non-Insect	5	298	95.82%
Odonata	1	4	1.29%
Ephemeroptera			
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	1	4	1.29%
Lepidoptera			
Coleoptera			
Diptera			
Chironomidae	3	5	1.61%



Dominant Taxa

Category	A	PRA
Hydrobiidae	204	65.59%
Ostracoda	53	17.04%
Hyalella	26	8.36%
Amphipoda	8	2.57%
Sphaeriidae	4	1.29%
Hvdroptilidae sp. (RAI Taxon # 00	4	1.29%
Aeshnidae	4	1.29%
Physa	3	0.96%
Orthocladiinae	2	0.64%
Radotanypus	1	0.32%
Pseudochironomus	1	0.32%
Chaetocladius	1	0.32%

Functional Composition

Category	R	Α	PRA
Predator	2	5	1.61%
Parasite			
Collector Gatherer	4	91	29.26%
Collector Filterer	1	4	1.29%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	2	207	66.56%
Shredder	1	4	1.29%
Omivore			
Unknown			

Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	10 95.82% 0 0	1 1 1 1	0	0 0 0	0
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	1 1.29% 0.000 0.000	·	0 0	Ū	0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	65.59% 82.64% 91.00% 99.36%	1	0		0
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.056 1.524 1.577 0.497 0.110		0		
Function					
Predator Richness Predator Percent Filterer Richness	2 1.61% 1	1	0		
Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	1.29% 30.55% 67.85% 51.750 0.981		3 3	3	3 3
Habit					
Burrower Richness Burrower Percent Swimmer Richness Clinger Richness Clinger Percent Characteristics	1 0.32% 0 0.00% 0 0.00%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 2 0.64% 0 0.00%				
Voltinism					
Univoltine Richness Semivoltine Richness Multivoltine Percent	4 1 18.65%	1	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index	0 0.00% 0.00% 3.032 0 2.25% 7.824	1 5	0	0 3	0
Intolerant Percent Supertolerant Percent CTQa	0.00% 93.25% 100.800				

Friday, January 28, 2011

Figure A-24

Fall 2010 Macroinvertebrate Metric Results for Unnamed 1 North of Big

s and Scores

BIBI

Value

MTP MTV MTM

Metric	es R	eno	rt	Metric Value
		CPC		Metric
Project ID: SNWA100	w			Composition
RAI No.: SNWA100 Sta. Name: U5: Samp Client ID: Unnamed STORET ID: Coll. Date:	e 108-111			Taxa Richness Non-Insect Perce E Richness P Richness T Richness EPT Richness EPT Percent
Abundance Meas	sures			Oligochaeta+Hiru
Sample Count: Sample Abundance:	1.71	300	6 of sample used	Baetidae/Epheme Hydropsychidae/
Sample Abundance.	1,71	+.29 17.30	o o sample used	Dominance
	Spring 2010			Dominant Taxon Dominant Taxa (2 Dominant Taxa (3 Dominant Taxa (1
Taxonomic Com	position			Diversity
Category Non-Insect Odonata Ephemeroptera Plecoptera Heteroptera	R 4 8 27 2 3	5 91.67%	Chironomidae Coleoptera Diplera Espense colera Espense colera	Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function
Megaloptera Trichoptera Lepidoptera Coleoptera	1 4	1.33%	■ Heirobyter a ■ Megalopter a ■ Non-Insect ■ Odonata ■ Piecopter a	Predator Richness Predator Percent Filterer Richness
Diptera Chironomidae	2 5 10 1		Trichoptera	Filterer Percent Collector Percent Scraper+Shredde
Dominant Taxa				Scraper/Filterer Scraper/Scraper+
				Habit
Category Ostracoda Hyalella Sphaeriidae Physidae	م 13 12 6 4	44.00% 42.67% 2.00%		Burrower Richnes Burrower Percent Swimmer Richne Swimmer Percen
Limnephilidae Procladius Dasyhelea	4 3 2	1.33% 1.00% 0.67%		Clinger Richness Clinger Percent Characteristics
Coenagrionidae Ceratopogoninae Planorbidae Paratendipes Paratanytarsus	2 2 1 1	0.67% 0.33% 0.33%		Cold Stenotherm Cold Stenotherm Cold Stenotherm Hemoglobin Bear

Functional Composition

Paramerina Helobdella stagnalis Gyraulus

Category	R	Α	PRA
Predator	5	10	3.33%
Parasite			
Collector Gatherer	11	270	90.00%
Collector Filterer	1	7	2.33%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	3	7	2.33%
Shredder	3	6	2.00%
Omivore			
Unknown			

0.33%

0.33%

Collector Filter er	
Collector Gatherer	
Macrophyte Herbivore	
Omivore Omivore	
Parasite	
Piercer Herbivore	
Predator	
Scr aper	
Shr edder	
Unknown	
Xyl ophage	

23 3 2 1 91.67% 0 1 0 0 1 0 0 1 0 0 0 0 1.33% 0.33% 0.000 dinea Percent eroptera richoptera 0.000 44.00% 2 1 Percent 2) Percent 3) Percent 10) Percent 86.67% 88.67% 1 94.67% 1.320 1.905 3.866 1 0.385 0.103 2 5 3.33% 1 1 2.33% 3 92.33% 4.33% 1 0 0 Percent 1 1.000 Filterer 0.500 4 2.00% 0 0.00% 0.67% 0 0.00% Richness Percent er Richness 8 3.67% Hemoglobin Bearer Percent Air Breather Richness 0 Air Breather Percent 0.00% Voltinism Univoltine Richness 11 Semivoltine Richness 0 1 Multivoltine Percent 48.33% 2 Tolerance Sediment Tolerant Richness Sediment Tolerant Percent 0.67% Sediment Sensitive Richness Sediment Sensitive Percent 0 0.00% Metals Tolerance Index 3.058 Pollution Sensitive Richness 0 0 Pollution Tolerant Percent Hilsenhoff Biotic Index 5.67% 5 2 7.875 0 0 Intolerant Percent Supertolerant Percent 0.00% 93.00% CTQa 108.000

Thursday, August 05, 2010

Figure A-25 Spring 2010 Macroinvertebrate Metric Results for Unnamed 5

Metrics Report

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2003
Sta. Name:	U5: Sample 112
Client ID:	Unnamed 5
STORET ID:	
Coll. Date:	

Abundance Measures

Sample Count: Sample Abundance:

2,622.86 11.67% of sample used

306

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	Α	PRA	
Non-Insect	10	117	38.24%	
Odonata	3	69	22.55%	
Ephemeroptera	1	11	3.59%	
Plecoptera				
Heteroptera	1	1	0.33%	
Megaloptera				
Trichoptera	1	11	3.59%	
Lepidoptera				
Coleoptera	2	3	0.98%	
Diptera	5	9	2.94%	
Chironomidae	15	85	27.78%	

Dominant Taxa

Category	A	PRA
Coenagrionidae	61	19.93%
Hyalella	45	14.71%
Ostracoda	31	10.13%
Gyraulus	24	7.84%
Tanypodinae	15	4.90%
Pseudochironomus	15	4.90%
Orthocladius	15	4.90%
Callibaetis	11	3.59%
Oxyethira	10	3.27%
Acricotopus	9	2.94%
Argia	7	2.29%
Sphaeriidae	5	1.63%
Paratanytarsus	5	1.63%
Corynoneura	5	1.63%
Hydrobiidae	4	1.31%

Functional Composition

Category	R	Α	PRA
Predator	11	94	30.72%
Parasite			
Collector Gatherer	17	155	50.65%
Collector Filterer	4	11	3.59%
Macrophyte Herbivore			
Piercer Herbivore	1	11	3.59%
Xylophage			
Scraper	3	32	10.46%
Shredder	2	3	0.98%
Omivore			
Unknown			

Metric	Value	BIBI	MTP	MTV	МТМ
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	38 38.24% 1 0 1	3 1 1 1	3	0 0 0	3
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	2 7.19% 0.33% 1.000 0.000		0 0		0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	19.93% 34.64% 44.77% 77.12%	5	3		3
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function	2.762 3.984 6.550 0.099 0.055		3		
Predator Richness	11		3		
Predator Richness Predator Percent Filterer Richness Filterer Percent	30.72% 4 3.59%	5	3	3	
Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer Habit	54.25% 11.44% 2.909 0.744		3 1	0	3 0
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	4 6.54% 4 5.56% 2 0.98%	1			
Characteristics					
Cold Stenotherm Richness Cold Stenotherm Percent Hemoalobin Bearer Richness Hemoalobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 8 16.01% 2 0.98%				
Voltinism					
Univoltine Richness Semivoltine Richness	14 3	3			
Multivoltine Percent	45.75%		2		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index	2 8.17% 0 0.00% 3.112				
Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent	0 41.83% 7.169 0.00% 47.39%	1 3	0	0 0	0

Bioassessment Indices 100% BioIndex Description Score Pct Rating 80% BIBI B-IBI (Karr et al.) 24 48.00% 60% Montana DEQ Plains (Bukantis 1998) MTP 18 60.00% Slight 40% 20% Montana Revised Valleys/Foothills (Bollman 1998) 3 16.67% Severe MTV 0% Montana DEQ Mountains (Bukantis 1998) MTM 9 42.86% Moderate BIBI мтм МТР мτν Bioassessment Indices

Friday, January 28, 2011

Figure A-26 Fall 2010 Macroinvertebrate Metric Results for Unnamed 5

Metrics I				Metric Values and Scores					
				Metric	Value	BIBI	MTP	MTV	M
Project ID: SNWA10CW				Composition					
RAI No.: SNWA10CW008				Taxa Richness	22	3	2		1
Sta. Name: WV: Sample 309-311				Non-Insect Percent E Richness	89.63% 0	1		0	
Client ID: West Spring Complex				P Richness	0	1		Ő	
STORET ID: Coll. Date:				T Richness	0	1		0	
Joil. Date:				EPT Richness	0		0		(
Abundance Measures				EPT Percent Oligochaeta+Hirudinea Percent	0.00% 1.22%		0		(
Sample Count:	328			Baetidae/Ephemeroptera	0.000				
		of sample used		Hydropsychidae/Trichoptera	0.000				
				Dominance					
Coll. Procedure:				Dominant Taxon Percent	40.55%		2		
Sample Notes: Spring 2010	1			Dominant Taxa (2) Percent Dominant Taxa (3) Percent	60.37% 71.34%	3			
				Dominant Taxa (3) Percent	92.99%	5			
Faxonomic Composition				Diversity					
ategory R	A PRA			Shannon H (loge)	1.868				
Non-Insect 10	294 89.63%			Shannon H (log2)	2.695		2		
Odonata 1	3 0.91%	Chir onomidae		Margalef D	3.651				
Ephemeroptera Plecoptera		Coleopter a		Simpson D	0.243				
leteroptera		Ephemer opter a		Evenness	0.091				
legaloptera		Heter opter a Lepidopter a		Function					
richoptera		Megal opter a Non-Insect		Predator Richness	3	4	1		
.epidoptera Coleoptera 1	1 0.30%	Odonata		Predator Percent Filterer Richness	6.10% 1	1			
Diptera 2	17 5.18%	Plecopter a Trichopter a		Filterer Percent	0.91%			3	
Chironomidae 8	13 3.96%			Collector Percent	57.01%		3		
				Scraper+Shredder Percent Scraper/Filterer	36.28% 16.667		3		
Dominant Taxa				Scraper/Filterer Scraper/Scraper+Filterer	0.943				
				Habit					
ategory	A PRA			Burrower Richness	4				
Ostracoda Sammarus	133 40.55% 65 19.82%			Burrower Percent	5.79%				
lyalella	36 10.98%			Swimmer Richness	0				
lydrobiidae	26 7.93% 19 5.79%			Swimmer Percent	0.00% 2	1			
Physidae Ceratopogoninae	19 5.79% 11 3.35%			Clinger Richness Clinger Percent	2 1.22%				
Bezzia / Palpomyia	5 1.52%			Characteristics					
Glossiphoniidae Stagnicola	4 1.22% 3 0.91%			Cold Stenotherm Richness	0				
Sphaeriidae	3 0.91%			Cold Stenotherm Percent	0.00%				
Coenagrionidae Chaetocladius	3 0.91% 3 0.91%			Hemoglobin Bearer Richness	4				
anypodinae	2 0.61%			Hemoglobin Bearer Percent Air Breather Richness	1.83% 1				
Cricotopus (Cricotopus) Amphipoda	2 0.61% 2 0.61%			Air Breather Percent	0.30%				
	2 0.0170			Voltinism					
				Univoltine Richness	11				
				Semivoltine Richness	11	1			
Functional Composition				Multivoltine Percent	44.82%		2		
•				Tolerance					
ategory R	A PRA		1	Sediment Tolerant Richness	2				
Predator 3 Parasite 1	20 6.10% 1 0.30%	Collector Filter er		Sediment Tolerant Percent	1.52%				
Collector Gatherer 9	184 56.10%	Collector Gatherer		Sediment Sensitive Richness	0				
ollector Filterer 1	3 0.91%	Omivore		Sediment Sensitive Percent Metals Tolerance Index	0.00% 2.278				
lacrophyte Herbivore		Parasite Piercer Herbivore		Pollution Sensitive Richness	0	1		0	
iercer Herbivore ylophage		Predator		Pollution Tolerant Percent	28.66%	3		1	
Scraper 4	50 15.24%	 Scr aper Shr edder 		Hilsenhoff Biotic Index Intolerant Percent	6.997 0.00%		1		
Shredder 3	69 21.04%	Unknown		Supertolerant Percent	68.60%				
Omivore 1 Inknown	1 0.30%	Xylophage		CTQa	108.000				
Bioassessment Indices				-					
ioIndex Description		Score	Pct Rating	100%					_
IBI B-IBI (Karr et al.)		16	32.00%	80%					
ITP Montana DEQ Plains (Bukantis 1998)	16	53.33% Moderate	40%					
ITV Montana Revised Vall			22.22% Moderate	20%		_	<u> </u>		—
				0%			L.,		I
	ine (Dulues the 4000)					MTP		MTV	
ITM Montana DEQ Mounta	iins (Bukantis 1998)	6	28.57% Moderate	BIBI	MTM oassessmen			WI I V	

Figure A-27

Spring 2010 Macroinvertebrate Metric Results for West Spring Valley Complex

Metrics Report

310

1,328.57 23.33% of sample used

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2006
Sta. Name:	WV: Sample 312-314
Client ID:	West Spring Valley Complex
STORET ID:	
Coll. Date:	


Abundance Measures

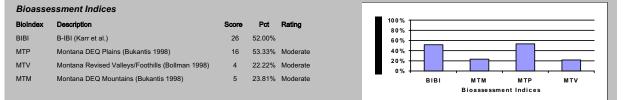
Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes: Fall 2010

Taxonomic Composition

Category	R	Α	PRA
Non-Insect	7	223	71.94%
Odonata	1	7	2.26%
Ephemeroptera			
Plecoptera			
Heteroptera	2	2	0.65%
Megaloptera			
Trichoptera	1	2	0.65%
Lepidoptera			
Coleoptera	7	55	17.74%
Diptera	1	14	4.52%
Chironomidae	2	7	2.26%

Dominant Taxa


Category	Α	PRA
Hyalella	106	34.19%
Ostracoda	51	16.45%
Liodessus	41	13.23%
Amphipoda	28	9.03%
Gammarus	17	5.48%
Ephydridae	14	4.52%
Hydrobiidae	13	4.19%
Paracymus	7	2.26%
Orthocladius	6	1.94%
Physa	5	1.61%
Argia	5	1.61%
Tropisternus	2	0.65%
Fossaria	2	0.65%
Coenagrionidae	2	0.65%
Notonecta	1	0.32%

Functional Composition

Category	R	A	PRA
Predator	9	63	20.32%
Parasite			
Collector Gatherer	4	205	66.13%
Collector Filterer			
Macrophyte Herbivore			
Piercer Herbivore	1	2	0.65%
Xylophage			
Scraper	4	21	6.77%
Shredder	3	19	6.13%
Omivore			
Unknown			
Macrophyte Herbivore Piercer Herbivore Xylophage Scraper Shredder Omivore	4	21	6.77%

Unknown Xylophage

Metric Values and Scores	;				
Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness	21 71.94% 0	3	2	0	1
P Richness T Richness EPT Richness EPT Percent	0 1 1 0.65%	1 1	0 0	0 0	0 0
Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	0.000 0.000				
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent	34.19% 50.65%	2	2		2
Dominant Taxa (3) Percent Dominant Taxa (10) Percent <i>Diversity</i>	63.87% 92.90%	3			
Shannon H (loge)	1.999				
Shannon H (log2) Margalef D	2.884 3.554		2		
Simpson D Evenness	0.208 0.089				
Function					
Predator Richness Predator Percent	9 20.32%	5	3		
Filterer Richness Filterer Percent	0 0.00%			3	
Collector Percent Scraper+Shredder Percent	66.13% 12.90%		2 1		2 0
Scraper/Filterer Scraper/Scraper+Filterer	0.000 0.000				
Habit					
Burrower Richness Burrower Percent	2 6.77%				
Swimmer Richness Swimmer Percent	8				
Clinger Richness	15.81% 0	1			
Clinger Percent	0.32%				
Characteristics	0				
Cold Stenotherm Richness Cold Stenotherm Percent	0 0.00%				
Hemoglobin Bearer Richness Hemoglobin Bearer Percent	2 0.65%				
Air Breather Richness Air Breather Percent	6 17.42%				
Voltinism					
Univoltine Richness	10				
Semivoltine Richness Multivoltine Percent	7 19.03%	5	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent	2 0.97%				
Sediment Sensitive Richness Sediment Sensitive Percent	0 0.00%				
Metals Tolerance Index Pollution Sensitive Richness	2.913 0	1		0	
Pollution Tolerant Percent Hilsenhoff Biotic Index	10.97%	5	1	1	0
Intolerant Percent	0.00%				0
Supertolerant Percent	57.10%				

Friday, January 28, 2011

Figure A-28

Fall 2010 Macroinvertebrate Metric Results for West Spring Valley Complex

	Repo		Metric Values and Score					
			Metric	Value	BIBI	MTP	MTV	
roject ID: SNWA10CW			Composition					
AI No.: SNWA10CW009			Taxa Richness	11	1	0		
ta. Name: WS: Sample 257			Non-Insect Percent E Richness	91.59% 0	1		0	
lient ID: Willow Spring			P Richness	0	1		0	
TORET ID:			T Richness	0	1		0	
oll. Date:			EPT Richness	0		0		
hundenes Messures			EPT Percent	0.00%		0		
bundance Measures			Oligochaeta+Hirudinea Percent	0.31%				
ample Count:	321		Baetidae/Ephemeroptera	0.000				
ample Abundance: 1	,926.00 16.67%	of sample used	Hydropsychidae/Trichoptera	0.000				
			Dominance					
oll. Procedure:			Dominant Taxon Percent	68.85%		0		
ample Notes: Spring 2010)		Dominant Taxa (2) Percent	81.31%				
			Dominant Taxa (3) Percent Dominant Taxa (10) Percent	89.72% 99.69%	1			
axonomic Composition				99.09%				
			Diversity					
ategory R on-Insect 6	A PRA		Shannon H (loge)	1.093				
on-Insect 6 donata	294 91.59%		Shannon H (log2)	1.577		0		
ohemeroptera		Chironomidae	Margalef D Simpson D	1.733 0.500				
ecoptera		Coleoptera	Evenness	0.500				
eteroptera		Ephemeroptera		500				
egaloptera		Heter opter a	Function					
ichoptera		Megaloptera Non-Insect	Predator Richness	4		2		
epidoptera		Odonata	Predator Percent	2.49%	1			
pleoptera iptera		Plecopter a Trichopter a	Filterer Richness Filterer Percent	0 0.00%			3	
hironomidae 5	27 8.41%		Collector Percent	0.00% 87.85%		1	3	
			Scraper+Shredder Percent	9.03%		1		
			Scraper/Filterer	0.000				
ominant Taxa			Scraper/Scraper+Filterer	0.000				
			Habit					
ategory	A PRA 221 68.85%		Burrower Richness	2				
valella stracoda	40 12.46%		Burrower Percent	1.25%				
vdrobiidae	27 8.41%		Swimmer Richness	0				
haetocladius	21 6.54%		Swimmer Percent	0.00%				
renurus	4 1.25%		Clinger Richness	1	1			
etriocnemus osectrotanypus	2 0.62% 2 0.62%		Clinger Percent	0.31%				
nienemannimyia Gr.	1 0.31%		Characteristics					
olypedilum	1 0.31%		Cold Stenotherm Richness	0				
ossaria pobdellidae	1 0.31% 1 0.31%		Cold Stenotherm Percent	0.00%				
pobdemdae	1 0.5176		Hemoglobin Bearer Richness	2				
			Hemoglobin Bearer Percent	0.93%				
			Air Breather Richness Air Breather Percent	0 0.00%				
				0.00%				
			Voltinism					
			Univoltine Richness	3				
			Semivoltine Richness Multivoltine Percent	0 22.12%	1	3		
unctional Composition				22.12%		3		
ategory R	A PRA		Tolerance					
redator 4	8 2.49%		Sediment Tolerant Richness	1				
arasite	5 2.4570	Collector Filter er	Sediment Tolerant Percent	0.31%				
ollector Gatherer 3	282 87.85%	Collector Gather er Macr ophyte Her bivor e	Sediment Sensitive Richness	0				
ollector Filterer		Omivore	Sediment Sensitive Percent Metals Tolerance Index	0.00% 3.009				
acrophyte Herbivore		Parasite	Pollution Sensitive Richness	0	1		0	
ercer Herbivore		Piercer Herbivore Predator	Pollution Tolerant Percent	0.31%	5		3	
vlophage craper 2	28 8.72%	■ Scraper	Hilsenhoff Biotic Index	7.833		0		
nredder 2	28 8.72% 1 0.31%	Shr edder	Intolerant Percent	0.00%				
mivore 1	2 0.62%	Viknown Xylophage	Supertolerant Percent	90.65%				
hknown	5.6270		CTQa	108.000				
ioassessment Indices								Ī
olndex Description		Score Pct Rating	100%					_
BI B-IBI (Karr et al.)		14 28.00%	60%					
TP Montana DEQ Plains	(Bukantis 1998)	7 23.33% Moderate	40%					
			20%			<u> </u>	-	
T// Montone Reviewd //el	eyarroouniis (Boiimai	1998) 6 33.33% Moderate	0%			Ц,		
TV Montana Revised Val								
TV Montana Revised Val TM Montana DEQ Mounta	ains (Bukantis 1998)	0 0.00% Severe	BIBI	MTM oassessmen	MTP t Indico	35	MTV	

Figure A-29 Spring 2010 Macroinvertebrate Metric Results for Willow

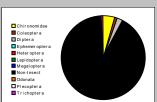
Metrics Report

312

1,337.14 23.33% of sample used

Project ID:	SNWA10CW2
RAI No.:	SNWA10CW2005
Sta. Name:	WS: Sample 258
Client ID:	Willow Spring
STORET ID:	
Coll. Date:	

Abundance Measures


Sample Count: Sample Abundance:

Coll. Procedure: Sample Notes:

Taxonomic Composition

Category	R	Α	PRA
Non-Insect	6	285	91.35%
Odonata	1	1	0.32%
Ephemeroptera			
Plecoptera			
Heteroptera			
Megaloptera			
Trichoptera	2	2	0.64%
Lepidoptera			
Coleoptera	2	2	0.64%
Diptera	3	7	2.24%
Chironomidae	9	15	4.81%

Fall 2010

Dominant Taxa

Category	Α	PRA
Hyalella	165	52.88%
Hydrobiidae	77	24.68%
Ostracoda	38	12.18%
Radotanypus	5	1.60%
Ceratopogoninae	5	1.60%
Pseudochironomus	2	0.64%
Orthocladius	2	0.64%
Erpobdellidae	2	0.64%
Thienemannimyia Gr.	1	0.32%
Stratiomyidae	1	0.32%
Pionidae	1	0.32%
Micropsectra	1	0.32%
Limnophyes	1	0.32%
Lepidostoma	1	0.32%
Heterotrissocladius	1	0.32%

Functional Composition

PRA
5.77%
5 68.91%
25.00%
0.32%

Collector Filterer		
Collector Gather er		
Macr ophyte Her bivor e		
Omivore	(
Parasite		
Piercer Herbivore		
Predator		
Scr aper	\mathbf{X}	
Shr edder		
Unknown		
Xylophage		

Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	23 91.35% 0 2	3 1 1 1	2	0 0 1	1
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance	2 0.64% 0.96% 0.000 0.000		0		0 0
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	52.88% 77.56% 89.74% 95.51%	1	1		0
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.446 2.086 3.833 0.356 0.095		1		
Function Predator Richness	9		3		
Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer	5.77% 0 0.00% 68.91% 25.32% 0.000	1	2 2	3	2 1
Scraper/Scraper+Filterer Habit	0.000				
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinaer Percent <i>Characteristics</i>	3 1.28% 1 0.32% 3 0.96%	1			
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 3 2.56% 2 0.64%				
Univoltine Richness Semivoltine Richness Multivoltine Percent	9 2 16.99%	1	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent	0 0.00% 0 0.00% 3.055 1 1.28% 7.768 0.96% 91.35%	1 5	0	1 3	0

Bioassessment Indices 100% BioIndex Description Pct Rating Score 80% BIBI B-IBI (Karr et al.) 16 32.00% 60% MTP Montana DEQ Plains (Bukantis 1998) 14 46.67% Moderate 40% 20% MTV Montana Revised Valleys/Foothills (Bollman 1998) 8 44.44% Moderate 0% MTM Montana DEQ Mountains (Bukantis 1998) 4 19.05% Severe віві мтм МТР мτν Bioassessment Indices

Friday, January 28, 2011

Figure A-30 Fall 2010 Macroinvertebrate Metric Results for Willow

Spring Valley Stipulation Biological Monitoring Plan, 2010 Annual Report

Appendix B

Physical Habitat Maps and Associated Data for Aquatic Sites (Springs, Ponds, and Creek Reaches)

B.1.0 INTRODUCTION

Physical habitat polygons and water quality sample points (springhead, midpoint, endpoint) are shown for spring and fall 2010, with fixed photography stations and permanent vegetation transects overlaid on both seasonal maps. Underlying imagery is NAIP 1-meter Aerial Imagery (USDA-FSA, 2006). Exact locations of northern leopard frog presence surveys, egg masses and breeding habitat transects; relict dace traps; Pahrump poolfish surveys; and springsnail transects are not depicted due to the sensitive nature of the biological data. Areal calculations were made from digitized physical habitat map polygons in ArcMap 9.3.1 (ESRI).

Table B-1Fall 2010 Mapped Area at Creek Reaches Summarized by Physical Habitat Type

Site	HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Big Springs/Lake Creek Reach #1	Channel	<0.2	>0.5	30 - 90	487
Big Springs/Lake Creek Reach #2	Channel	0.2 - 1	0.1 - 0.5	<30	295
Big Springs/Lake Creek Reach #3	Channel	0.2 - 1	0.1 - 0.5	<30	297
Big Springs/Lake Creek Reach #4	Channel	0.2 - 1	>0.5	<30	378
Big Springs/Lake Creek Reach #5 ^a	Channel	<0.2	0.1 - 0.5	<30	75
Big Springs/Lake Creek Reach #6 ^a	Channel	0.2 - 1	>0.5	<30	244

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

^aReaches 5 and 6 were not mapped to the full extent due to an error in the field. Only 40 meters of Reach 5 were mapped and only 86 meters of Reach 6 were mapped.

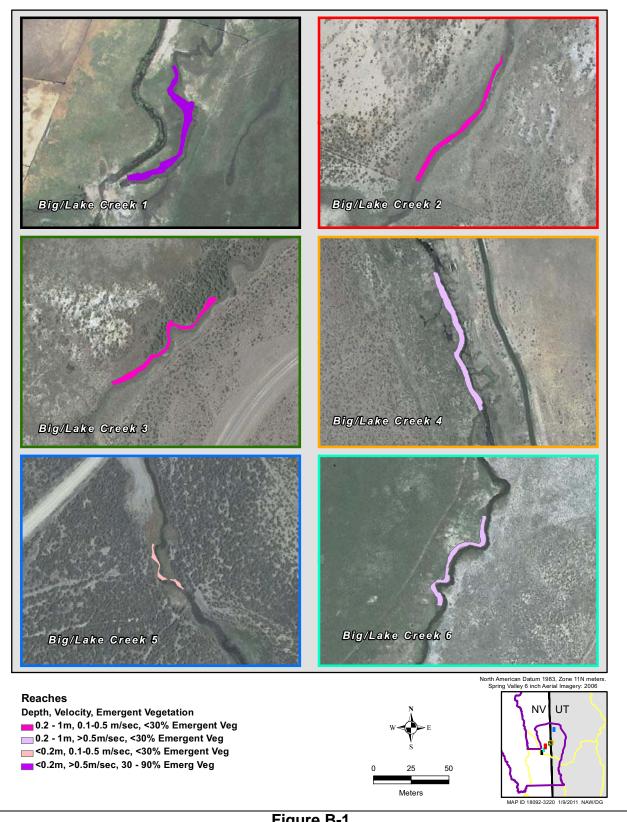


Figure B-1 Creek Reaches Physical Habitat Map Fall 2010

Table B-2
Spring 2010 Mapped Area at Big Springs Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.1 - 0.5	30 - 90	155
Channel	0.2 - 1	0.1 - 0.5	<30	167
			Total Channels	322
			Total Pools	0.0
			Total Aquatic Area	322

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-3Fall 2010 Mapped Area at Big Springs Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.01 - 0.1	>90	46
Channel	<0.2	0.1 - 0.5	>90	68
Channel	<0.2	0.1 - 0.5	<30	40
Channel	0.2 - 1	0.1 - 0.5	<30	63
Channel	0.2 - 1	0.01 - 0.1	<30	133
			Total Channels	350
			Total Pools	0.0
			Total Aquatic Area	350

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

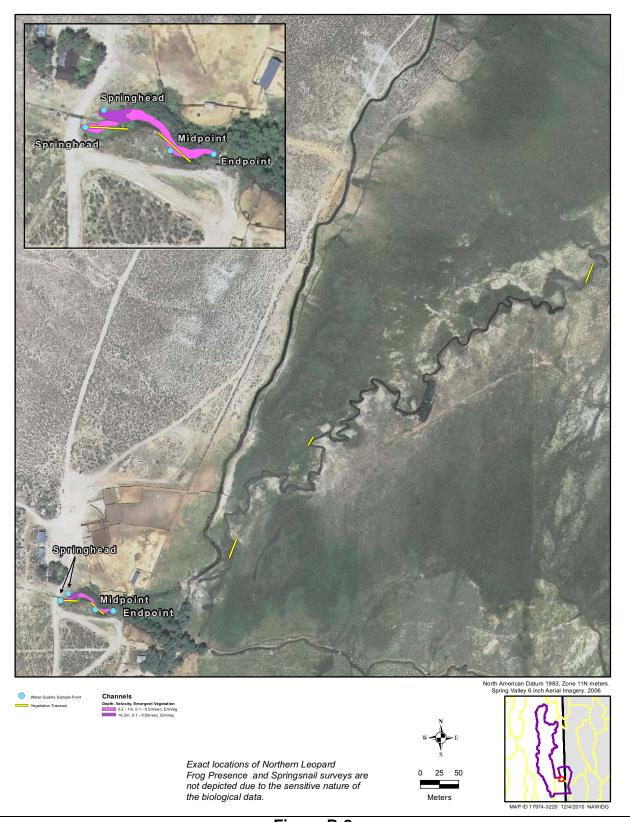


Figure B-2 Big Springs Physical Habitat Map for Spring 2010

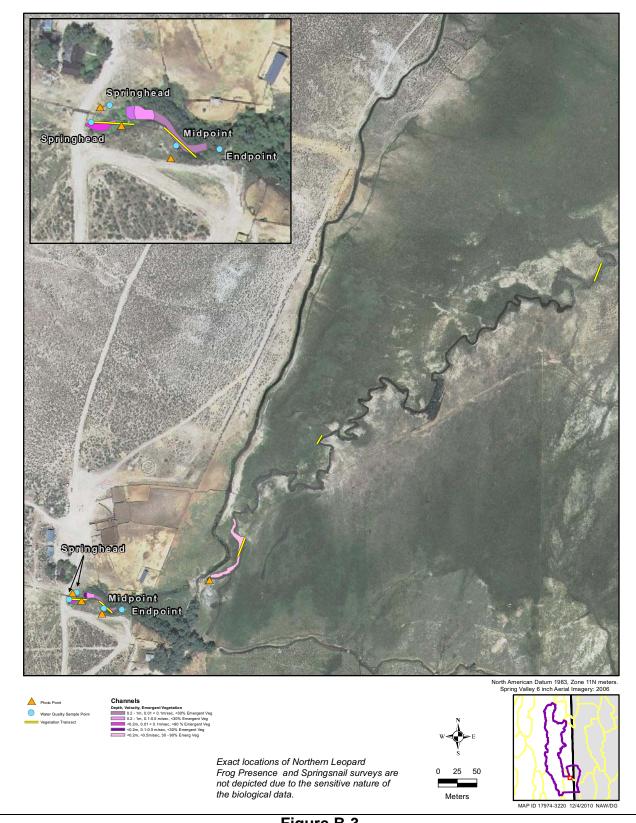


Figure B-3 Big Springs Physical Habitat Map for Fall 2010

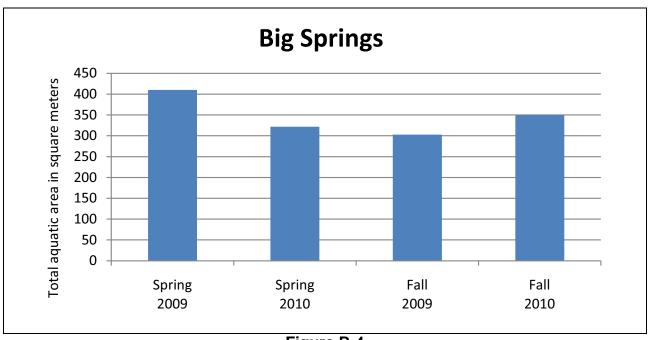
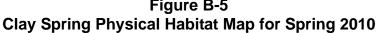


Figure B-4 Total Aquatic Area by Season for 2009 and 2010 at Big Springs

Table B-4
Spring 2010 Mapped Area at Clay Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	30 - 90	70
Channel	<0.2	0.01 - 0.1	<30	95
Channel	<0.2	0.1 - 0.5	<30	121
			Total Channels	286
			Total Pools	0.0
			Total Aquatic Area	286

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.


Table B-5Fall 2010 Mapped Area at Clay Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.1 - 0.5	<30	109
Channel	0.2 - 1	0.01 - 0.1	30 - 90	114
			Total Channels	223
	0.0			
			Total Aquatic Area	223

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

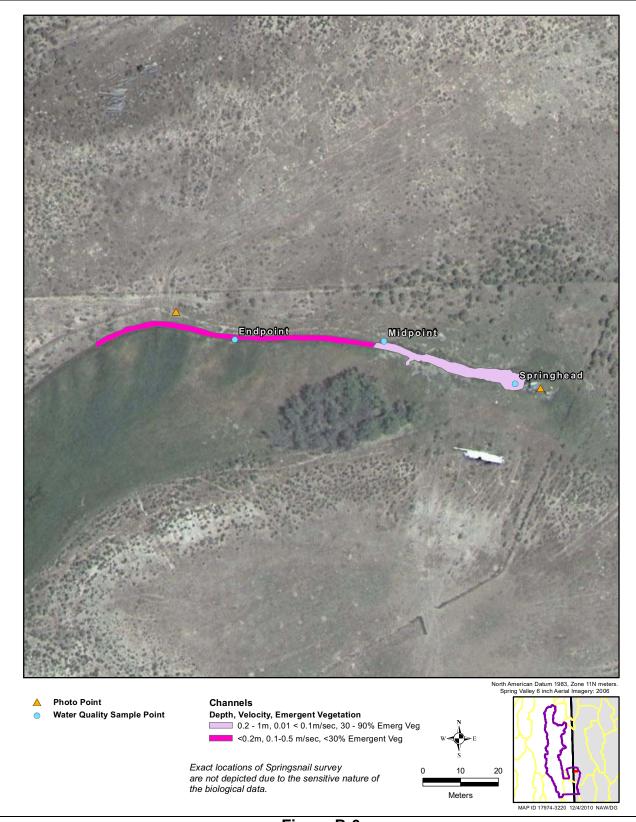


Figure B-6 Clay Spring Physical Habitat Map for Fall 2010

Access to Clay Spring was not granted in 2009.

Table B-6
Spring 2010 Mapped Area at Four Wheel Drive Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Pool	0.2 - 1	<0.01	<30	171
Channel	<0.2	<0.01	30 - 90	181
			Total Channels	181
	171			
			Total Aquatic Area	352

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-7Fall 2010 Mapped Area at Four Wheel Drive Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Pool	0.2 - 1	<0.01	>90	205
Channel	<0.2	N/A	>90	149
	<u> </u>		Total Channels	149
	205			
Total Aquatic Area				354

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

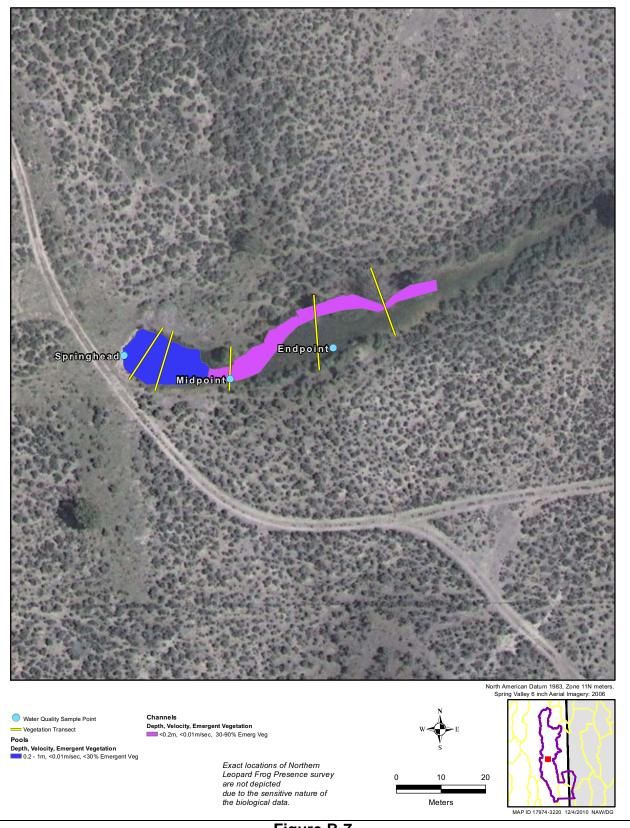


Figure B-7 Four Wheel Drive Spring Physical Habitat Map for Spring 2010

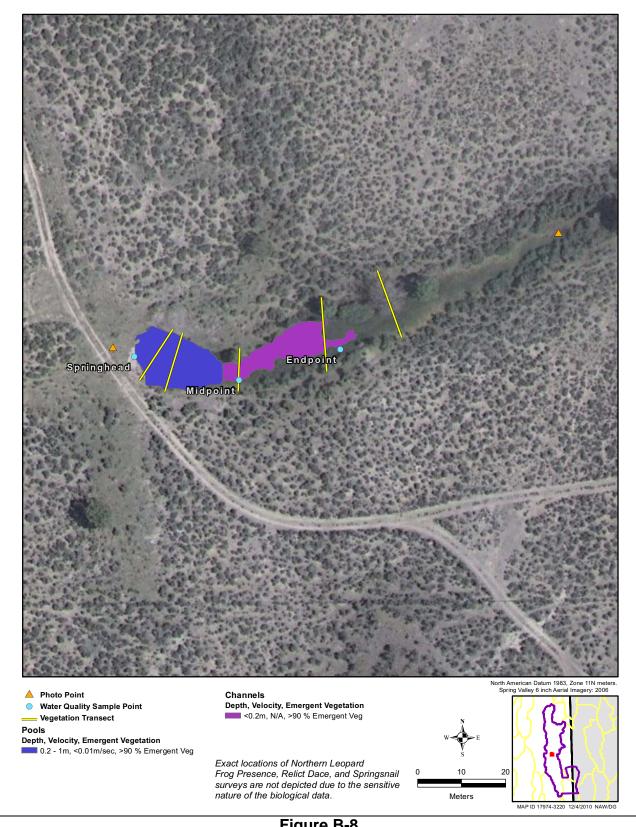


Figure B-8 Four Wheel Drive Spring Physical Habitat Map for Fall 2010

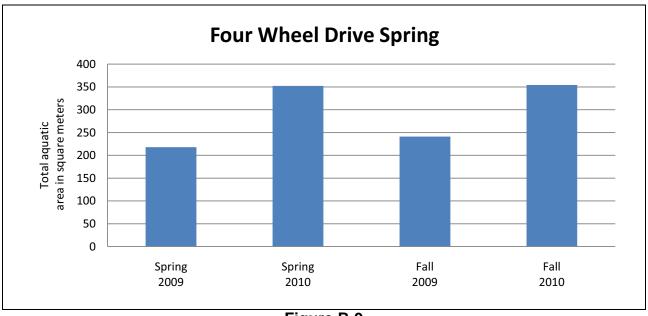


Figure B-9 Total Aquatic Area by Season for 2009 and 2010 at Four Wheel Drive

Table B-8
Spring 2010 Mapped Area at Keegan Spring Complex North Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.01 - 0.1	30 - 90	366
Channel	<0.2	0.1 - 0.5	<30	1022
Channel	0.2 - 1	<0.01	30 - 90	18
Channel	0.2 - 1	0.01 - 0.1	<30	466
Channel	0.2 - 1	0.01 - 0.1	30 - 90	1104
Channel	0.2 - 1	0.1 - 0.5	<30	145
Pool	<0.2	<0.01	30 - 90	4830
Pool	>1	<0.01	<30	905.
Pool	0.2 - 1	<0.01	<30	222
Pool	0.2 - 1	<0.01	30 - 90	3043
	3121			
Total Pools				9000
Total Aquatic Area				12121

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-9

Fall 2010 Mapped Area at Keegan Spring Complex North Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
<0.2	<0.01	30 - 90	171	
<0.2	0.01 - 0.1	30 - 90	192	
<0.2	0.1 - 0.5	<30	1191	
<0.2	0.1 - 0.5	30 - 90	204	
0.2 - 1	0.01 - 0.1	<30	46	
0.2 - 1	0.01 - 0.1	30 - 90	960	
>1	<0.01	<30	132	
0.2 - 1	<0.01	<30	1058	
0.2 - 1	<0.01	>90	3387	
0.2 - 1	<0.01	30 - 90	6580	
Total Channels				
Total Pools				
Total Aquatic Area 13921				
	(m) <0.2 <0.2 <0.2 <0.2 0.2 - 1 0.2 - 1 0.2 - 1 0.2 - 1 0.2 - 1	(m)(m/sec) <0.2 <0.01 <0.2 $0.01 - 0.1$ <0.2 $0.1 - 0.5$ <0.2 $0.1 - 0.5$ $0.2 - 1$ $0.01 - 0.1$ >1 <0.01 >1 <0.01 $0.2 - 1$ <0.01 $0.2 - 1$ <0.01 $0.2 - 1$ <0.01	(m) (m/sec) (% Cover) <0.2	

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.



Figure B-10 Keegan Spring Complex North Physical Habitat Map for Spring 2010

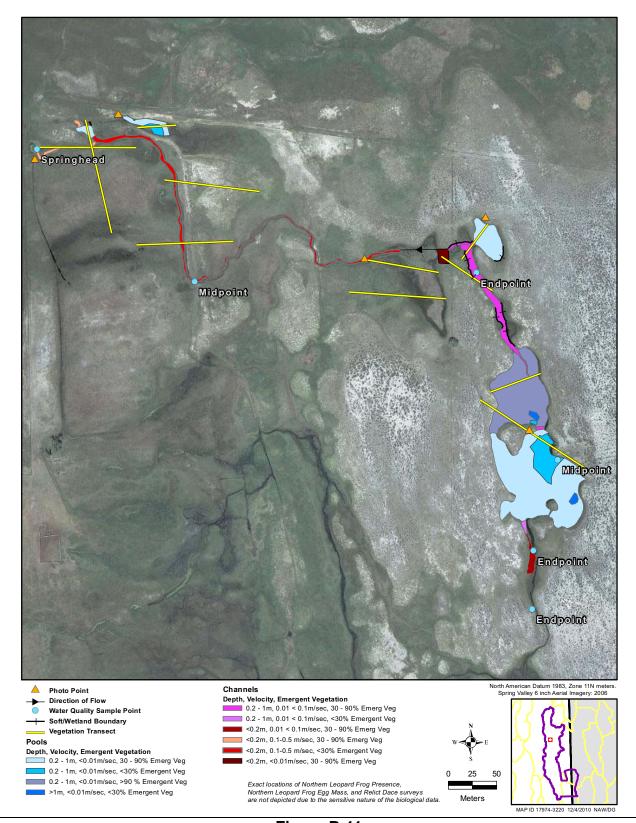
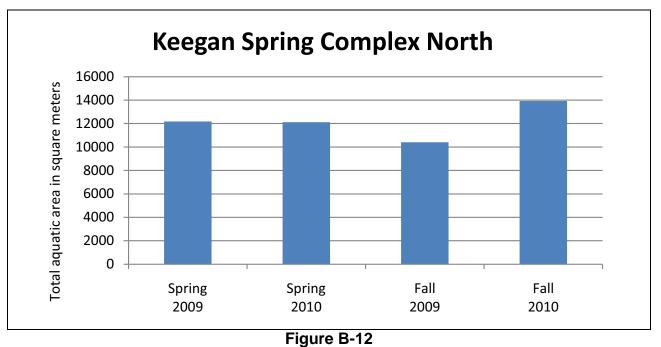



Figure B-11 Keegan Spring Complex North Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Keegan Spring Complex North

Table B-10
Spring 2010 Mapped Area at Minerva Spring Complex (Middle) Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.01 - 0.1	<30	11
Channel	<0.2	0.01 - 0.1	30 - 90	69
Channel	<0.2	0.1 - 0.5	<30	25
Channel	<0.2	0.1 - 0.5	30 - 90	19
Channel	<0.2	N/A	30 - 90	19
Channel	0.2 - 1	0.01 - 0.1	30 - 90	293
Channel	0.2 - 1	0.1 - 0.5	30 - 90	42
Pool	<0.2	<0.01	30 - 90	32
Pool	0.2 - 1	<0.01	30 - 90	126
Total Channels				478
Total Pools				158
Total Aquatic Area				636

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-11Fall 2010 Mapped Area at Minerva Spring Complex (Middle) Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	30 - 90	169
Channel	<0.2	0.01 - 0.1	<30	45
Channel	<0.2	0.01 - 0.1	30 - 90	90
Channel	<0.2	0.1 - 0.5	30 - 90	18
Channel	<0.2	N/A	30 - 90	20
Channel	0.2 - 1	0.01 - 0.1	30 - 90	235
Pool	<0.2	<0.01	30 - 90	28
Pool	0.2 - 1	<0.01	<30	30
Pool	0.2 - 1	<0.01	30 - 90	111
	577			
Total Pools				169
			Total Aquatic Area	746

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

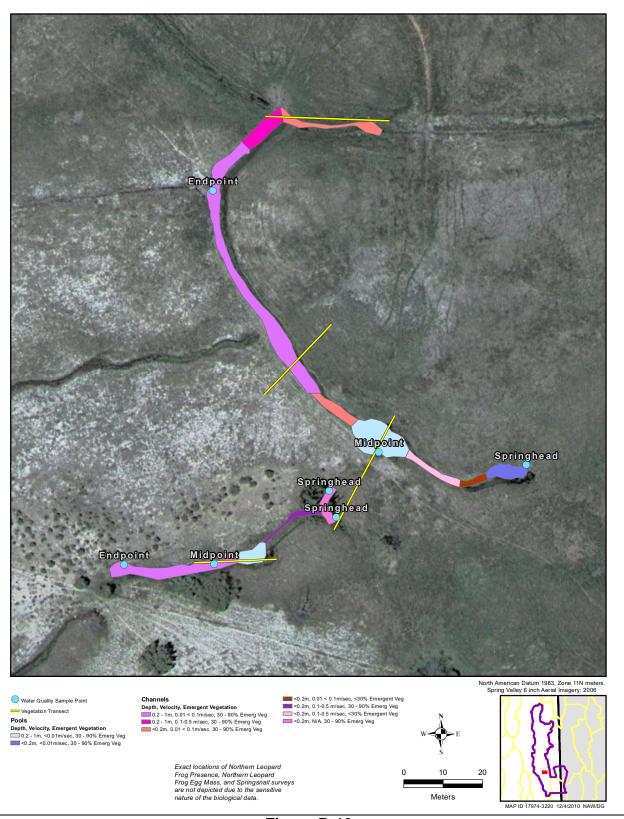


Figure B-13

Minerva Spring Complex Middle Physical Habitat Map for Spring 2010

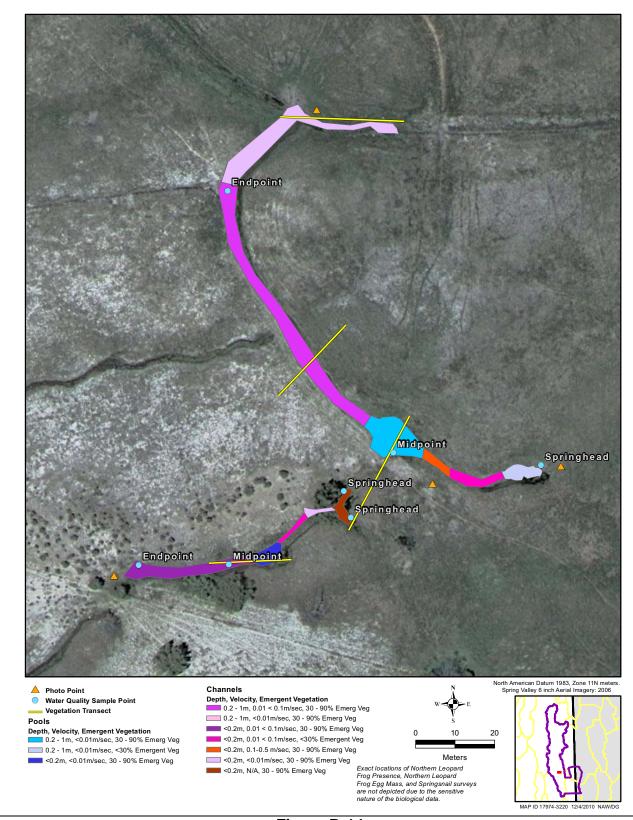
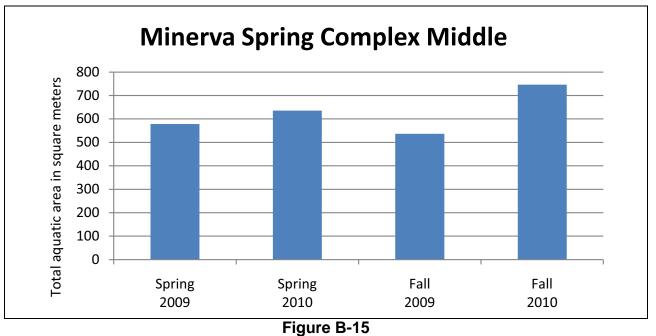



Figure B-14 Minerva Spring Complex Middle Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Minerva Spring Complex Middle

Table B-12Spring 2010 Mapped Area at Minerva Spring Complex (North) Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.01 - 0.1	30 - 90	215
Channel	<0.2	0.1 - 0.5	<30	24
Channel	<0.2	0.1 - 0.5	30 - 90	133
Channel	<0.2	N/A	>90	13
Pool	<0.2	<0.01	>90	61
Pool	>1	<0.01	<30	974
Pool	0.2 - 1	<0.01	<30	233
Total Channels				385
Total Pools				1268
Total Aquatic Area				1653

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

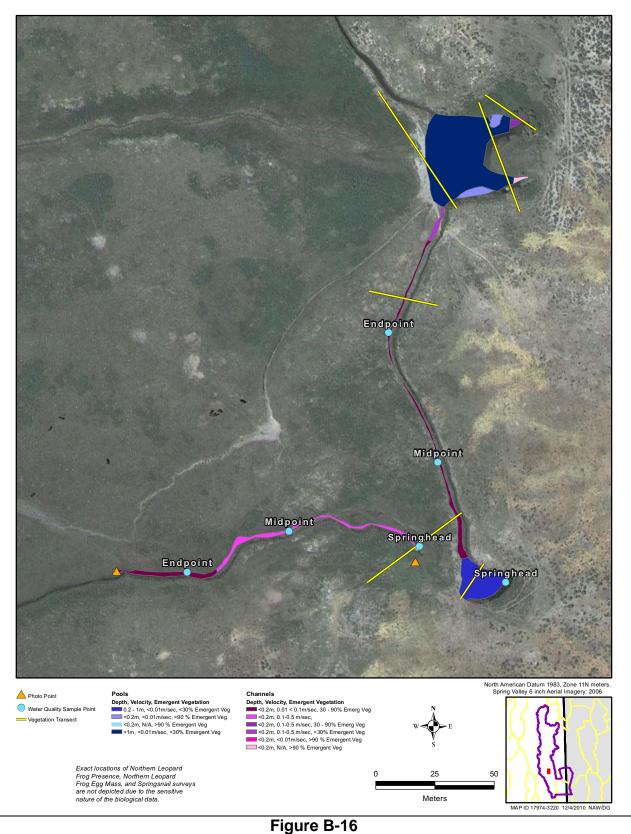

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-13Fall 2010 Mapped Area at Minerva Spring Complex (North) Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	>90	51
Channel	<0.2	<0.01	30 - 90	83
Channel	<0.2	0.01 - 0.1	<30	202
Channel	<0.2	0.01 - 0.1	>90	203
Channel	<0.2	0.01 - 0.1	30 - 90	188
Channel	<0.2	0.1 - 0.5	<30	181
Pool	0.2 - 1	<0.01	<30	241
	908			
Total Pools ^a				241
Total Aquatic Area				1149

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

^aThis drastic change in area for Pools is due to a change in the large (depth >1 m) pool at North Minerva (see Figure B-17). In the fall this area had been drained for ranching operations and was no longer a pool but a series of channels.

Minerva Spring Complex North Physical Habitat Map for Spring 2010

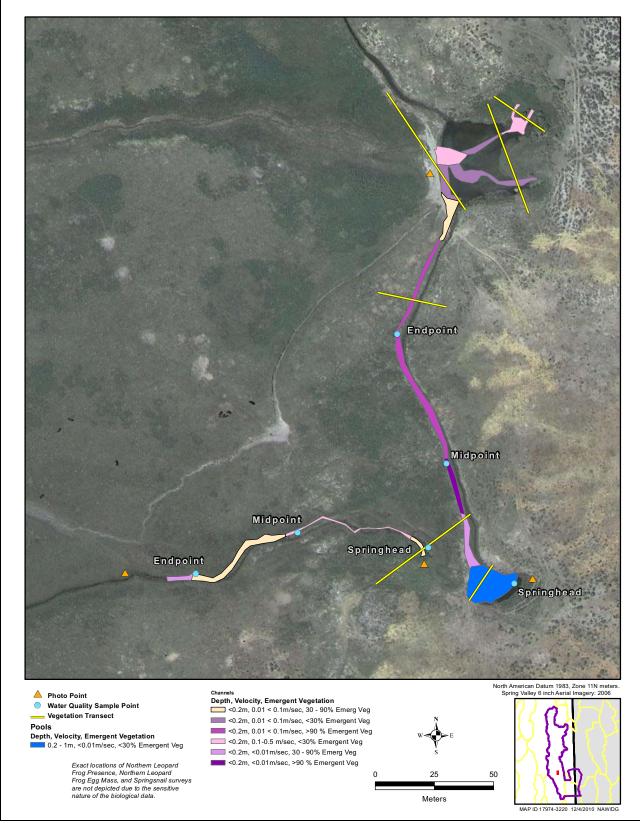
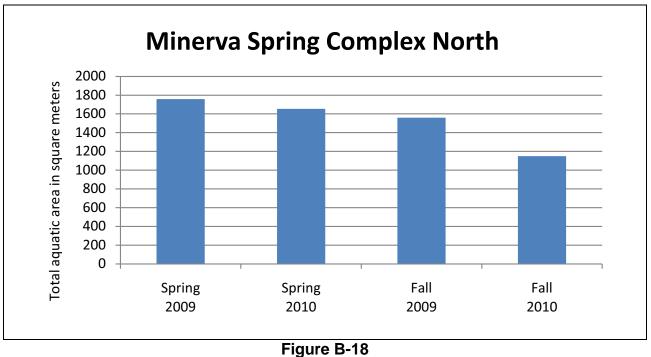
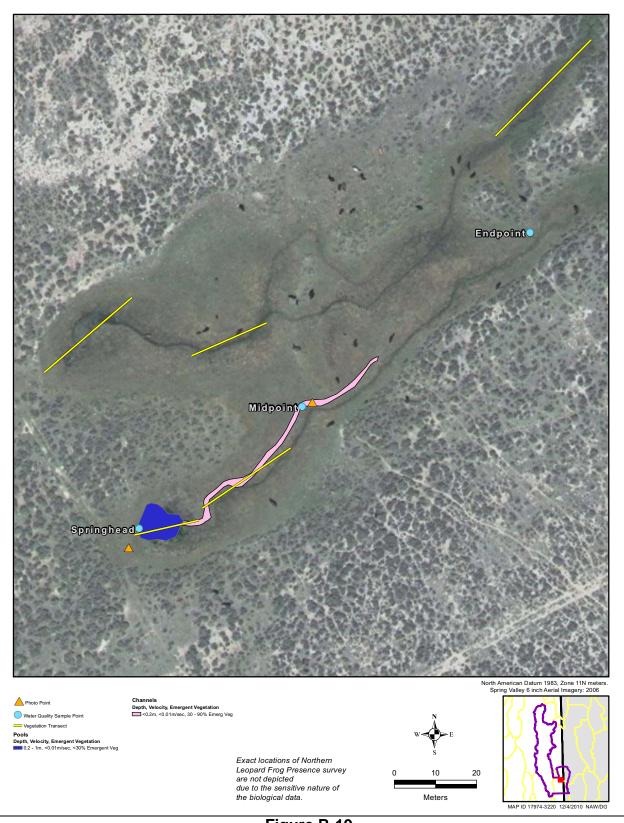



Figure B-17 Minerva Spring Complex North Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Minerva Spring Complex North

Table B-14
Spring 2010 Mapped Area at North Little Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area


HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	30 - 90	79
Pool	0.2 - 1	<0.01	<30	71
	•		Total Aquatic Area	150

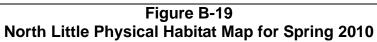

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-15Fall 2010 Mapped Area at North Little Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	>90	100
Pool	>1	<0.01	<30	57
	Total Aquatic Area			

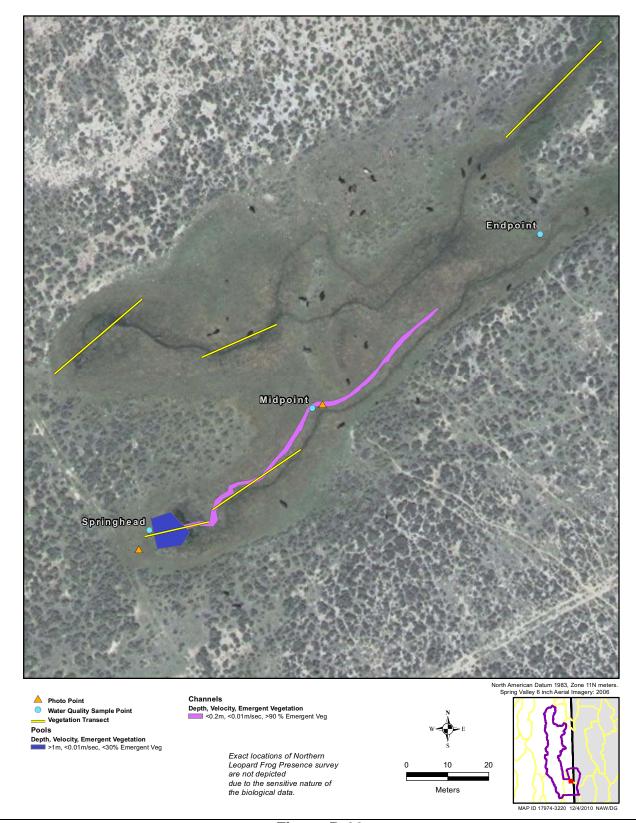
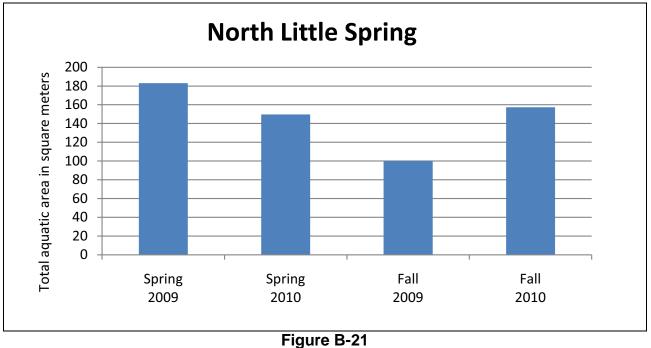



Figure B-20 North Little Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at North Little Spring

Table B-16Spring 2010 Mapped Area at Shoshone Ponds Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth	Velocity	Emergent Vegetation	Area
	(m)	(m/sec)	(% Cover)	(m²)
Pool	N/A	N/A	<30	621

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-17Fall 2010 Mapped Area at Shoshone Ponds Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth	Velocity	Emergent Vegetation	Area
	(m)	(m/sec)	(% Cover)	(m²)
Pool	>1	N/A	<30	623

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

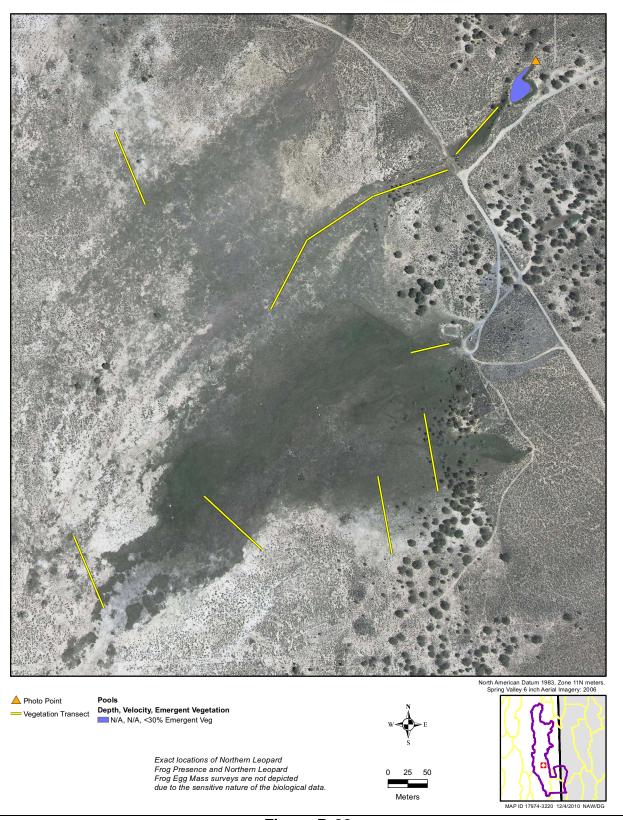


Figure B-22 Shoshone Ponds Physical Habitat Map for Spring 2010

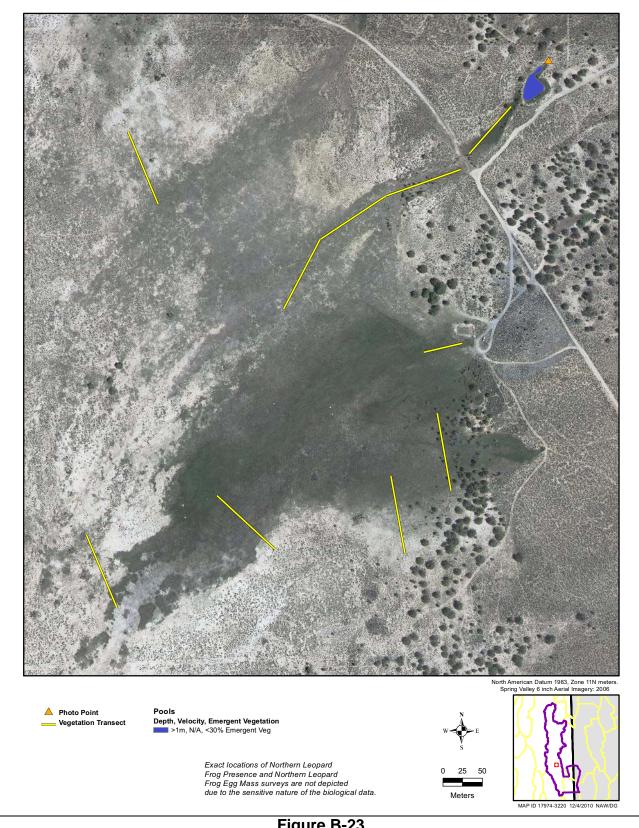


Figure B-23 Shoshone Ponds Physical Habitat Map for Fall 2010

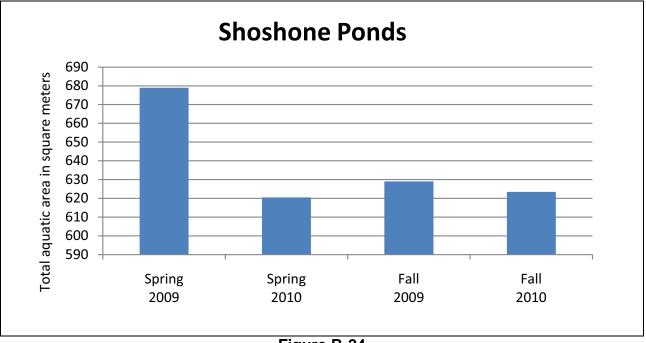


Figure B-24 Total Aquatic Area by Season for 2009 and 2010 at Shoshone Ponds

Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area					
HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	<30	55	
Channel	<0.2	<0.01	30 - 90	23	
Channel	<0.2	N/A	>90	49	
Channel	0.2 - 1	<0.01	>90	55	
Channel	0.2 - 1	0.01 - 0.1	<30	95	
Channel	0.2 - 1	0.01 - 0.1	>90	78	
Channel	0.2 - 1	0.01 - 0.1	30 - 90	754	
Channel	0.2 - 1	0.1 - 0.5	30 - 90	457	
Pool	<0.2	<0.01	30 - 90	106	
	Total Channels				
	Total Pools				
Total Aquatic Area 1672					

Table B-18Spring 2010 Mapped Area at South Millick Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

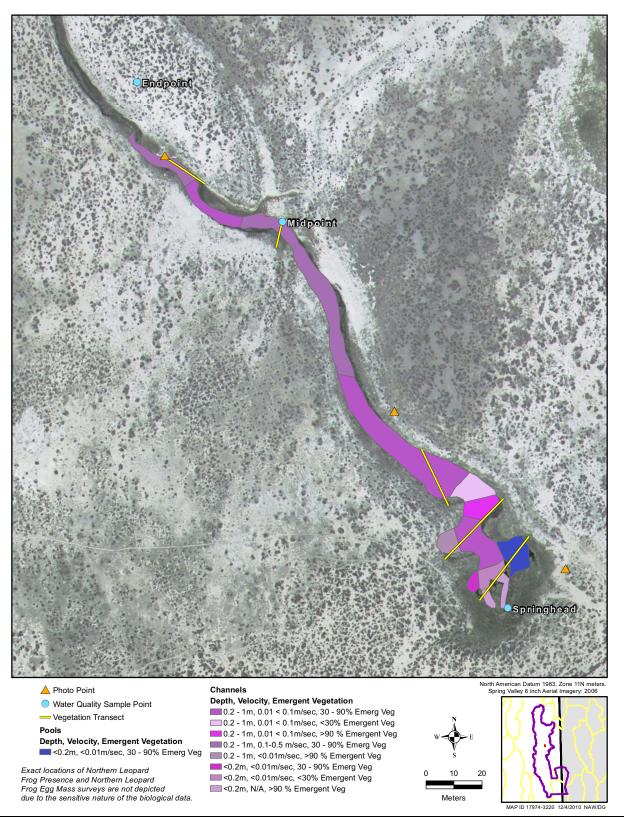

Note:

Table B-19

Fall 2010 Mapped Area at South Millick Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped AreaMUDepth
(m)Velocity
(m/sec)Emergent Vegetation
(% Cover)Area
(m²)

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	>90	40	
Channel	0.2 - 1	<0.01	<30	61	
Channel	0.2 - 1	<0.01	>90	472	
Channel	0.2 - 1	<0.01	30 - 90	134	
Channel	0.2 - 1	0.01 - 0.1	>90	152	
Channel	0.2 - 1	0.01 - 0.1	30 - 90	258	
Channel	0.2 - 1	0.1 - 0.5	30 - 90	219	
Pool	<0.2	<0.01	>90	81	
Pool	0.2 - 1	<0.01	<30	117	
Pool	0.2 - 1	<0.01	>90	58	
Pool	0.2 - 1	<0.01	30 - 90	142	
	1336				
	Total Pools				
			Total Aquatic Area	1734	

Figure B-25 South Millick Physical Habitat Map for Spring 2010

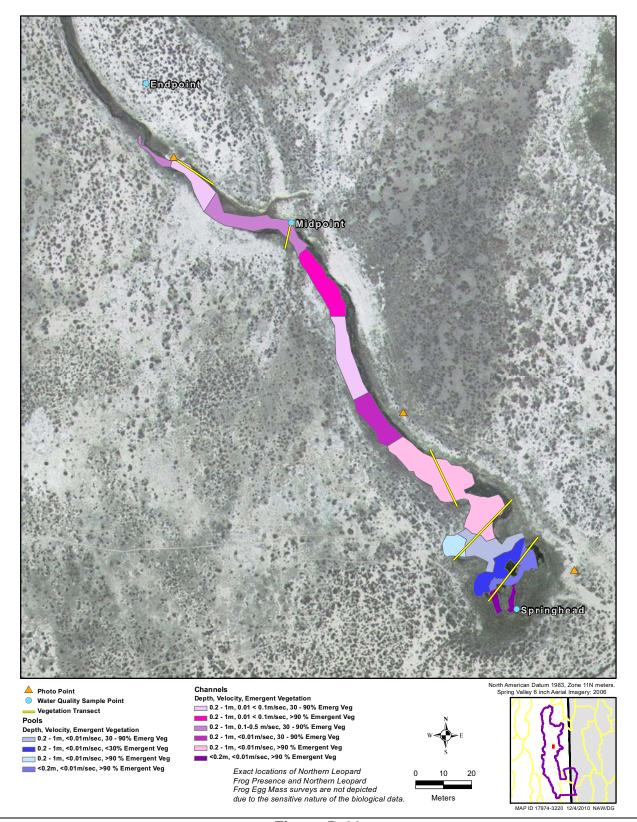
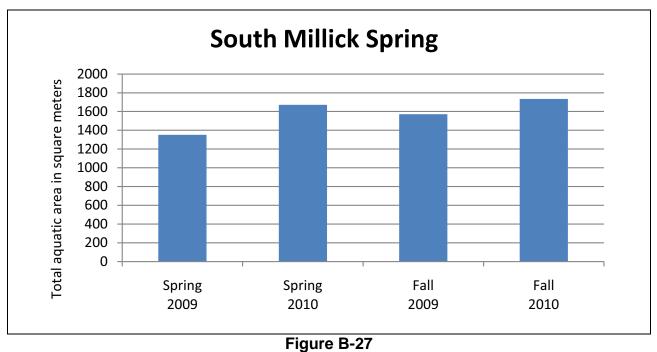



Figure B-26 South Millick Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at South Millick Spring

Table B-20
Spring 2010 Mapped Area at Stateline Springs Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	0.01 - 0.1	30 - 90	145	
Channel	<0.2	0.1 - 0.5	30 - 90	17	
Channel	<0.2	0.1 - 0.5	<30	6	
	Total Channels				
	0.0				
	Total Aquatic Area				

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-21Fall 2010 Mapped Area at Stateline Springs Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	0.01 - 0.1	>90	108	
Channel	<0.2	0.1 - 0.5	30 - 90	29	
Pool	<0.2	<0.01	30 - 90	10	
	Total Channels				
	10				
Total Aquatic Area				147	

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

^aChannel G at Stateline was not mapped in fall 2010 due to an error in the field.

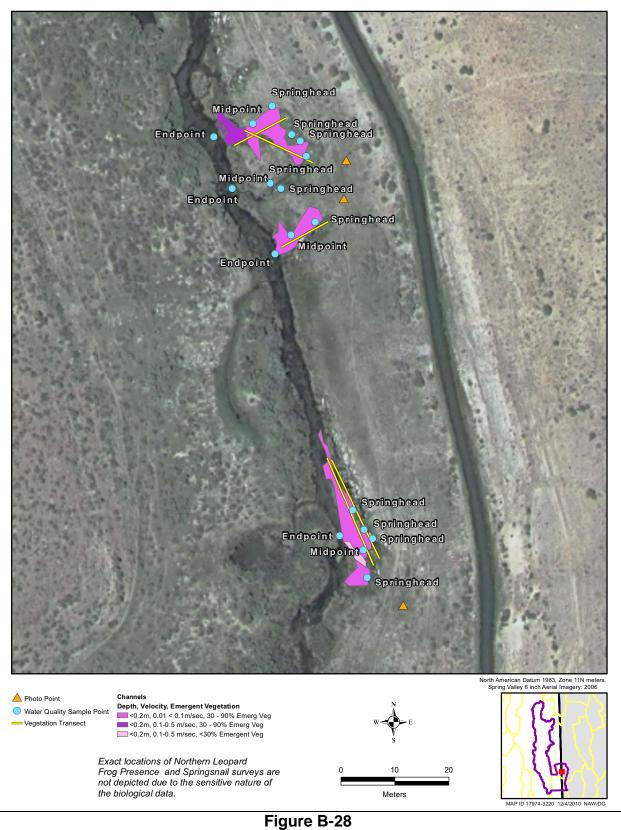


Figure B-28 Stateline Springs Physical Habitat Map for Spring 2010

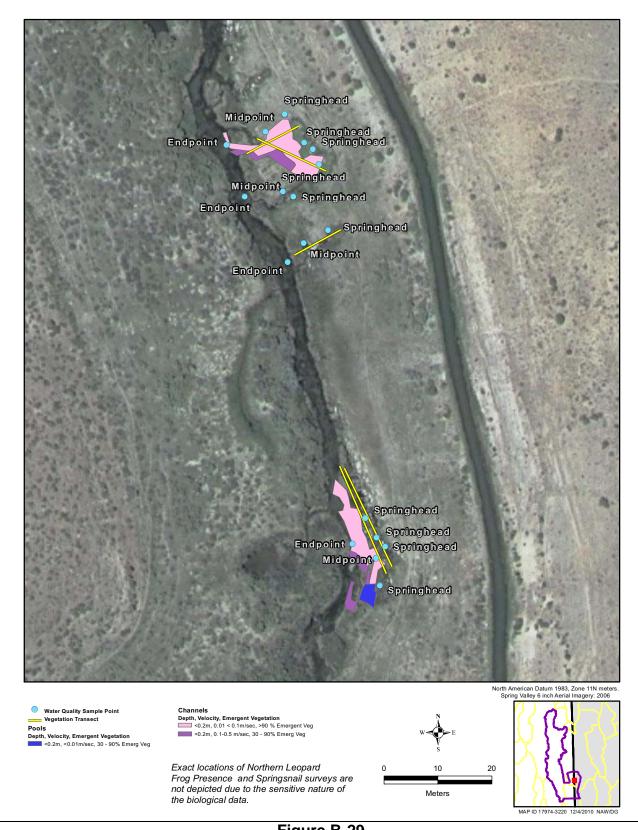
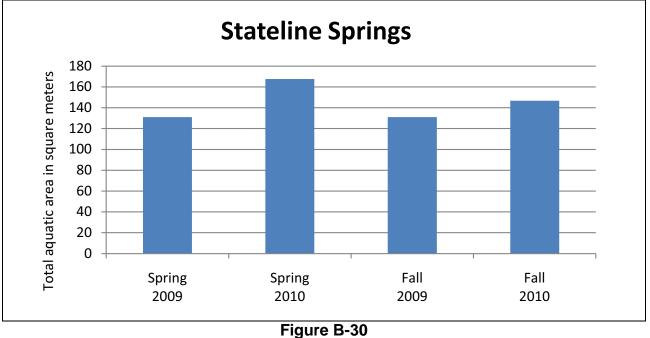



Figure B-29 Stateline Springs Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Stateline Springs

Table B-22Spring 2010 Mapped Area at Stonehouse Spring Complex Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	30 - 90	36	
Channel	<0.2	0.01 - 0.1	30 - 90	77	
Pool	0.2 - 1	<0.01	<30	78	
	Total Channels				
	78				
	Total Aquatic Area				

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-23

Fall 2010 Mapped Area at Stonehouse Spring Complex Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	30 - 90	64	
Channel	<0.2	0.01 - 0.1	30 - 90	38	
Pool	0.2 - 1	<0.01	<30	49	
	Total Channels				
	Total Pools				
Total Aquatic Area				151	

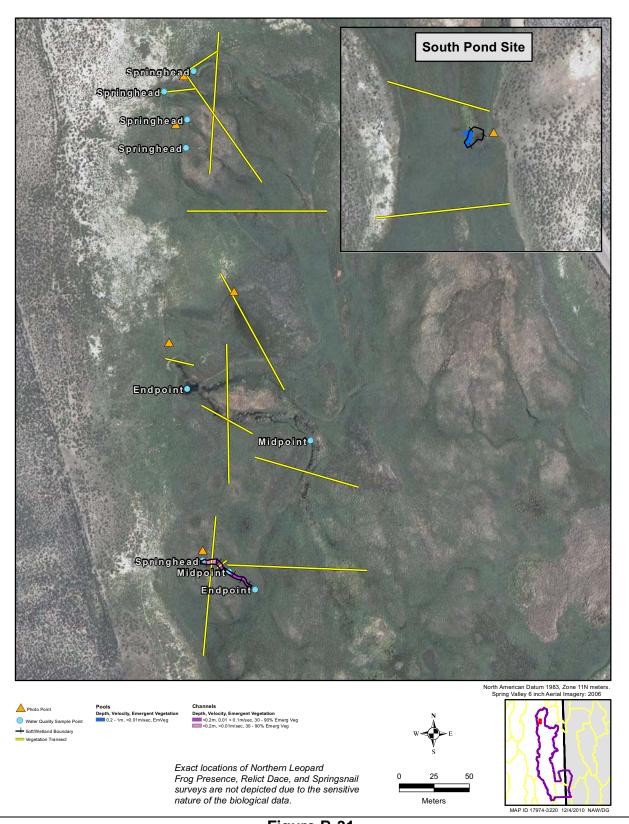


Figure B-31 Stonehouse Physical Habitat Map for Spring 2010

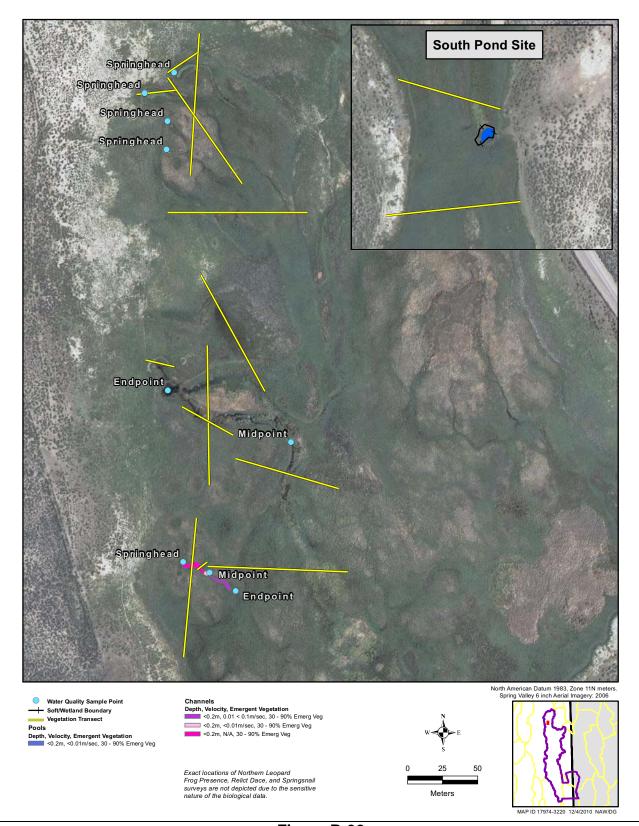


Figure B-32 Stonehouse Physical Habitat Map for Fall 2010

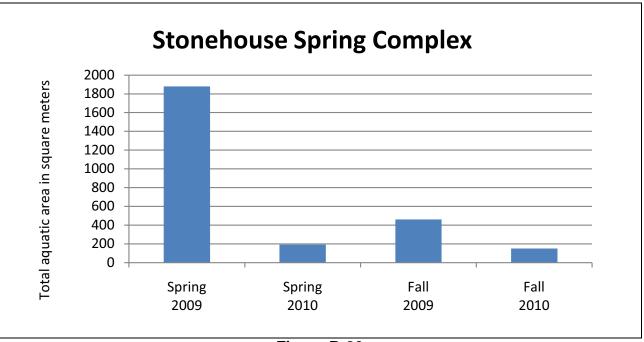


Figure B-33 Total Aquatic Area by Season for 2009 and 2010 at Stonehouse

Filysical habitat Type, hillo Type, and Total Aquatic Mapped Area					
HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	>0.5	30 - 90	125	
Channel	<0.2	0.01 - 0.1	30 - 90	170	
Channel	<0.2	0.1 - 0.5	30 - 90	493	
Channel	0.2 - 1	0.01 - 0.1	30 - 90	28	
Pool	0.2 - 1	<0.01	>90	56	
	Total Channels				
	Total Pools				
	Total Aquatic Area				

Table B-24Spring 2010 Mapped Area at Swallow Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-25Fall 2010 Mapped Area at Swallow Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	>0.5	<30	4	
Channel	<0.2	>0.5	30 - 90	108	
Channel	<0.2	0.1 - 0.5	<30	99	
Channel	<0.2	0.1 - 0.5	>90	72	
Channel	<0.2	0.1 - 0.5	30 - 90	301	
Channel	<0.2	N/A	30 - 90	2	
Pool	0.2 - 1	<0.01	>90	126	
	Total Channels				
	Total Pools				
	Total Aquatic Area 712				

N/A = Not applicable - unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Figure B-34 Swallow Creek Physical Habitat Map for Spring 2010

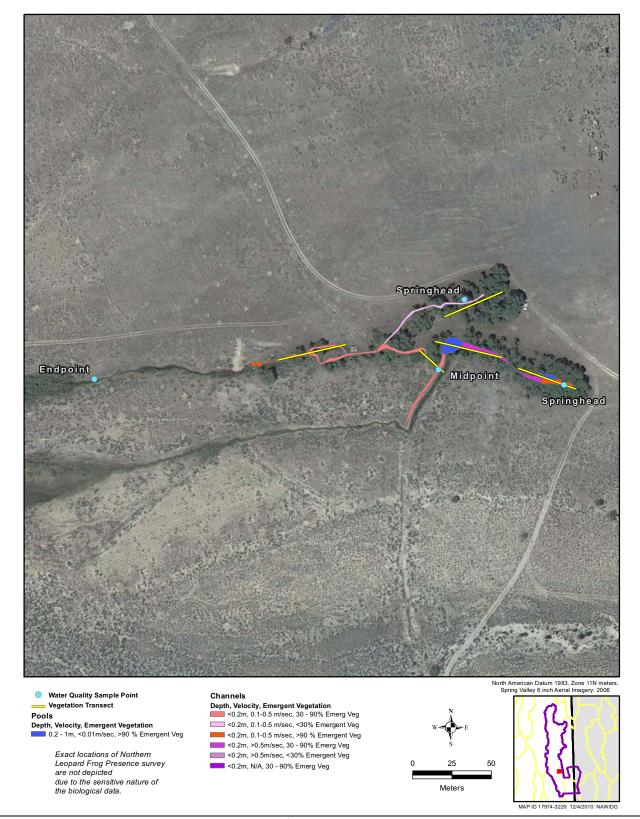
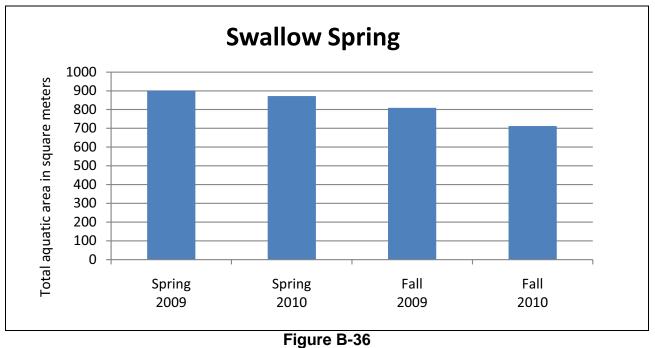
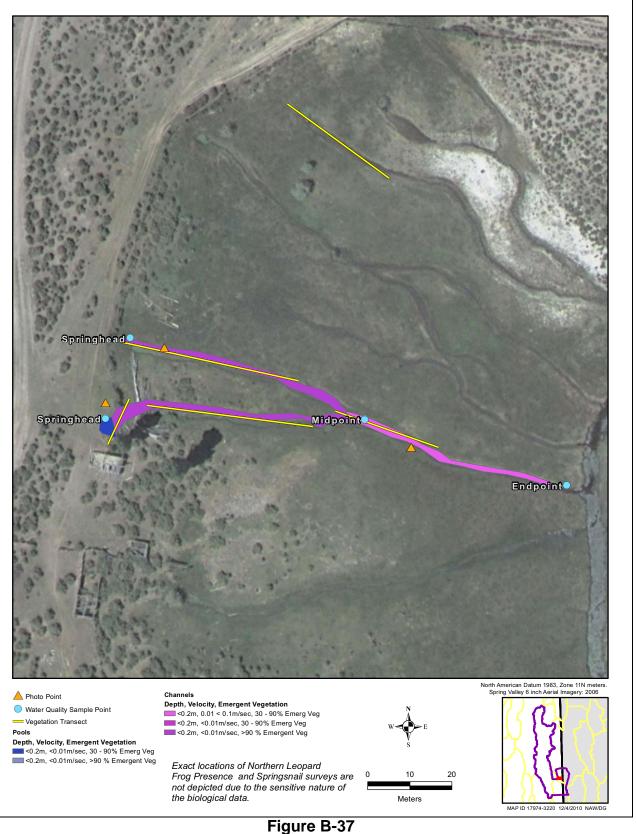



Figure B-35 Swallow Creek Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Swallow Spring

Table B-26Spring 2010 Mapped Area at Unnamed 1 Spring North of Big Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area


HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	>90	201	
Channel	<0.2	0.01 - 0.1	30 - 90	78	
Pool	<0.2	<0.01	30 - 90	14	
	Total Channels				
	14				
Total Aquatic Area			294		

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-27

Fall 2010 Mapped Area at Unnamed 1 Spring North of Big Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	<30	8	
Channel	<0.2	<0.01	30 - 90	76	
Channel	<0.2	0.01 - 0.1	30 - 90	198	
Pool	<0.2	<0.01	>90	11	
	Total Channels				
	11				
	Total Aquatic Area				

Unnamed 1 Spring North of Big Physical Habitat Map for Spring 2010

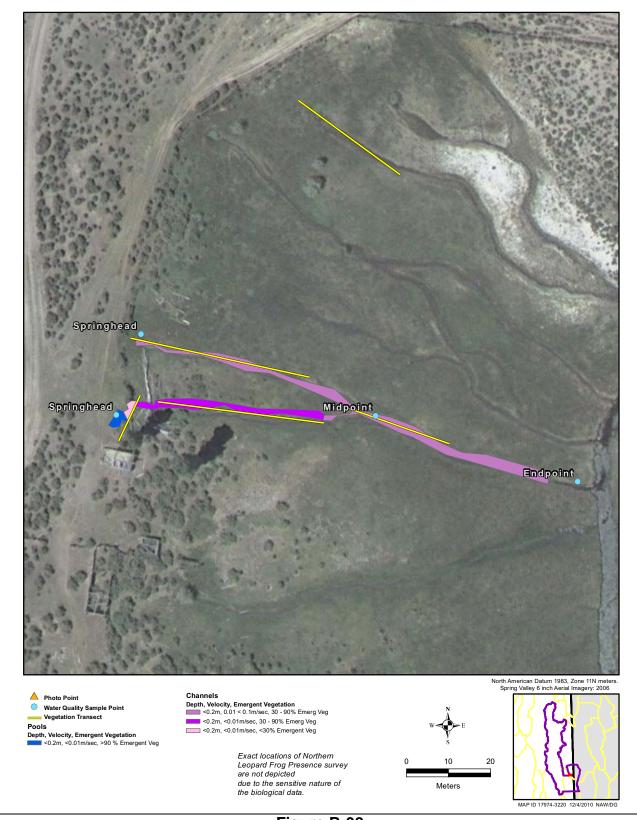


Figure B-38 Unnamed 1 Spring North of Big Physical Habitat Map for Fall 2010

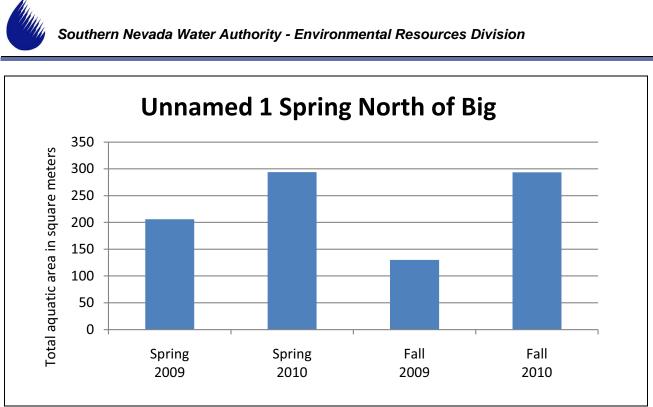


Figure B-39

Total Aquatic Area by Season for 2009 and 2010 at Unnamed 1 Spring North of Big

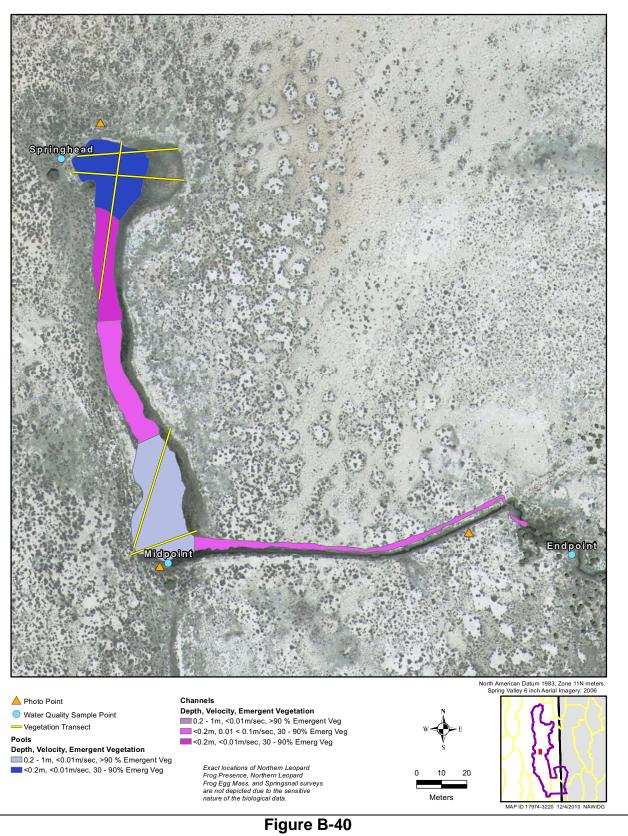

Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area					
HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	30 - 90	368	
Channel	<0.2	0.01 - 0.1	30 - 90	710	
Pool	<0.2	<0.01	30 - 90	615	
Pool	0.2 - 1	<0.01	>90	879	
	Total Channels				
	Total Pools				
	Total Aquatic Area				

Table B-28Spring 2010 Mapped Area at Unnamed 5 Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-29Fall 2010 Mapped Area at Unnamed 5 Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	<0.01	>90	814	
Channel	<0.2	<0.01	30 - 90	56	
Channel	<0.2	0.01 - 0.1	30 - 90	120	
Channel	<0.2	0.01 - 0.1	30 - 90	62	
Pool	<0.2	<0.01	30 - 90	701	
Pool	0.2 - 1	<0.01	30 - 90	866	
	Total Channels				
	Total Pools				
	Total Aquatic Area				

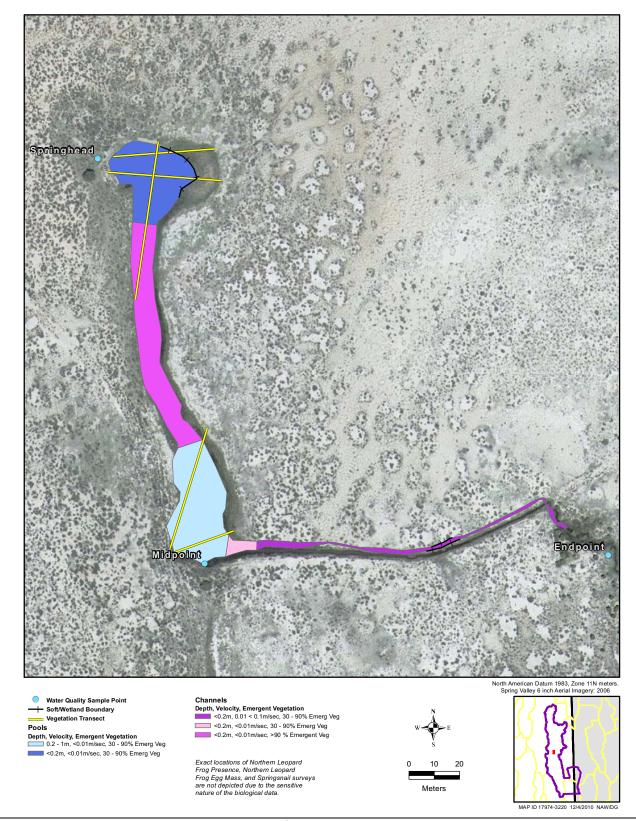
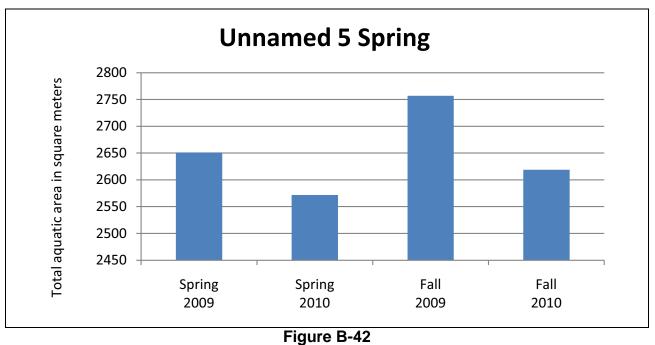



Figure B-41 Unnamed 5 Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Unnamed 5

Table B-30	
Spring 2010 Mapped Area at West Spring Valley Complex 1 Summarized b	by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area	

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	0.01 - 0.1	<30	203
Channel	<0.2	0.01 - 0.1	>90	27
Channel	<0.2	0.01 - 0.1	30 - 90	353
Channel	<0.2	0.1 - 0.5	<30	36
Channel	<0.2	N/A	>90	21
Pool	<0.2	<0.01	<30	51
Pool	<0.2	<0.01	>90	134
Pool	<0.2	N/A	>90	9
Pool	>1	<0.01	<30	81
Pool	0.2 - 1	<0.01	<30	69
Total Channels				640
	Total Pools			
			Total Aquatic Area	984

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-31

Fall 2010 Mapped Area at West Spring Valley Complex 1 Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)
Channel	<0.2	<0.01	>90	10
Channel	<0.2	0.01 - 0.1	<30	872
Channel	<0.2	0.01 - 0.1	>90	261
Channel	<0.2	0.01 - 0.1	30 - 90	37
Channel	<0.2	0.1 - 0.5	<30	65
Channel	0.2 - 1	0.01 - 0.1	<30	47
Pool	<0.2	<0.01	>90	83
Pool	<0.2	N/A	>90	4
Pool	>1	<0.01	<30	96
Pool	0.2 - 1	<0.01	<30	59
			Total Channels	1292
			Total Pools	242
			Total Aquatic Area	1534

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Between the spring and fall mapping excavation work was completed along the banks of some of the channels. As a result some areas were more channelized than in the Spring and had decreased vegetation cover, increased velocity and one channel continued further downstream.

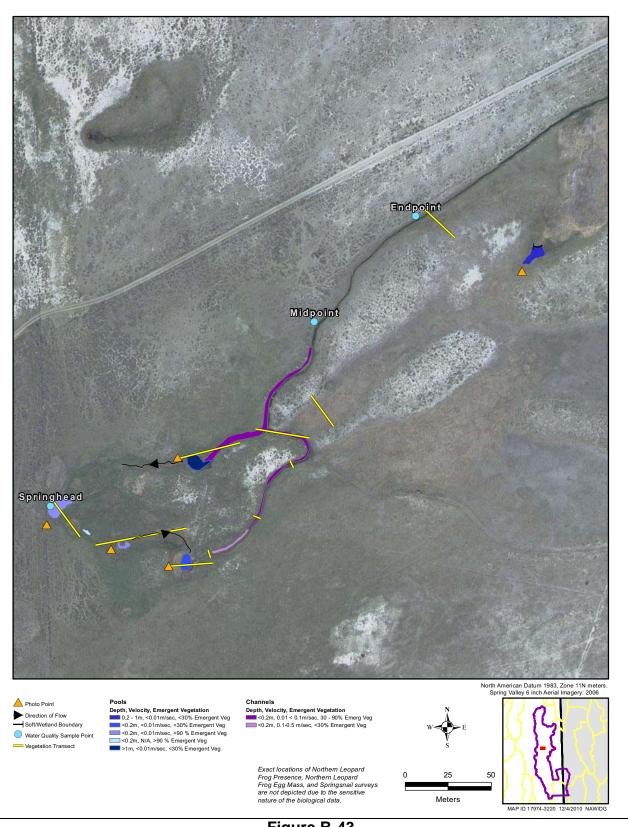


Figure B-43 West Spring Valley Complex 1 Physical Habitat Map for Spring 2010

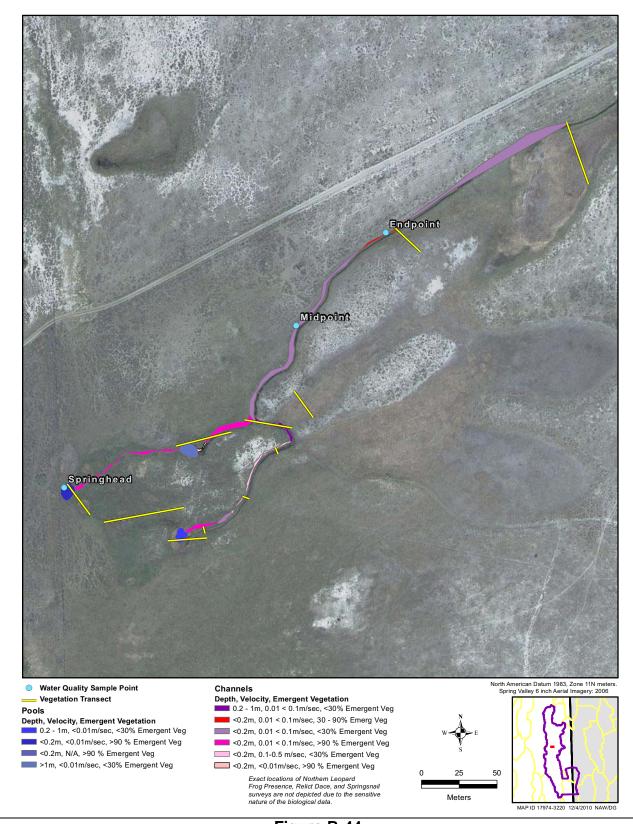
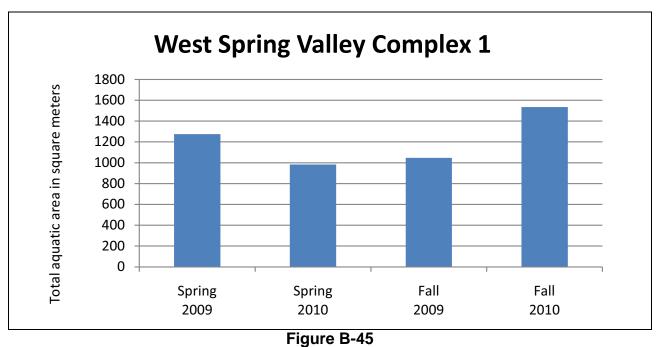



Figure B-44 West Spring Valley Complex 1 Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at West Spring Valley Complex 1

Table B-32
Spring 2010 Mapped Area at Willard Spring Summarized by
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area

НМО	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)		
Pool	<0.2	<0.01	30 - 90	45		
	Total Channels					
	Total Pools					
	Total Aquatic Area					

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Willard Spring was dry in the fall season.

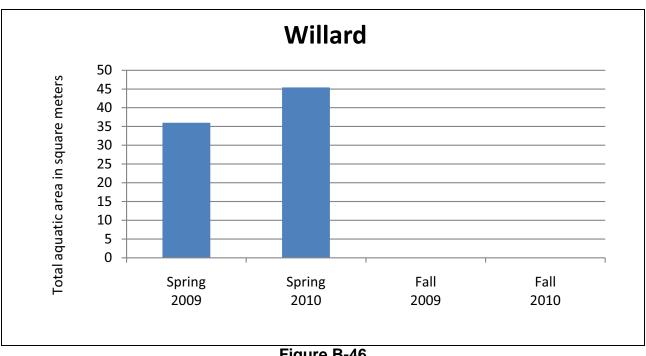


Figure B-46 Total Aquatic Area by Season for 2009 and 2010 at Willard Spring

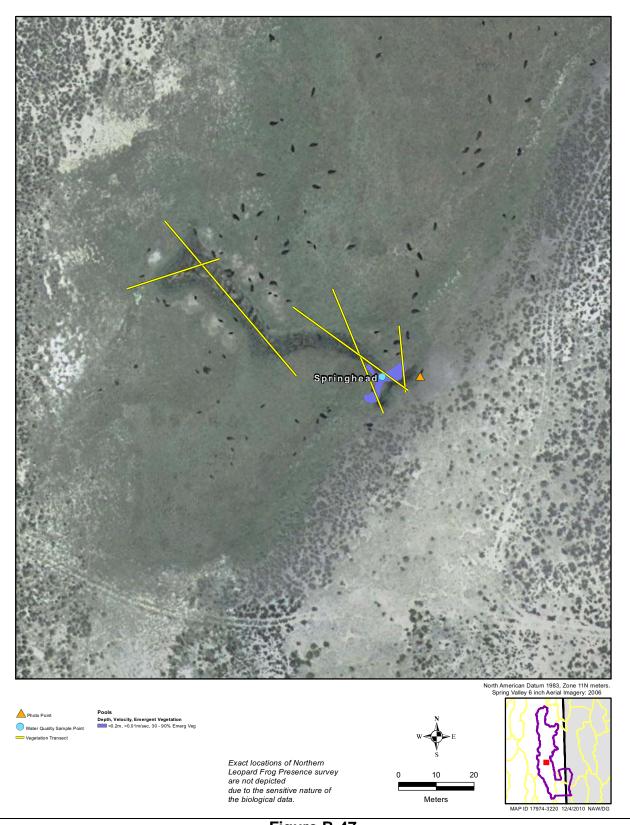


Figure B-47 Willard Physical Habitat Map for Spring 2010

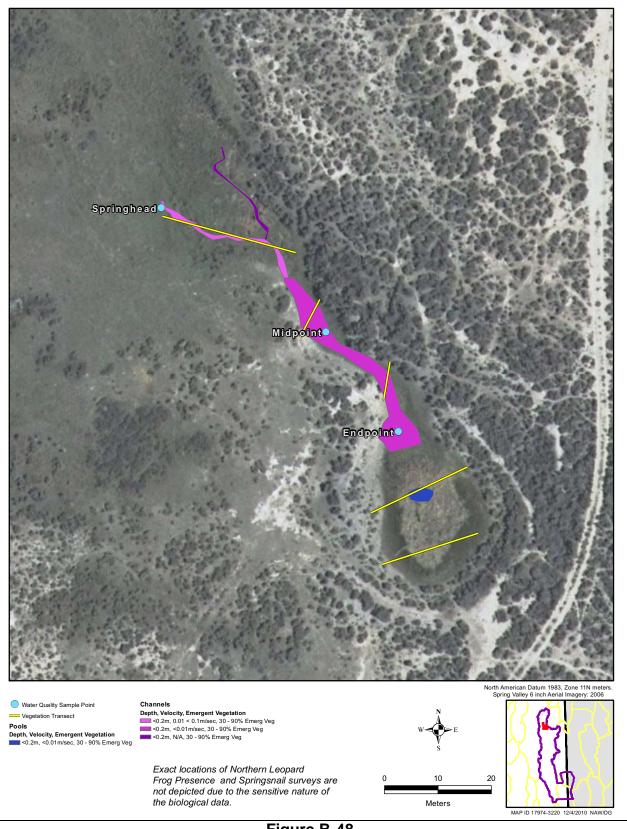
Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area						
HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)		
Channel	<0.2	N/A	30 - 90	11		
Channel	<0.2	0.01 - 0.1	30 - 90	25		
Channel	<0.2	<0.01	30 - 90	132		
Pool	<0.2	<0.01	30 - 90	10		
			Total Channels	168		
	Total Pools			10		
			Total Aquatic Area	178		

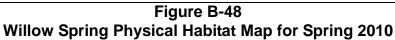
Table B-33Spring 2010 Mapped Area at Willow Spring Summarized byPhysical Habitat Type, HMU Type, and Total Aquatic Mapped Area

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

Table B-34


Fall 2010 Mapped Area at Willow Spring Summarized by Physical Habitat Type, HMU Type, and Total Aquatic Mapped Area


HMU	Depth (m)	Velocity (m/sec)	Emergent Vegetation (% Cover)	Area (m²)	
Channel	<0.2	0.01 - 0.1	30 - 90	16	
Channel	<0.2	N/A	30 - 90	6	
Channel	<0.2	N/A	>90	60	
Pool	<0.2	<0.01	<30	6	
Pool	<0.2	<0.01	>90	16	
			Total Channels	82	
	Total Pools				
	Total Aquatic Area				

N/A = Not applicable – unable to measure velocity due to shallow or muddy water, extensive aquatic vegetation, or wind.

Note: Interpretations and conclusions made from this data need to take into consideration the margin of error associated with boundary demarcation and associated area measurements.

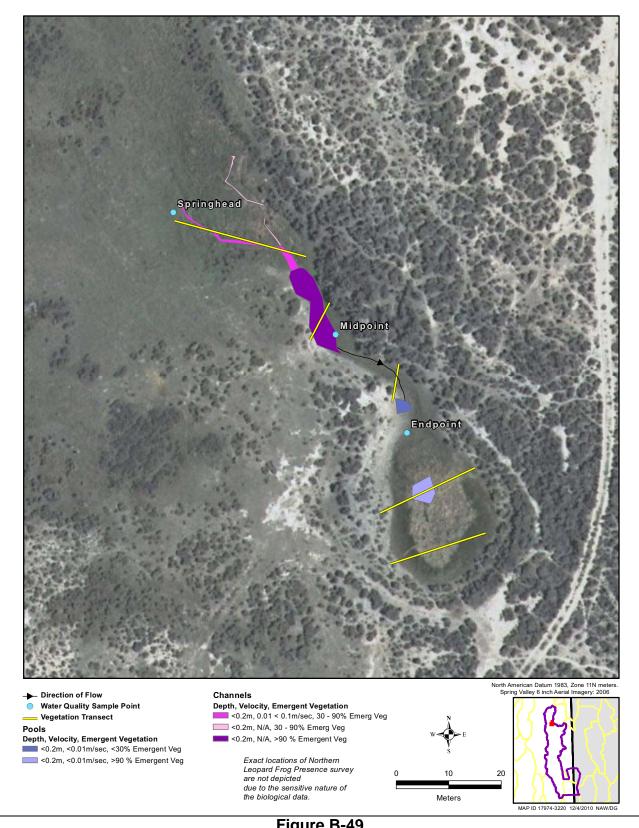
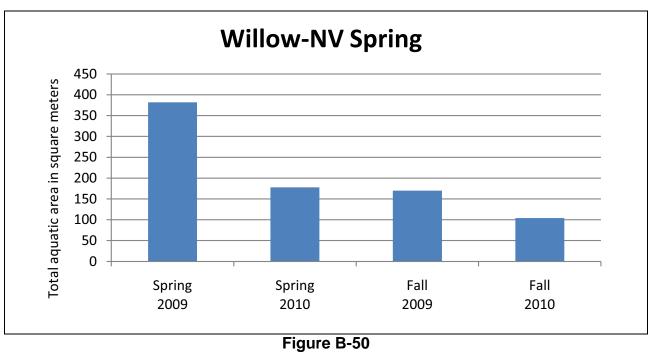



Figure B-49 Willow Spring Physical Habitat Map for Fall 2010

Total Aquatic Area by Season for 2009 and 2010 at Willow Spring

Spring Valley Stipulation Biological Monitoring Plan, 2010 Annual Report

Appendix C

Nevada Department of Wildlife 2010 Native Fish and Amphibians Field Trip Report for Shoshone Ponds

NEVADA DEPARTMENT OF WILDLIFE NATIVE FISH AND AMPHIBIANS FIELD TRIP REPORT

DATE(S): 5 and 11 August, 2010

LOCATION(S): Shoshone Ponds, White Pine County, NV PURPOSE(S): To estimate the population sizes of Pahrump poolfish and relict dace PERSONNEL: Aaron Ambos, Tereza Jezkova, Mark Beckstrand, Shawn Goodchild, Kevin Guadalupe. PREPARED BY: Kevin Guadalupe and Brian Hobbs

INTRODUCTION

In 1972 Ely District of the BLM constructed warm water ponds in eastern Nevada with the intent of providing habitat for endangered species. On 13 August 1976, 50 Manse Ranch Pahrump poolfish (*Empetrichthys latos latos*) were transplanted into one of the ponds. Relict dace (*Relictus solitarius*) was introduced to one of the four ponds in December 1977. Currently, Pahrump poolfish exist in the three northern most ponds and Relict dace exist in the most southern pond of the refuge. Population estimates are conducted annually at this refuge.

METHODS

On 5 August, 19 standard Gee Minnow 0.64 cm mesh traps and one exotic 0.32 cm mesh trap without bait were set around the perimeter of the upper stock pond, Shoshone Pond, White Pine County at 08:45 hours. Four standard traps and one exotic trap were set around the perimeter of each of the three lower Shoshone Ponds at 09:00 hours. The traps were allowed to fish three hours before they were pulled. All of the fish in the exotic traps were measured and each fish greater than 30 millimeters (mm) was marked with an oblique clip on the caudal fin before release.

On 11 August, 20 standard traps without bait were set in the stock pond at 09:00 hours. Five standard traps without bait were set along the perimeter of each of the three lower ponds at 09:15 hours. Traps were allowed to fish approximately three hours before they were pulled. Each fish caught was examined for marks, tallied, and released. Water chemistry data was taken at two locations at the stock pond and at one location at the three fenced in ponds with a YSI 85 (Table 4).

A population estimate was calculated using Peterson's estimator: MC/R. Where M=number of individuals marked, C=number of individuals captured and R=number of individuals recaptured. Approximate 95% confidence intervals were determined using a table appropriate to the Poisson distribution, after the method described in Ricker (1975).

RESULTS

The majority of the Pahrump poolfish captured were caught in the stock pond (Table 1).

Poolfish population estimates in the middle and stock ponds have increased from last year's estimate, while the estimate in the north pond decreased (Figure 1, 2, 3).

The population estimate for Relict dace is lower than last year's estimate but once again was hampered by a low number of recaptures (Figure 4).

The north pond population continues to look unhealthy with only one solid age class (Figure 5). Poolfish populations in the Middle and stock ponds appear healthy with multiple age classes represented (Figure 6 and 7).

Relict Dace recapture remains low, giving high error when estimating population (Figure 4).

DISCUSSION

The poolfish population at Shoshone Ponds remains stable despite a decrease in the north pond population. The relict dace population remains difficult to effectively sample due to trap avoidance during the recapture phase of the survey, resulting in high error in estimation. As in previous years, multiple sizes of northern leopard frogs, *Rana pipiens*, were observed around the perimeter of the middle pond.

Water level in the north pond was below the weed line during both visits, creating a muddy bank encircling the pond. This is likely being caused by water leakage from a broken pipe that supplies water to the ponds. North pond water temperature in 2009 was 25.5 °C compared to 19.2 °C in 2010, contributing to unfavorable habitat conditions. Historically, Pahrump poolfish existed in warm springs varying from 23.3°C to 25.3°C (La Rivers 1962). NDOW is currently working on making repairs to this well which should improve conditions in the north pond.

Plans to enlarge the exclosure and incorporate the flowing well pond immediately north are still ongoing and should be completed within the next few years. This work should create additional habitat for the poolfish and further secure the habitat into the future. The relict dace population will likely have to be moved to another location or added to an existing population. Fish salvaged from the flowing well pond were relocated to the middle and north pond, and some fish still persist in this stream. Transplanting fish between Spring Mountain Ranch, and Corn Creek Pahrump poolfish populations to prevent genetic isolation between populations will take place in fall/winter 2010/2011. Surveys will be conducted again in summer 2011.

LITERATURE CITED

La Rivers, I. 1962. *Fishes and Fisheries of Nevada*. Nevada State Fish and Game Commission. 525 pp.

Ricker WE. 1975. *Computation and Interpretation of Biological Statistics of Fish Populations*. Bulletin of the Fisheries Research Board of Canada. 191: 382 pp.

Table 1. Mark-recapture data for Shoshone Ponds, White Pine County, NV, 2010.								
Location	Species	Μ	С	R	CPUE M	CPUE C	Estimate	
North Pond	E. I. latos	104	28	25	4.89	1.60	79< 116 <180	
Middle Pond	E. I. latos	300	195	101	12.63	10.40	477< 579 <704	
South Pond	R. solitarius	131	15	7	5.82	0.79	136< 281 <702	
Stock Pond	E. I. latos	634	272	45	10.60	4.53	2865< 3832 <5257	

Table 2: Sum	Table 2: Summary of length data for Pahrump poolfish, E. I. latos, 2010.						
Location Average Median Mode Minimum Ma							
North Pond	33	33	29	27	40		
Middle Pond	37	37	40	28	58		
Stock Pond	42	40	34	30	61		

Table 3: Relict	Table 3: Relict dace, Relictus solitarius, length data, 2010.						
Location Average Median Mode Minimum Maximum							
South Pond	43	42	40	38	53		

1

Table 4: Water Quality parameters 2010.								
Location	DO	DO	Conductivity/	Salinity	Temperature			
	(mg/L)	(% Sat.)	Specific (µŠ)	(ppt)	(°C)			
Stock pond (source)	10.36	115.3	104	0.1	20.6			
North pond	10.92	117.2	190	0.1	19.2			
Middle pond	10.10	115.2	164	0.1	22.2			
South pond	10.30	122.5	156	0.1	23.6			

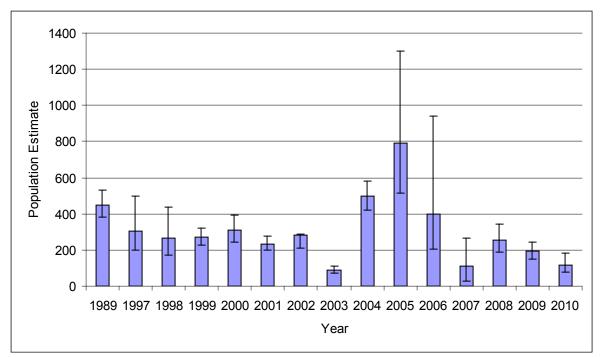


Figure 1. Population Estimates for Pahrump poolfish at Shoshone Ponds north pond 1989-Present.

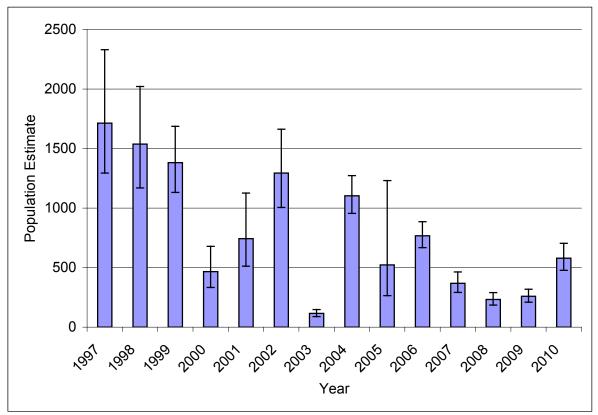


Figure 2. Population Estimates for Pahrump poolfish at Shoshone Ponds middle pond 1997-Present.

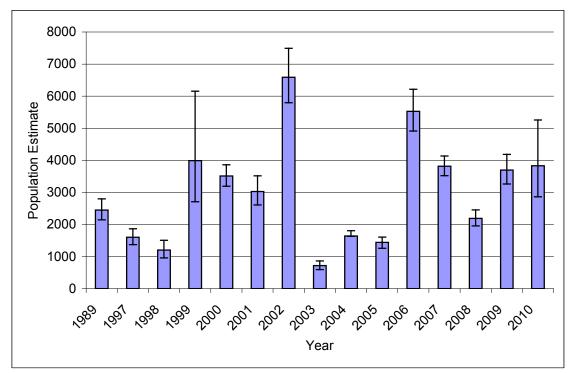


Figure 3. Population Estimates for Pahrump poolfish at Shoshone Ponds stock pond 1989-Present.

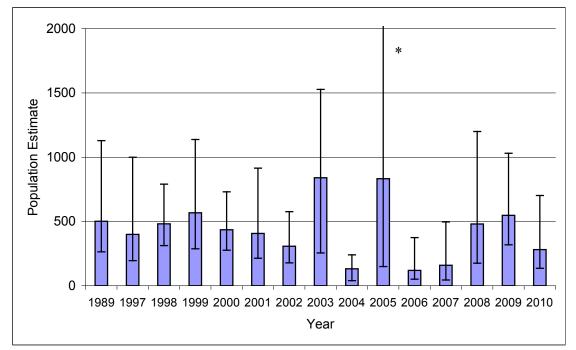


Figure 4. Population Estimates for Relict dace at the South Pond, Shoshone Ponds 1989-Present. * Population estimate 2005 showed error bars >7000 due to low recapture rate consistent with South Pond.

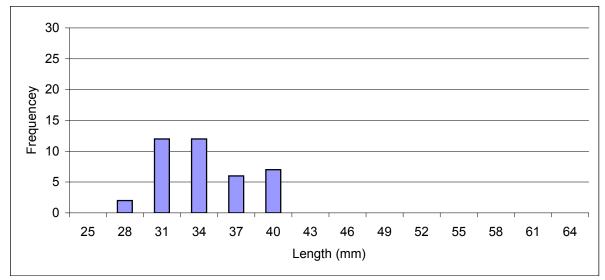


Figure 5. Length for Pahrump poolfish at Shoshone Ponds north pond, 2010.

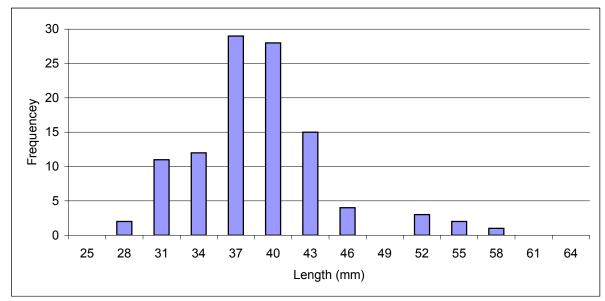


Figure 6. Length of Pahrump poolfish at Shoshone Ponds middle pond, 2010.

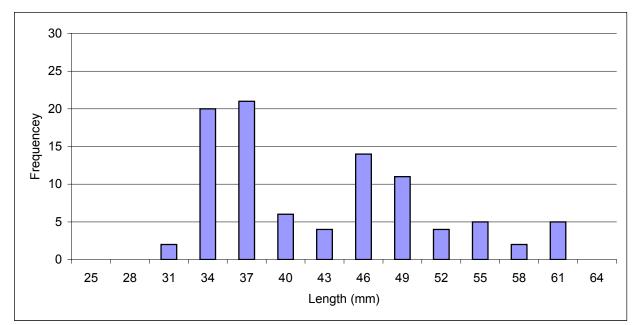


Figure 7. Length of Pahrump poolfish at Shoshone Ponds Stock pond, 2010.

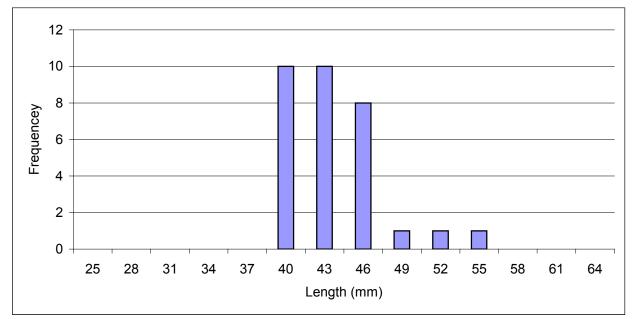
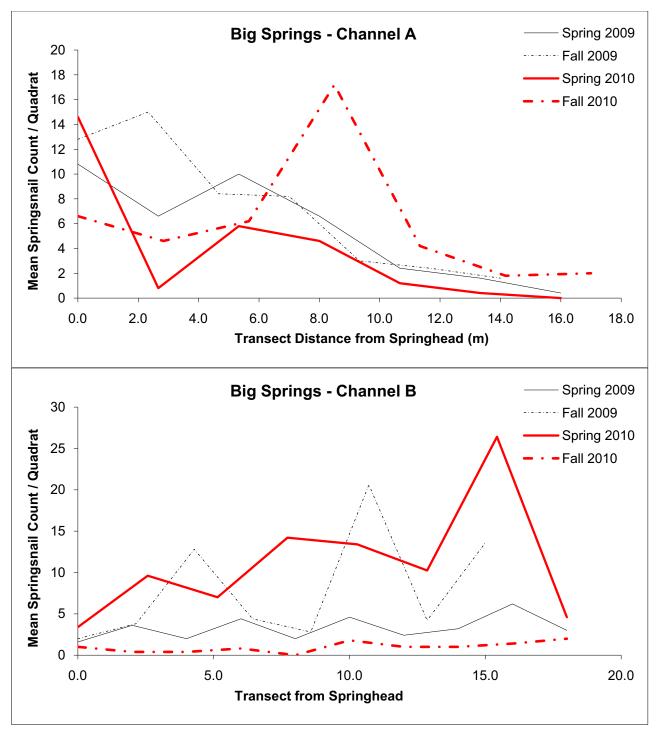


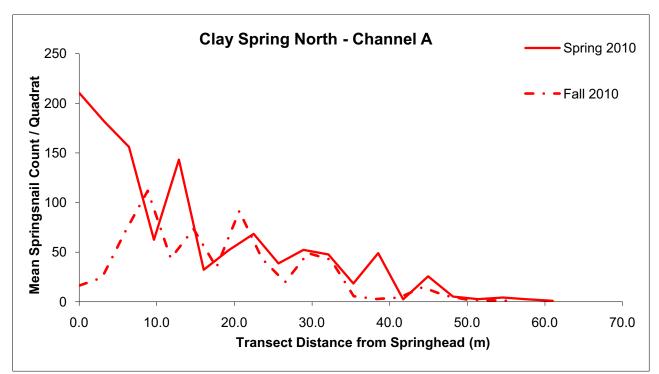
Figure 8. Length of Relict dace at Shoshone Ponds, South pond, 2010.

This Page Intentionally Left Blank

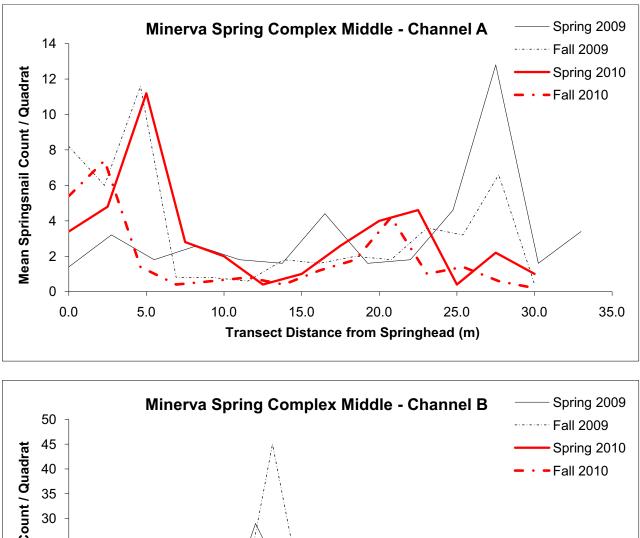

Spring Valley Stipulation Biological Monitoring Plan, 2010 Annual Report

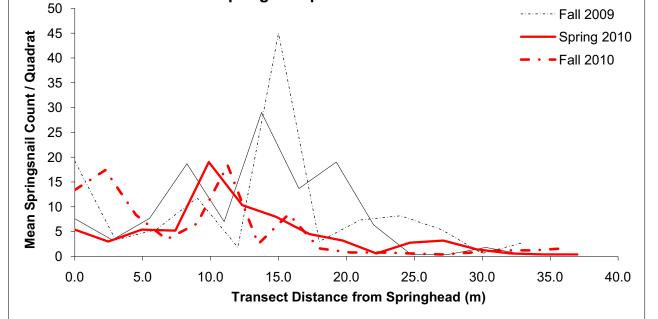
Appendix D

Distribution of Springsnail Counts along Springsnail Extents, Spring and Fall 2009 and 2010

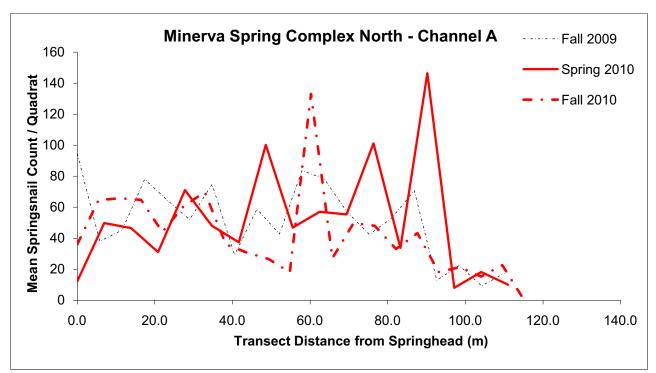

D.1.0 INTRODUCTION

Springsnail distribution shown in the following figures is the mean springsnail count/quadrat calculated for each transect, charted from the springhead to the end of the springsnail extent. Transects were established in the field by determining the springsnail extent and placing flags approximately equidistant down the extent, placing no more than 20 transects per channel no less than 2.5 m apart. For graphing purposes, transects are assumed to be absolutely equidistant, and the first and last transect are assumed to be at the absolute start and end of the springsnail extent.

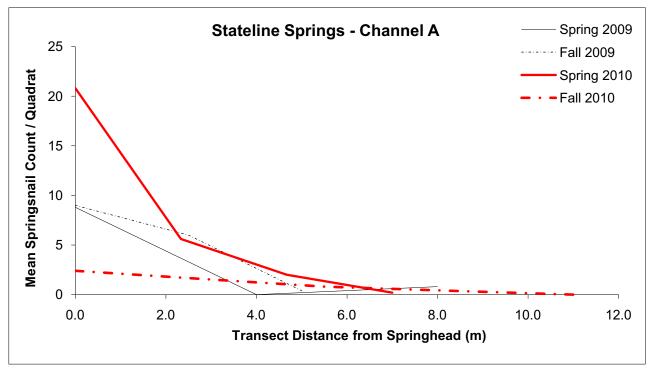

Note: Big Springs Channels A and B converge. Springsnails in the convergence are included in Channel A (and not Channel B). The springsnail extent in Channel B was approximated from the physical habitat map and transect UTM coordinates because extent was not measured consistently in the field. In spring 2009 and spring and fall 2010, springsnails in Channel B extended past the convergence point, and the extent is approximated at 18 m (the length of the Channel B). In fall 2009, springsnails in Channel B stopped occurring prior to the convergence point; GPS points taken at the springsnail transects suggest the extent was approximately 15 m.


Figure D-1 Springsnail Distribution at Big Springs - Channels A and B 2009 and 2010

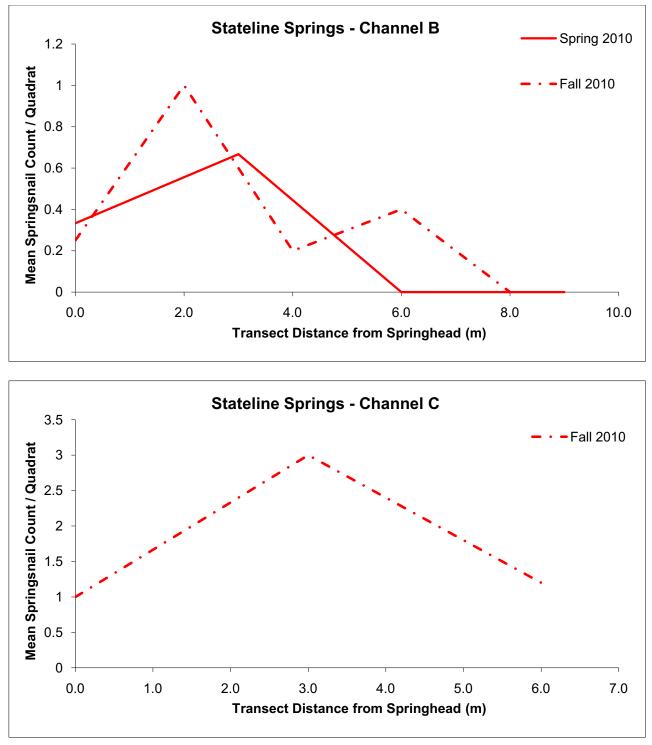
Note: Clay Spring North was not surveyed in 2009 (access not granted).



Note: Channels A and B are nearby but separate flows. For Channel B, springhead C and Channel B data are shown (springhead B not shown).

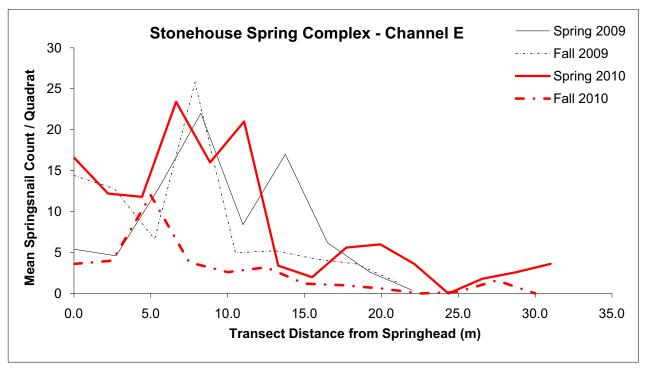

Figure D-3 Springsnail Distribution at Minerva Spring Complex Middle -Channels A and B, 2009 and 2010

Note: Minerva Spring Complex North was not surveyed in 2009 (field error).

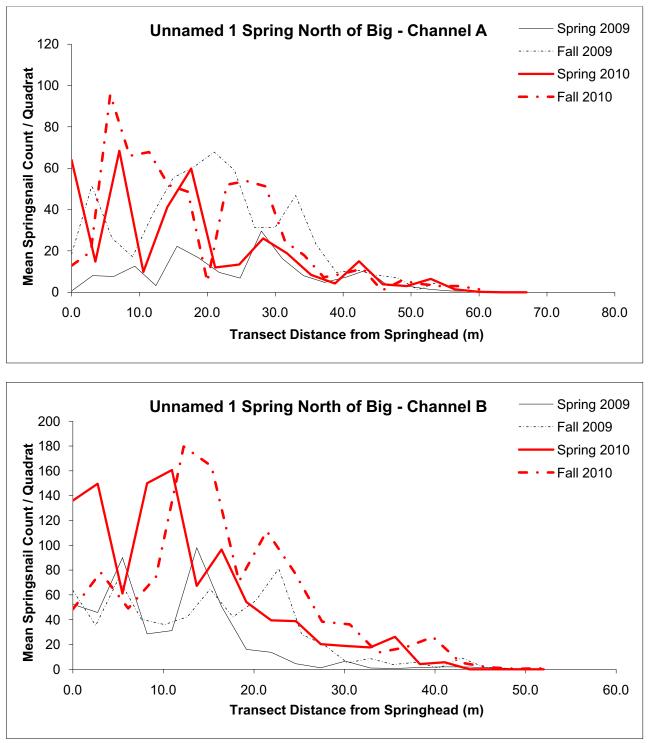

Figure D-4

Springsnail Distribution at Minerva Spring Complex North - Channel A, 2009 and 2010

Note: Stateline Springs Complex Springhead A1 and Channel A. Springheads A2 through A4 not shown.


Figure D-5 Springsnail Distribution at Stateline Springs - Channel A, 2009 and 2010

Note: Fall 2009 - no standing water; springsnails searched for but not discovered. Spring 2010 - standing water; springsnails searched for but not discovered. Channel C was not surveyed in a consistent enough fashion to allow comparison across seasons. Fall 2010 data collection focused on the major path of water flow.


Figure D-6 Springsnail Distribution at Stateline Springs - Channels B and C, 2009 and 2010

Note: Channel E is south of and not connected to springhead A-D (presence/absence surveys; not shown).

Figure D-7 Springsnail Distribution at Stonehouse Spring Complex - Channel E, 2009 and 2010

Note: Unnamed 1 Spring North of Big Channels A and B converge. Springsnails in the convergence are included in Channel A (and not Channel B)

Figure D-8 Springsnail Distribution at Unnamed 1 Spring North of Big -Channels A and B, 2009 and 2010

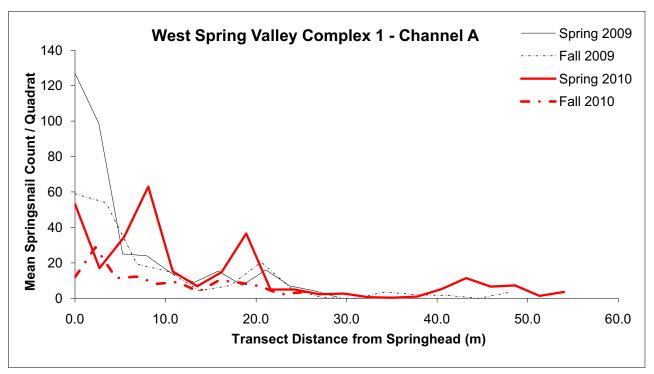


Figure D-9 Springsnail Distribution at West Spring Valley Complex 1 - Channel A, 2009 and 2010

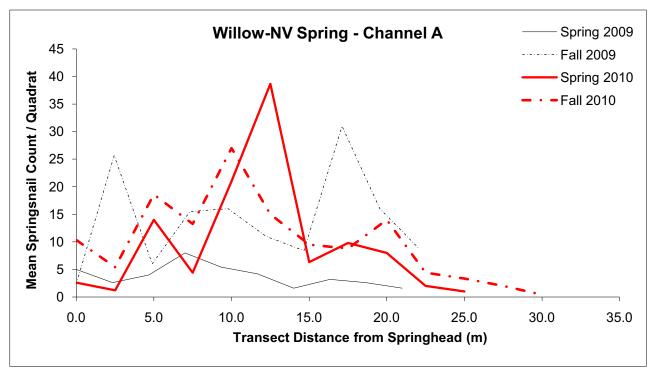


Figure D-10 Springsnail Distribution at Willow-NV Spring - Channel A, 2009 and 2010

Spring Valley Stipulation Biological Monitoring Plan, 2010 Annual Report

Appendix E

Vegetation Cover and Composition Result Tables

E.1.0 INTRODUCTION

The following tables are included in this appendix:

- Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on the Vegetation Transects in 2009 and 2010 and which Transect Types the Taxa Occurred In.
- Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of Transects Where Present, 2009 and 2010 (by transect type).
- Mean Percent Cover (MH), of Document Plant Taxa, 2009 and 2010 (by transect type).

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In(Page 1 of 7)

			Transect Type				
Scientific Name	Common Name	USDA Code	AQ	WМ	PS	SC	
Achillea millefolium	yarrow	ACMI2	Х	Х		Х	
Achnatherum hymenoides	Indian ricegrass	ACHY			X	х	
Agoseris glauca var. glauca	pale agoseris	AGGLG	Х	Х			
Agrostis gigantea	creeping bent	AGGI2	Х	Х		х	
Algae	algae	ALGAE	Х	Х			
Alisma plantago-aquatica	European waterplantain	ALPL	Х				
Angelica sp.	angelica	ANGEL	Х				
Aquilegia formosa	California columbine	AQFO	Х	Х		Х	
Arctium minus	common burdock	ARMI2	Х				
Argentina anserina	silverweed cinquefoil	ARAN7	Х	Х		Х	
Artemisia tridentata	big sagebrush	ARTR2	Х	Х	Х	Х	
Asclepias speciosa	showy milkweed	ASSP	Х	Х			
Aster	aster	ASTER	Х	Х		Х	
Astragalus sp.	milkvetch	ASTRA	Х	Х		Х	
Astragalus convallarius	timber milkvetch	ASCO12				Х	
Atriplex sp.	saltbush	ATRIP		Х			
Atriplex canescens	fourwing saltbush	ATCA2			Х		
Atriplex confertifolia	shadscale	ATCO			Х	Х	
Atriplex micrantha	twoscale saltbush	ATMI2	Х	Х		Х	
Atriplex rosea	tumbling saltweed	ATRO				Х	
Atriplex serenana	bractscale	ATSE2	Х	Х	Х	Х	
Atriplex truncata	wedgescale	ATTR		Х		Х	
Bassia americana	greenmolly	BAAM4			Х		
Bassia scoparia	kochia	BASC5	Х	Х	Х	Х	
Berula erecta	water parsnip	BEER	Х	Х			
Bidens cernua	nooding beggarsticks	BICE	Х	Х			
Boragaceae sp.	borage	BORAG		Х			
Branched moss	Branched moss	BR MOSS	Х	Х			
Bromus sp.	Brome	BROMU	Х	Х			
Bromus inermis	smooth brome	BRIN2	Х	Х			
Bromus tectorum	cheatgrass	BRTE	Х	Х	Х	Х	
Cardaria draba	pepperweed whitetop	CADR	Х	Х			
Carduus nutans	musk thistle	CANU4		Х			
Carex sp.	sedge	CAREX	Х	Х		Х	
Carex aurea	golden sedge	CAAU3	Х	Х			
Carex douglasii	Douglas sedge	CADO2		Х			
Carex nebrascensis	Nebraska sedge	CANE2	Х	Х		Х	
Carex parryana		CAPA18				Х	
Carex praegracilis	fieldclustered sedge	CAPR5	Х	Х		Х	
Carex rostrata	beaked sedge	CARO6	Х	Х			
Carex simulata	analogne sedge	CASI2	Х	Х		Х	

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In(Page 2 of 7)

			Transect Type				
Scientific Name	Common Name	USDA Code	AQ	WМ	PS	SC	
Castilleja minor ssp. minor	Indian paintbrush	CAMIM6	Х	Х		Х	
Catabrosa aquatica	brookgrass	CAAQ3	Х	Х			
Caulanthus sp.	wild cabbage	CAULA				Х	
Centaurium exaltatum	Nevada centaury	CEEX		Х		Х	
Ceratocephala testiculata	curveseed butterwort	CETE5	Х	Х			
Chara Algae	stonewort, chara	CHARA	Х	Х			
Chenopodium	lambsquarters	CHENO	Х	Х	Х	Х	
Chenopodium berlandieri	pitseed lambsquarters	CHBE4	Х	Х			
Chenopodium glaucum	oakleaf goosefoot	CHGL3	Х				
Chenopodium humile	low goosefoot	CHHU		Х	Х		
Chenopodium incanum	mariola	CHIN2	Х		Х		
Chenopodium leptophyllum	narrowleaf lambsquarters	CHLE4			Х		
Chrysothamnus humilis	Truckee rabbitbrush	CHHU2			Х		
Chrysothamnus viscidiflorus	green rabbitbrush	CHVI8			Х	Х	
Chrysothamnus viscidiflorus ssp. puberulus	yellow rabbitbrush	CHVIP4			Х		
Cirsium sp.	thistle	CIRSI				Х	
Cirsium arvense	Canada thistle	CIAR4	Х	Х			
Cirsium scariosum	elk thistle	CISC2	Х	Х		Х	
Cirsium vulgare	bull thistle	CIVU	Х	Х		Х	
Clematis ligusticifolia var. ligusticifolia	western virginsbower	CLLIL2	Х				
Cleomella plocasperma	greasewood cleomella	CLPL2			Х	Х	
Comandra umbellata	bastard toadflax	COUM				Х	
Conium maculatum	poison hemlock	COMA2		Х			
Convolvulus arvensis	bindweed	COAR4	Х	Х			
Conyza canadensis	Canada horseweed	COCA5		Х		Х	
Cordylanthus ramosus	birds beak	CORA5			Х	Х	
Crepis runcinata ssp. glauca	hawksbeard	CRRUG	Х	Х		Х	
Cryptantha circumscissa	cushion cryptantha	CRCI2			Х		
Cryptantha scoparia	Pinyon Desert cryptantha	CRSC2			Х		
Dactylis glomerata	orchardgrass	DAGL		Х		Х	
Deschampsia ceaspitosa	tufted hairgrass	DECE	Х	Х			
Descurainia pinnata	western tansymustard	DEPI		Х	Х		
Descurainia sophia	flexweed tansymustard	DESO2	Х	Х	Х	Х	
Distichlis spicata	saltgrass	DISP	Х	Х	Х	Х	
Dodecatheon sp.	shootingstar	DODEC		Х			
Dodecatheon pulchellum	shootingstar	DOPU		Х		Х	
Downingia laeta	downingia	DOLA2		Х			
Draba sp.	Draba	DRABA		Х			
Elaeagnus angustifolia	Russian olive	ELAN	Х	Х			
Eleocharis sp.	spikerush	ELEOC	Х	Х			
Eleocharis palustris	creeping spikerush	ELPA3	Х	Х			

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In
(Page 3 of 7)

			Transect Type				
Scientific Name	Common Name	USDA Code	AQ	WМ	PS	SC	
Eleocharis parishii	Parish's spikerush	ELPA4		Х			
Eleocharis quinqueflora	fewflowered spikerush	ELQU2	Х	Х			
Eleocharis rostellata	beaked spikerush	ELRO2	Х	Х			
Elymus elymoides	squirreltail	ELEL5	Х	Х	Х	Х	
Elymus trachycaulus	slender wheatgrass	ELTR7	Х	Х		Х	
Ephedra nevadensis	Nevada jointfir	EPNE			Х		
Ephedra viridis	green Mormon tea	EPVI			Х		
Epilobium sp.	willowherb, fireweed	EPILO	Х	Х			
Epilobium ciliatum	purpleleaf willowherb	EPCI	Х	Х			
Epilobium ciliatum ssp. ciliatum	fringed willowherb	EPCIC	Х	Х			
Equisetum arvense	field horsetail	EQAR	Х	Х		Х	
Eriastrum diffusum	miniature woollystar	ERDI2			Х	1	
Ericameria nauseosa	rubber rabbitbrush	ERNA10	Х	Х	Х	Х	
Erigeron lonchophyllus	spearleaf fleabane	ERLO	Х	Х		Х	
Eriogonum sp.	buckwheat	ERIOG		Х			
Eriogonum cernuum	nodding wildbuckwheat	ERCE2				Х	
Eriogonum microthecum	slender buckwheat	ERMI4				Х	
Erodium cicutarium	redstem stork's bill	ERCI6			Х		
Festuca sp.	fescue	FESTU	Х				
Festuca idahoensis	Idaho fescue	FEID	Х	Х			
Festuca sororia	ravine fescue	FESO		Х			
Galium trifidum	small bedstraw	GATR2	Х	Х			
Gayophytum	groundsmoke	GAYOP			Х		
Gentianella amarella	annual gentian	GEAM3	Х			Х	
Gilia sp.	gilia	GILIA			Х		
Glaux maritima	sea milkwort	GLMA	Х	Х		Х	
Grayia spinosa	spiny hopsage	GRSP			Х		
Grindelia squarrosa	curlycup gumweed	GRSQ	Х				
Gutierrezia sarothrae	snakeweed	GUSA2			Х	Х	
Halogeton glomeratus	halogeton	HAGL	Х		Х		
Helianthus nuttallii	Nuttall sunflower	HENU	Х	Х			
Hesperochiron pumilus	evening centaur	HEPU6	Х	Х			
Heterotheca villosa	hairy false goldenaster	HEVI4	Х				
Hippuris vulgaris	common marestail	HIVU2	Х	Х			
Hordeum brachyantherum	meadow barley	HOBR2	Х	Х			
Hordeum jubatum	foxtail barley	HOJU	Х	Х	Х	Х	
Hymenopappus filifolius var. nanus	hymenopappus	HYFIN	T			Х	
Hymenoxys lemmonii	Lemmon actinia	HYLE	Х	Х		Х	
lpomopsis aggregata ssp. aggregata	scarlet gilia	IPAGA3	T			Х	
Iris missouriensis	Rocky Mountain iris	IRMI	Х	Х		Х	
Iva axillaris	sumpweed	IVAX	Х	Х	Х	Х	

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In(Page 4 of 7)

				Transe	ct Type	
Scientific Name	Common Name	USDA Code	AQ	WM	PS	SC
Ivesia kingii	alkali ivesia	IVKI	Х	Х		Х
Juncus sp.	rush	JUNCU	Х	Х		
Juncus arcticus ssp. littoralis	Baltic rush	JUARL	Х	Х		Х
Juncus articulatus	jointleaf rush	JUAR4	Х	Х		
Juncus bufonius	toad rush	JUBU		Х		
Juncus ensifolius	swordleaf rush	JUEN	Х			
Juncus longistylis	longstyle rush	JULO	Х	Х		
Juncus nevadensis	Nevada rush	JUNE	Х	Х		Х
Juncus saximontanus	Rocky Mountain rush	JUSA	Х			
Juncus torreyi	Torrey rush	JUTO	Х	Х		
Juniperus scopulorum	Rocky Mountain juniper	JUSC2	Х	Х		Х
Krascheninnikovia lanata	winterfat	KRLA2			Х	
Lactuca serriola	prickly lettuce	LASE	х	Х	Х	Х
Lactuca tatarica var. pulchella	blue lettuce	LATAP		Х		
Lappula occidentalis var. cupulata	flatspine stickseed	LAOCC			Х	
Lemna sp.	duckweed	LEMNA	Х	Х		
Lemna minor	common duckweed	LEMI3	Х	Х		
Lemna minuta	least duckweed	LEMI6	Х	Х		
Lemna trisulca	star duckweed	LETR	Х	Х		х
Lepidium campestre	field pepperweed	LECA5	Х	Х		
Lepidium densiflorum	common pepperweed	LEDE			Х	
Lepidium perfoliatum	clasping pepperweed	LEPE2		Х	Х	
Leymus cinereus	basin wildrye	LECI4	Х	Х		Х
Leymus triticoides	creeping wildrye	LETR5	Х	Х	Х	Х
Limosella aquatica	water mudwort	LIAQ		Х		
Linanthus pungens	flaxflower	LIPU11	Х			
Lupinus sp.	lupine	LUPIN	Х	Х		
Machaeranthera carnosa var. carnosa	alkali aster	MACAC5			Х	
Maianthemum racemosum ssp. racemosum	scurvy berry	MARAR	Х			Х
Maianthemum stellatum	starry false lily of the valley	MAST4				Х
Medicago polymorpha	California burclover	MEPO3	Х	Х		Х
Melilotus officinalis	sweetclover	MEOF	Х	Х		Х
Mentha arvensis	field mint	MEAR4	Х	Х		
Mentha spicata	spear mint	MESP3	х	Х		
Mentzelia nitens	shining blazingstar	MENI2			Х	İ
Mimulus guttatus	common monkeyflower	MIGU	Х	Х		
Moss	moss	MOSS	Х	Х		Х
Muhlenbergia sp.	muhly	MUHLE		Х		İ
Muhlenbergia asperifolia	alkali muhly	MUAS	х	Х		Х
Muhlenbergia richardsonis	mat muhly	MURI	х	Х		Х
Mushroom	mushroom	MUSHROOM		Х		

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In
(Page 5 of 7)

			Transect Type				
Scientific Name	Common Name	USDA Code	AQ	WМ	PS	SC	
Musineon sp.	wildparsley	MUSIN				Х	
Musineon divaricatum	leafy wildparsley	MUDI				Х	
Myriophyllum verticillatum	parrotfeather	MYVE3	Х	Х			
Nasturtium officinale	watercress	NAOF	Х	Х			
Nitrophila occidentalis	alkali pink	NIOC2	Х	Х		Х	
Opuntia sp.	pricklypear	OPUNT			Х		
Opuntia polyacantha	plains pricklypear	OPPO			Х		
Orchid	orchid	ORCHI2	х				
Pascopyrum smithii	western wheatgrass	PASM	х	Х			
Phacelia peirsoniana	handsome phacelia	PHPE2				Х	
Phalaris arundinacea	reed canarygrass	PHAR3		Х			
Phleum pratense	timothy	PHPR3	х	х	ł		
, Phlox pulvinata	tufted phlox	PHPU5			ł	Х	
Phragmites australis	common reed	PHAU7	х	Х			
Picrothamnus desertorum	budsage	PIDE4			х		
Plagiobothrys	popcornflower	PLAGI		Х			
Plagiobothrys scouleri	popcorn flower	PLSC2		Х			
Plantago major	common plantain	PLMA2	х	Х		Х	
Poa sp.	bluegrass	POA	х	Х			
Poa pratensis	Kentucky bluegrass	POPR	X	Х		х	
Poa secunda	Sandberg bluegrass	POSE	х	Х	х	х	
Polygonum sp.	knotweed	POLYG4	х	Х			
Polygonum amphibium	water knotweed	POAM8	х	Х			
Polygonum argyrocoleon	silversheath knotweed	POAR5	х	Х			
Polygonum aviculare	prostrate knotweed	POAV	X	X		x	
Polygonum ramosissimum	bushy knotweed	PORA3	X	Х			
Polypogon monspeliensis	rabbitsfoot grass	POMO5	х	Х	Х		
Populus angustifolia	narrowleaf poplar	POAN3	X				
Potamogeton sp.	pondweed	POTAM	X	Х			
Potamogeton foliosus ssp. foliosus	leafy pondweed	POFOF4	X				
Potentilla biennis	biennial cinquefoil	POBI7	X				
Potentilla gracilis	Northwest cinquefoil	POGR9	X	Х			
Potentilla hippiana	horse cinquefoil	POHI6	X	X			
Potentilla pensylvanica var. pensylvanica	Pennsylvania cinquefoil	POPEP5	X	X			
Puccinellia sp.	alkaligrass	PUCCI		X	<u> </u>		
Puccinellia distans	weeping alkaligrass	PUDI	Х	X			
Puccinellia lemmonii	Lemmon alkaligrass	PULE	X	X	Х	X	
Pyrrocoma lanceolata	lanceleaf goldenweed	PYLA	X	X	· · ·	X	
Raillardella argentea	silky raillardella	RAAR		~	<u> </u>	X	
Ranunculus aquatilis	water crowfoot	RAAQ	Х				
Ranunculus cymbalaria	shore buttercup	RACY	X	Х		X	

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In(Page 6 of 7)

			Transect Type				
Scientific Name	Common Name	USDA Code	AQ	WM	PS	SC	
Ranunculus sceleratus	blister buttercup	RASC3	Х	Х			
Rhus trilobata	skunkbush	RHTR	Х				
Ribes sp.	currant	RIBES	Х				
Ribes aureum var. aureum	golden currant	RIAUA	Х				
Rorippa sinuata	spreading watercress	ROSI2	Х				
Rosa woodsii	Woods rose	ROWO	Х	Х		Х	
Rumex crispus	curly dock	RUCR	Х	Х			
Sagittaria cuneata	duckpotato arrowhead	SACU	Х	Х			
Salix sp.	willow	SALIX	Х				
Salsola tragus	Russian thistle	SATR12	Х		Х		
Sambucus nigra	European elder	SANI4	Х				
Sarcobatus vermiculatus	greasewood	SAVE4	Х	Х	Х	Х	
Schedonorus pratensis	meadow fescue	SCPR4	х	Х		Х	
Schoenoplectus acutus	tule bulrush	SCAC3	Х	Х			
Schoenoplectus acutus var. acutus	hardstem bulrush	SCACA	Х	Х		-	
Schoenoplectus americanus	American bulrush	SCAM6	Х	Х			
Schoenoplectus pungens	common threesquare	SCPU10	Х	Х		-	
Schoenoplectus pungens var. longispicatus	common threesquare	SCPUL4		Х			
Sida neomexicana	New Mexico sida	SINE	Х	Х			
Sidalcea neomexicana	salt spring checkerbloom	SINE3	Х	Х			
Sisymbrium altissimum	tall tumblemustard	SIAL2	Х				
Sisyrinchium halophilum	alkali blueeyedgrass	SIHA2	Х	Х		Х	
Sium suave	hemlock waterparsnip	SISU2	Х	Х			
Solidago sp.	goldenrod	SOLID	Х	Х			
Solidago nana	baby goldenrod	SONA		Х		Х	
Sparganium emersum	European bur-reed	SPEM2	Х	Х			
Sparganium angustifolium	giant burreed	SPAN2/speu	Х	Х			
Spartina gracilis	alkali cordgrass	SPGR	Х	Х		Х	
Sphaeralcea ambigua	desert globemallow	SPAM2			Х		
Sphaeralcea coccinea	orange globemallow	SPCO			Х		
Sphagnum Moss	sphagnum moss	SP MOSS	Х	Х			
Sphenopholis obtusata	prairie wedgescale	SPOB	Х	Х			
Sporobolus airoides	alkali sacaton	SPAI	Х	Х	Х	Х	
Sporobolus cryptandrus	sand dropseed	SPCR			Х		
Stellaria longipes	longstalk starwort	STLO2	Х	Х			
Stuckenia filiformis	slender-leaved pondweed	STFI6		Х			
Stuckenia filiformis ssp. filiformis	fineleaf pondweed	STFIF	Х	Х			
Stuckenia filiformis ssp. occidentalis	western fineleaf pondweed	STFIO	Х				
Suaeda calceoliformis	horned seablite	SUCA2		Х	Х	Х	
Suaeda moquinii	bush seepweed	SUMO			Х	Х	
Symphyotrichum eatonii	Eaton aster	SYEA2	Х	Х	1	Х	

Table E-1Scientific Names, Common Names, and Synonyms of Plant Taxa Encountered on theVegetation Transects in 2009 and 2010 and Which Transect Types the Taxa Occurred In(Page 7 of 7)

				Transe	ct Type	
Scientific Name	Common Name	USDA Code	AQ	WM	PS	SC
Symphyotrichum spathulatum var. intermedium	western aster	SYSPI	Х	Х		
Symphyotrichum spathulatum var. spathulatum	western aster	SYSPS	Х	Х		Х
Tanacetum balsamita	costmary	TABA	Х			
Taraxacum officinale	dandelion	TAOF	Х	Х		Х
Tetradymia glabrata	littleleaf horsebrush	TEGL			Х	
Tetradymia spinosa	spiny horsebrush	TESP2			Х	
Thelesperma megapotamicum	Hopi tea greenthread	THME		Х		
Thelypodium sagittatum ssp. sagittatum	arrow thelypody	THSAS				Х
Thermopsis rhombifolia	golden thermopsis	THRH	Х	Х		
Thinopyrum ponticum	tall wheatgrass	THPO7		Х		
Tragopogon dubius	yellow salsify	TRDU	Х	Х		
Trifolium sp.	clover	TRIFO	Х	Х		Х
Trifolium fragiferum	strawberry clover	TRFR2	Х	Х		
Trifolium hybridum	Alsike clover	TRHY	Х	Х		
Trifolium longipes	longstalk clover	TRLO	Х	Х		
Trifolium pratense	red clover	TRPR2	Х	Х		
Trifolium repens	white clover	TRRE3	Х	Х		Х
Triglochin so,	arrowgrass	TRIGL		Х		
Triglochin concinna	arrowgrass	TRCO19		Х		
Triglochin maritima	seaside arrowgrass	TRMA20	Х	Х		Х
Triglochin palustris	marsh arrowgrass	TRPA28		Х		
Typha sp.	cattail	TYPHA	Х	Х		
Typha domingensis	southern cattail	TYDO	Х	Х		
Typha latifolia	common cattail	TYLA	Х	Х		
Unknown Large	Unknown Large	UNK LARGE	Х			
Urtica dioica	stinging nettle	URDI	Х			
Utricularia macrorhiza	bladderwort	UTMA	Х	Х		
Utricularia minor	lesser bladderwort	UTMI		Х		
Verbascum thapsus	mullein	VETH	Х			
Verbena bracteata	rose verbena	VEBR		Х		
Veronica anagallis-aquatica	water speedwell	VEAN2	Х	Х		
Veronica peregrina L. ssp. xalapensis	hairy purslane speedwell	VEPEX2				Х
Vesicarpa potentilloides var. nitrophilum	fivefinger chickensage	VEPON				Х
Viola nephrophylla	northern bog violet	VINE	Х	Х		
Xanthium strumarium	cocklebur	XAST	Х	Х		
Zannichellia palustris	horned poolmat	ZAPA	Х	Х		
Zigadenus elegans	mountain deathcamus	ZIEL2		Х		
Zigadenus paniculatus	foothill deathcamas	ZIPA2		Х		

AQ = aquatic, WM = Wetland/Meadow, PS = Phreatophytic shrubland, SC = Swamp Cedar

Table E-2Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of TransectsWhere Present along Aquatic Transects in Spring and Snake Valleys for 2009 and 2010(Page 1 of 4)

	Mean C	Number Where P		Number of Transects Where Present		
Species or Taxa	2009	2010	2009	2010	2009	2010
Achillea millefolium	0.3	0.4	5	4	7	6
Agoseris glauca var. glauca	0.1	t	3	1	3	1
Agrostis gigantea	2.1	2.1	13	13	42	46
Algae	1.1	2.5	9	10	19	27
Alisma plantago-aquatica	0.1	0.3	1	1	2	2
Angelica sp.	t	t	1	2	1	2
Aquilegia formosa	0.1	0.1	3	2	4	3
Arctium minus	0.1	0.1	1	1	1	1
Argentina anserina	2.2	2.3	12	13	48	49
Artemisia tridentata	0.4	0.5	2	2	4	5
Asclepias speciosa	t	t	1	1	1	1
Aster	0.1	0.1	2	5	4	6
Astragalus sp.		t		1		1
Atriplex micrantha	t	t	1	3	2	5
Atriplex serenana	t		1		2	
Bassia scoparia	0.2	0.4	6	5	11	9
Berula erecta	5.5	5.0	14	14	50	52
Bidens cernua	0.1	0.1	2	2	3	3
Branched moss		0.1		1		1
Bromus sp.		t		1		1
Bromus inermis	t	t	1	1	2	1
Bromus tectorum	t	0.2	4	4	6	9
Cardaria draba	t	t	2	1	2	2
Carex sp.	0.7	t	9	2	12	2
Carex aurea	t	t	1	1	1	1
Carex nebrascensis	10.6	11.8	14	14	64	63
Carex praegracilis	2.1	3.9	12	13	34	48
Carex rostrata	0.5	0.3	3	2	5	3
Carex simulata	5.9	4.8	10	10	28	23
Castilleja minor ssp. minor	t	t	1	1	1	2
Catabrosa aquatica	0.1	t	1	1	2	1
Ceratocephala testiculata		t		1		1
Chara sp.	2.7	2.7	7	8	12	14
Chenopodium	0.1	t	4	2	4	2
Chenopodium berlandieri	0.1	t	1	1	2	1
Chenopodium glaucum		t		1		1
Chenopodium incanum	t		1		1	
Cirsium arvense	0.5	0.8	1	1	3	3
Cirsium scariosum	0.2	0.0	9	10	17	23
Cirsium vulgare	0.1	t	4	2	5	5
Clematis ligusticifolia var. ligusticifolia	0.1	0.2	1	1	1	1
Convolvulus arvensis	t	t	2	1	2	1
Crepis runcinata ssp. glauca	0.1	0.1	4	5	5	7
Deschampsia cespitosa	0.1	0.1	3	7	9	20
Descurainia sophia	0.3	0.0 t	3	4	3	6
Distichlis spicata	0.7	0.6	12	4	24	23
Elaeagnus angustifolia	t		12		1	

Table E-2Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of TransectsWhere Present along Aquatic Transects in Spring and Snake Valleys for 2009 and 2010(Page 2 of 4)

	Number of Sites Number of Transec						
	Mean C	over (%)	Where P			Present	
Species or Taxa	2009	2010	2009	2010	2009	2010	
Eleocharis palustris	1.8	1.7	12	9	31	26	
Eleocharis rostellata	2	3.3	6	8	19	21	
Eleocharis sp.	t	t	3	2	3	2	
Eleocharis quinqueflora		t		2		2	
Elymus elymoides		t		1		1	
Elymus trachycaulus	0.3	0.3	5	8	7	16	
Epilobium ciliatum	0.1	0.1	6	3	8	6	
Epilobium sp.	0.1	0.4	7	10	16	17	
Equisetum arvense	0.3	0.5	11	10	32	35	
Ericameria nauseosa	0.1	0.2	6	7	7	10	
Erigeron lonchophyllus	t	t	5	5	6	7	
Festuca sp.		t		1		1	
Festuca idahoensis		t		1		2	
Galium trifidum	t	0.1	2	2	3	4	
Gentianella amarelle	t		1		1		
Glaux maritima	0.1	0.2	8	10	14	18	
Grindelia squarrosa	t	t	1	1	1	1	
Halogeton glomeratus	t		1		1		
Helianthus nuttallii	t	t	2	1	3	1	
Hesperochiron pumilus		t		1		1	
Heterotheca villosa		t		1		1	
Hippuris vulgaris	0.2	0.3	3	2	8	8	
Hordeum brachyantherum	0.1	0.3	4	4	9	8	
Hordeum jubatum	0.9	0.6	6	7	12	19	
Hymenoxys lemmonii	0.0	0.0	3	4	5	7	
Iris missouriensis	0.2	0.1	3	3	6	6	
Iva axillaris	0.2	0.5	3	3	7	9	
Ivesia kingii	0.0	0.0	2	3	3	3	
Juncus sp.	t	t	1	2	1	2	
Juncus articulatus		t		1		2	
Juncus arcticus ssp. littoralis	2.6	3.6	14	14	56	58	
Juncus ensifolius		5.0 t		1		1	
Juncus longistylis		t		2		3	
Juncus nevadensis	1.1	1.5	9	11	26	35	
Juncus saximontanus	t		1		1		
Juncus torreyi	t	t	4	3	4	9	
Juniperus scopulorum	0.9	0.8	4	3	4	9	
Lactuca serriola	0.9 t	0.8	1	4	2	6	
Lemna sp.	ι 0.1	0.1 t	4	4	4	2	
•							
Lemna minor	0.6	2.1	3	6	6	19	
Lemna minuta Lemna trisulca	0.1	0.5	2	2	5	6	
	t	t t		1	3	2	
Lepidium campestre		t		1		2	
Leymus cinereus		t		1		1	
Leymus triticoides	0.5	1.2	11	12	30	29	
Lianthus pungens	t		1		1		
Lupinus sp.		t		1		1	

Table E-2Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of TransectsWhere Present along Aquatic Transects in Spring and Snake Valleys for 2009 and 2010(Page 3 of 4)

	Mean C	over (%)	Number of Where P		Number of Where	Transects Present
Species or Taxa	2009	2010	2009	2010	2009	2010
Maianthemum racemosum ssp.amplexicaule	t	t	1	1	1	1
Medicago polymorpha	0.3	0.4	4	3	7	4
Melilotus officinalis	0.2	0.1	5	4	9	8
Mentha arvensis		t		2		2
Mentha spicata	0.1	t	3	1	4	2
Mimulus guttatus	0.6	1.9	13	13	33	40
Moss	2.1	1.5	10	11	23	20
Muhlenbergia asperifolia	t	t	1	2	2	3
Muhlenbergia richardsonis	0.1	t	9	2	10	2
Myriophyllum verticillatum	t	t	1	2	1	2
Nasturtium officinale	8.1	12.7	12	10	40	32
Nitrophila occidentalis		t		1		1
Orchid		t		1		1
Pascopyrum smithii		0.2		2		4
Phleum pratense	t	0.1	3	3	4	5
Phragmites australis	0.2	0.1	1	1	1	1
Plantago major	0.1	t	2	3	2	4
Poa pratensis	1.3	1.1	12	10	31	19
Poa secunda	0.1	1.1	3	10	4	21
Poa sp.	t		1		1	
Polygonum		t		1		1
Polygonum amphibium		t		1		1
Polygonum argyrocoleon		0.1		1		1
Polygonum aviculare	0.2	0.1	5	3	8	5
Polygonum ramosissimum		t		1		1
Polypogon monspeliensis	t	0.1	4	5	6	8
Populus angustifolia	2.7	3.7	1	1	5	5
Potamogeton sp.	2.8	4.0	7	6	17	14
Potamogeton foliosus ssp. foliosus		0.6		1		1
Potentilla biennis		t		1		1
Potentilla gracilis	t	t	2	3	2	4
Potentilla hippiana	t		1		1	
Potentilla pensylvanica	t		1		2	
Puccinellia distans	0.1	t	1	3	3	4
Puccinellia lemmonii	0.1	0.2	6	7	14	13
Pyrrocoma lanceolata	0.1	0.2	5	11	6	26
Ranunculus aquatilis	t		2		2	
Ranunculus cymbalaria	t	t	4	3	4	5
Ranunculus sceleratus	0.1	0.1	6	10	10	16
Rhus trilobata	0.4	0.2	2	1	3	2
Ribes sp.	t	0.1	1	1	1	2
Ribes aureum var. aureum		t		1		1
Rorippa sinuata	0.5		1		2	
Rosa woodsii	1.8	2.0	7	7	14	13
Rumex crispus	0.1	0.1	5	6	6	10
Sagittaria cuneata	t	0.1	1	3	1	4
Salix sp.	0.4	0.6	1	1	1	1

Table E-2Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of TransectsWhere Present along Aquatic Transects in Spring and Snake Valleys for 2009 and 2010(Page 4 of 4)

	Mean C	over (%)	Number o Where P			ber of Transects Vhere Present	
Species or Taxa	2009	2010	2009	2010	2009	2010	
Salsola tragus	t	t	1	1	2	2	
Sambucus nigra	0.1	0.1	1	1	1	1	
Sarcobatus vermiculatus		t		1		1	
Schedonorus pratensis	1	1.7	6	7	13	15	
Schoenoplectus acutus	0.7	0.1	4	3	11	5	
Schoenoplectus americanus	0.1	t	6	3	9	3	
Schoenoplectus pungens	t	0.1	2	5	3	7	
Sidalcea neomexicana	t	t	1	1	1	2	
Sisymbrium altissimum		t		1		1	
Sisyrinchium halophilum	0.1	0.1	9	10	19	20	
Sium suave	t	0.1	1	1	1	2	
Solidago sp.	t		4		4		
Sparganium emersum		0.3		1		2	
Sparganium eurycarpum	0.4	0.7	5	4	10	8	
Spartina gracilis	0.1	0.1	3	4	5	5	
Sphagnum Moss		0.1		1		1	
Sphenopholis obtusata	0.1	t	3	3	6	4	
Sporobolus airoides	0.1	0.2	3	4	8	10	
Stellaria longipes		t		1		2	
Stuckenia filiformis	0.5	0.2	3	2	7	3	
Symphyotrichum eatonii	0.2	0.3	4	3	12	5	
Symphyotrichum spathulatum	t	t	1	1	4	2	
Tanacetum balsamita		t		1		1	
Taraxacum officinale	0.2	0.3	8	10	20	24	
Thermopsis rhombifolia	1.5	2.9	5	5	13	12	
Tragopogon dubius		t		1		1	
Trifolium fragiferum	t	t	1	2	1	2	
Trifolium hybridum	t		2		2		
Trifolium longipes		t		1		1	
Trifolium pratense	0.1	t	1	1	4	2	
Trifolium repens	0.2	0.2	5	5	11	9	
Trifolium sp.	t	0.1	1	4	1	7	
Triglochin maritima	t	t	1	3	1	3	
Typha latifolia	0.7	1.4	4	5	9	9	
Urtica dioica	t	0.1	1	1	1	1	
Utricularia macrorhiza	0.8	0.8	2	2	4	6	
Verbascum thapsus	t	t	1	1	1	1	
Veronica anagallis-aquatica	0.2	0.9	6	7	10	13	
Viola nephrophylla	t	0.1	1	3	1	4	
Xanthium strumarium	t		1		1		
Zannichellia palustris	t	t	1	1	1	1	
Unknown	t		1		1		

t = trace

-- Not found

Table E-3Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010
(Page 1 of 5)

	Mean Co	over (%)		Sites Where esent	Number of Where F	
Species or Taxa	2009	2010	2009	2010	2009	2010
Achillea millefolium	0.3	0.3	5	4	19	16
Agoseris glauca var. glauca	t	t	2	2	2	2
Agrostis gigantea	2.2	1.8	7	7	42	41
Algae	0.5	0.9	4	6	11	21
Aquilegia formosa	0.1	t	1	1	4	3
Argentina anserina	3.9	3.7	7	8	52	56
Artemisia tridentata	t	t	2	2	3	3
Asclepias speciosa	t		2		2	
Aster	t	0.3	5	7	9	22
Astragalus sp.	t	t	1	2	2	2
Atriplex sp.	t		1		1	
Atriplex micrantha	t	t	1	2	4	3
Atriplex serenana		0.1		1		4
Atriplex truncata	t		1		1	
Bassia scoparia	0.3	0.4	5	4	12	9
Berula erecta	1.1	1.2	7	5	25	25
Bidens cernua	t	0.1	2	1	4	3
Boraginaceae sp.		t		1		1
Branched moss		0.1		1		2
Bromus sp.		t		1		2
Bromus inermis	0.2	0.2	1	1	4	4
Bromus tectorum	t	0.1	3	4	5	6
Cardaria draba	t		1		1	
Carduus nutans	0.1		1		4	
Carex sp.	1.3	0.7	5	6	11	16
Carex aurea	t	t	1	1	1	2
Carex douglasii	t	0.2	1	4	1	9
Carex nebrascensis	5.3	8.2	8	8	47	51
Carex praegracilis	4.9	5.9	7	7	51	49
Carex rostrata	1.6	0.5	3	1	10	4
Carex simulata	3.1	4.0	5	5	20	23
Castilleja minor	t		1		2	
Castilleja minor ssp. minor		t		1		2
Catabrosa aquatica	t	t	1	1	3	3
Centaurium exaltatum	t	t	2	2	2	2
Ceratocephala testiculata		t		1		2
Chara sp.	0.5	0.3	4	2	8	4
Chenopodium berlandieri	t		1		1	
Chenopodium sp.	0.1	0.1	3	1	5	3

Table E-3Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010
(Page 2 of 5)

	Mean Co	over (%)		f Sites Where esent	Number of Where I	
Species or Taxa	2009	2010	2009	2010	2009	2010
Chenopodium humile		t		1		1
Cirsium arvense	0.7	1.0	1	1	7	6
Cirsium scariosum	0.3	0.5	6	6	30	33
Cirsium vulgare	0.1	t	4	2	7	7
Conium maculatum	t		1		1	
Convolvulus arvensis	t	t	1	1	1	1
Conyza canadensis		t		1		1
Crepis runcinata	0.6	0.7	6	7	24	25
Dactylis glomerata	t	t	1	1	1	1
Deschampsia cespitosa	0.3	0.6	5	6	16	25
Descurainia pinnata		t		1		2
Descurainia sophia	t	t	2	2	3	4
Distichlis spicata	2.7	3.2	8	8	41	43
Dodecatheon sp.		t		1		1
Dodecatheon pulchellum	t	t	1	2	1	3
Downingia laeta	t		1		1	
Draba sp.		t		1		1
Elaeagnus angustifolia		t		1		2
Eleocharis palustris	1.4	1.1	8	8	33	24
Eleocharis parishii		0.1		3		5
Eleocharis quinqueflora	0.1	0.1	1	2	2	5
Eleocharis rostellata	2	3.6	6	6	15	18
Eleocharis sp.	0.1	t	3	4	3	7
Elymus elymoides	t		1		1	
Elymus trachycaulus	0.9	0.8	4	6	10	22
Epilobium ciliatum	0.1	0.3	1	3	4	5
Epilobium sp.	0.1	0.1	4	4	8	13
Equisetum arvense	0.3	0.3	7	5	24	25
Ericameria nauseosa	0.1	0.3	5	5	14	19
Erigeron lonchophyllus	0.1	0.2	6	7	28	20
Eriogonum sp.		t		2		2
Festuca idahoensis		0.2		2		6
Festuca sororia	t		1		1	
Galium trifidum	t	t	1	2	1	3
Glaux maritima	0.2	0.4	5	5	21	27
Helianthus nuttallii	t	0.1	2	1	5	1
Hesperochiron pumilus	t	t	1	2	3	4
Hippuris vulgaris	0.8	0.6	3	3	11	12
Hordeum brachyantherum	0.3	0.2	5	5	19	17

Table E-3Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010
(Page 3 of 5)

	Mean Co	over (%)		Sites Where esent	Number of Where F	
Species or Taxa	2009	2010	2009	2010	2009	2010
Hordeum jubatum	1	0.6	6	7	28	30
Hymenoxys lemmonii	t	t	2	2	4	3
Iris missouriensis	0.3	0.3	4	4	13	13
lva axillaris	0.2	0.1	2	4	5	7
Ivesia kingii	0.2	0.1	4	4	8	10
Juncus arcticus ssp. littoralis	4.9	6.0	8	8	59	61
Juncus articulatus		t		1		2
Juncus bufonius	0.1	t	1	1	2	1
Juncus longistylis	t	t	1	2	1	4
Juncus nevadensis	0.2	0.5	6	6	18	26
Juncus sp.	t		1		1	
Juncus torreyi		t		4		7
Juniperus scopulorum	0.2	0.2	1	1	5	5
Lactuca serriola	t	t	1	2	2	6
Lactuca tatarica var. pulchella		t		1		1
Lemna sp.	0.5	0.1	3	3	4	3
Lemna minor	0.3	1.9	2	4	5	16
Lemna minuta	t	0.1	1	1	1	2
Lemna trisulca	t	t	1	2	1	3
Lepidium campestre		t		1		3
Lepidium perfoliatum		t		1		1
Leymus cinereus		t		1		1
Leymus triticoides	1.4	2.2	7	7	44	43
Limosella aquatica	t		1		2	
Lupinus sp.		t		1		1
Medicago polymorpha	0.2	0.3	4	3	9	7
Melilotus officinalis	0.2	t	3	1	6	1
Mentha arvensis	t		1		1	
Mentha spicata	t		1		1	
Mimulus guttatus	0.4	1.1	6	5	19	20
Moss	0.7	0.3	6	6	12	17
Muhlenbergia sp.		0.1		4		9
Muhlenbergia asperifolia	0.1	0.2	5	6	18	18
Muhlenbergia richardsonis	0.2	0.1	5	6	21	17
Mushroom		t		1		1
Myriophyllum verticillatum	t	0.1	1	2	2	3
Nasturtium officinale	0.5	1.1	5	4	17	15
Nitrophila occidentalis	0.1	0.1	4	4	12	15
Pascopyrum smithii	0.1	t	1	1	1	1

Table E-3Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010
(Page 4 of 5)

	Mean Co	over (%)		f Sites Where esent	Number of Where I	
Species or Taxa	2009	2010	2009	2010	2009	2010
Phalaris arundinacea	t	t	1	1	1	1
Phleum pratense	t	t	3	3	5	6
Phragmites australis	0.2	0.1	1	1	1	1
Plagiobothrys sp.		t		1		1
Plagiobothrys scouleri	t	t	1	1	1	2
Plantago major	t	t	3	3	6	5
Poa pratensis	0.8	0.7	7	7	38	21
Poa secunda	t	1.0	3	7	4	30
Poa sp.	t	t	2	1	2	1
Polygonum amphibium		t		1		2
Polygonum argyrocoleon		0.1		1		1
Polygonum aviculare	0.6	0.5	4	6	7	11
Polygonum sp.	t	t	1	1	1	1
Polygonum ramosissimum		t		2		2
Polypogon monspeliensis	t	0.1	2	4	2	9
Potamogeton sp.	0.9	1.4	3	2	8	4
Potentilla gracilis	t	t	2	2	3	4
Potentilla hippiana	t		2		3	
Potentilla pensylvanica	t		2		4	
Puccinellia sp.		0.1		1		1
Puccinellia distans	0.3	t	5	2	11	6
Puccinellia lemmonii	1.7	1.6	7	7	37	34
Pyrrocoma lanceolata	0.2	0.3	7	7	27	42
Ranunculus cymbalaria	t	0.1	5	7	8	20
Ranunculus sceleratus	0.1	t	7	5	19	11
Rosa woodsii	0.6	0.9	1	1	1	1
Rumex crispus	0.1	0.1	3	4	7	9
Sagittaria cuneata	0.1	0.1	2	1	6	5
Sarcobatus vermiculatus	t	t	4	2	4	2
Schedonorus pratensis	1.2	2.1	5	4	11	13
Schoenoplectus acutus	0.7	0.7	4	5	13	13
Schoenoplectus americanus	0.3		4		9	
Schoenoplectus pungens	0.1	0.4	6	7	10	17
Sida neomexicana	t	t	2	1	4	1
Sidalcea neomexicana		t		1		3
Sisyrinchium halophilum	0.1	0.1	5	6	20	20
Sium suave	t	t	1	1	1	1
Solidago nana	t	t	1	1	1	1
Solidago sp.	t		2		5	

Table E-3Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Wetland/Meadow Sites for 2009 and 2010
(Page 5 of 5)

	Mean C	over (%)		f Sites Where esent	Number of Where F	
Species or Taxa	2009	2010	2009	2010	2009	2010
Sparganium emersum		0.1		1		1
Sparganium eurycarpum	0.1	0.8	2	4	4	11
Spartina gracilis	0.5	0.5	5	5	12	15
Sphagnum Moss		0.1		2		3
Sphenopholis obtusata	t	t	3	3	6	9
Sporobolus airoides	1.2	1.0	6	6	16	19
Stellaria longipes	t	t	1	2	1	6
Stuckenia filiformis	0.1	0.1	2	2	2	2
Suaeda calceoliformis		t		1		3
Symphyotrichum eatonii	0.1	0.1	4	3	14	10
Symphyotrichum spathulatum		t		3		6
Taraxacum officinale	0.2	0.4	6	7	32	31
Thelesperma megapotamicum		0.2		1		1
Thermopsis rhombifolia	2.6	4.0	3	3	16	17
Thinopyrum ponticum	t		1		2	
Tragopogon dubius		t		1		2
Trifolium fragiferum	0.1	0.1	3	4	6	7
Trifolium hybridum	t	t	2	1	4	1
Trifolium longipes		t		1		2
Trifolium pratense	0.1	t	2	3	7	6
Trifolium repens	0.4	0.3	6	5	19	12
Trifolium sp.	0.2	0.3	2	5	7	17
Triglochin concinna	t	t	2	1	2	2
Triglochin maritima	0.1	0.1	4	5	11	19
Triglochin palustris	t	t	1	1	1	1
Triglochin sp.	t	t	1	1	3	2
Typha latifolia	0.9	1.2	4	9	14	16
Utricularia macrorhiza	4.4	3.1	2	2	6	8
Utricularia minor		t		1		1
Verbena bracteata	t	t	1	1	1	3
Veronica anagallis-aquatica	0.1	0.2	4	4	10	10
Viola nephrophylla	0.1	0.2	3	4	6	10
Xanthium strumarium	t		1		1	
Zannichellia palustris	0.8	t	2	1	8	3
Zigadenus elegans	t		1		1	
Zigadenus paniculatus		t		1		1

t = Trace

-- Not found

Table E-4Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number ofTransects Where Present on the Phreatophytic Shrubland Sites for 2009 and 2010(Page 1 of 2)

	Mean C	over (%)		of Sites Present		f Transects Present
Species or Taxa	2009	2010	2009	2010	2009	2010
Achnatherum hymenoides	t	0.1	1	3	2	5
Artemisia tridentata	0.4	0.5	3	3	7	7
Atriplex canescens	t	t	1	1	2	1
Atriplex confertifolia	0.5	0.9	5	5	21	22
Atriplex serenana		t		1		2
Bassia americana	0.1	0.2	1	2	2	6
Bassia scoparia	t	0.1	1	3	2	4
Bromus tectorum		t		3		6
Chenopodium humile		t		1		1
Chenopodium incanum	t	t	1	1	1	1
Chenopodium leptophyllum	t	t	1	3	1	4
Chenopodium sp.	t		1		1	
Chrysothamnus humilis		0.1		1		2
Chrysothamnus viscidiflorus	t		2		2	
Chrysothamnus viscidiflorus ssp. puberulus		t		1		1
Cleomella plocasperma		t		1		1
Cordylanthus ramosus		t		1		1
Cryptantha circumscissa		t		1		1
Cryptantha scoparia		t		1		1
Descurainia pinnata		t		1		2
Descurainia sophia	t	0.3	1	3	1	4
Distichlis spicata	0.4	0.6	3	3	7	7
Elymus elymoides	t	0.2	2	5	2	15
Ephedra nevadensis		t		1		1
Ephedra viridis	t		1		1	
Eriastrum diffusum		0.1		1		1
Ericameria nauseosa	0.2	0.4	3	3	6	7
Erodium cicutarium		0.2		1		1
Gayophytum		t		1		1
<i>Gilia</i> sp.		t		2		2
Grayia spinosa	0.2	0.4	3	3	3	3
Gutierrezia sarothrae	0.1		1		3	

Table E-4
Taxa Mean Percent Cover (MH), Number of Sites Where Present, and Number of
Transects Where Present on the Phreatophytic Shrubland Sites for 2009 and 2010
(Page 2 of 2)

	Mean C	over (%)		of Sites Present		f Transects Present
Species or Taxa	2009	2010	2009	2010	2009	2010
Halogeton glomeratus	0.3	0.4	3	3	6	10
Hordeum jubatum		t		1		1
Iva axillaris	t	0.1	1	1	1	1
Krascheninnikovia lanata	0.1	t	1	1	2	1
Lactuca serriola		t		1		1
Lappula occidentalis var. cupulata		0.1		4		8
Lepidium densiflorum		t		1		1
Lepidium perfoliatum		0.1		1		1
Leymus triticoides		t		1		1
Machaeranthera carnosa	t		1		1	
Machaeranthera carnosa var. carnosa		t		1		1
Mentzelia nitens		t		2		4
<i>Opuntia</i> sp.		t		2		3
Opuntia polyacantha		t		2		2
Picrothamnus desertorum	0.1	0.1	2	3	3	4
Poa secunda	t	t	1	1	1	1
Polypogon monspeliensis		t		1		1
Puccinellia lemmonii		t		1		1
Salsola tragus		t		1		1
Sarcobatus vermiculatus	13.7	17.0	5	5	25	25
Sphaeralcea ambigua		t		1		1
Sphaeralcea coccinea	t	t	1	1	1	1
Sporobolus airoides	0.1	0.1	2	2	3	3
Sporobolus cryptandrus		t		1		1
Suaeda calceoliformis	0.1	t	1	1	1	1
Suaeda moquinii	0.1	0.6	2	4	3	6
Tetradymia glabrata		t		2		2
Tetradymia spinosa	0.1	0.1	3	3	4	5

t = Trace

-- Not found

Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010 at the 14 Aquatic Sites in Spring and Snake Valleys (Page 1 of 6) Table E-5

				065 · /	90.00	~ ' ~								
	Big Sp	Big Springs	Four Wh	Four Wheel Drive	Kee	Keegan	Minerva	erva	North	North Little	South	South Millick	Stateline	eline
Species or Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Achillea millefolium	1	1	-		0.8	1.4	t	0.1	1	1	1	-	-	1
Agrostis gigantean	1.5	0.9	1.1	9.0	0.5	2.3	6.7	2.7			2.1	1.7	1.0	2.3
Algae	2.4	6.1		2.8	1.2	1.8	1.1	1.9	4.1	5.1			1.4	4.5
Alisma plantago-aquatica	1		1.2	1.1	1	1	1	1	1					1
Arctium minus	1		1.4		1	1	-	-	1					-
Argentina anserine	1.7	1.6	2.0	0.2	1.7	4.7	0.6	0.9	0.8	6.0	6.5	9.9	2.0	2.1
Artemisia tridentata	1		1.1	3.5	1	-	-	-	1					1
Bassia scoparia	1	0.2		0.1	1	1	1	1	1					Т
Berula erecta	0.1	0.2	4.6	2.8	0.2	0.7	2.8	3.2	2.8	3.6	27.1	4.6	9.0	0.7
Branched moss	-				-	1.8								
Bromus tectorum	ł	t			1	-		0.7	-					-
Carex nebrascensis	0.9	0.6	21.9	29.1	3.9	9.1	7.2	8.6	46.1	34.0	2.8	3.3	6.0	1.4
Carex praegracilis	3.5	2.1	t	0.4	3.0	8.2	1.5	5.8	3.6	10.5	0.9	2.0		0.1
Carex rostrata	ł				ł	1	1	-	1					ł
Carex simulate			7.9	14.7	6.9	18.9	1.0	0.4	17.1	1.0	0.5	0.5		
Carex sp.	0.2		1.9		1.4				-		0.3			-
Catabrosa aquatic	-				1	-	-	-	1					1
<i>Chara</i> sp.				2.4	0.2	1.0	3.8	5.6	9.9	11.4		0.1		
Cirsium arvense	-				-		-							
Cirsium scariosum	0.2	0.6			0.2	0.6	0.1				0.3	0.6	0.2	0.5
Cirsium vulgare					0.3		t				0.2			
Clematis ligusticifolia var. ligusticifolia	-			-	1	-	-		-	-			-	
Deschampsia caespitosa	-	0.1			-	0.7		0.9						Т
Distichlis spicata	0.4	0.1	2.3	3.3	0.1	0.2	2.7	0.4			1.5	1.2	0.1	0.2
Eleocharis palustris			6.6	7.5	0.2	0.3	1.4	2.0	2.9	0.9	t	1.0	1.1	
Eleocharis rostellata	5.7	4.8			-	1.0	3.7	5.6		0.8			1.2	4.7
Elymus trachycaulus						2.2	1.9	0.2			t			0.2
Epilobium				2.8	-	0.4	ł	ł	1	t	ł	t	1	н

) -		、								
	Big Sp	Big Springs	Four Wh	Four Wheel Drive	Kee	Keegan	Minerva	erva	North	North Little	South	South Millick	Stateline	eline
Species or Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Epilobium ciliatum					-	0.5	1		-	-	-			
Equisetum arvense	t	t	t		t	0.3	0.1	0.3	1	1	1.5	2.1	0.2	1.0
Ericameria nauseosa				0.5	-	0.3	1	0.4	1	1	-	-	1	0.5
Glaux maritime	-	0.3	1	1	1	1.0	1	1	1	0.3	-	0.1	1	0.2
Hippuris vulgaris	-	1	1	1	1.1	0.2	1	1	1	1	1	1	1	1
Hordeum brachyantherum			-	1	0.1	0.6	0.2	t	1	1	1	1	1	1
Hordeum jubatum	1.2	0.2		1	0.1	1.7	6.2	2.2	1	1			1	1
Iris missouriensis	-	-	1	1	0.1	0.2	1	1	1	1	-	1	1	1
Iva axillaris				1	-		-	1	1	1			1	1
Juncus arcticus ssp. littoralis	2.4	1.8	0.2	1.0	2.3	5.3	1.1	3.4	3.5	3.7	3.3	5.6	3.7	3.1
Juncus nevadensis		1.1	3.7	3.5	0.1	1.0	1.7	2.3	0.3	t	4.3	5.9		0.1
Juniperus scopulorum			12.1	10.8	-									
Lemna minor		0.1		1.2	1	1.1	t	0.1		-				
Lemna minuta					0.2						1.6	2.1		
Leymus triticoides	0.8	0.4	0.1	0.2	2.3	10.3	1.0	1.1		-	0.3	0.2	t	Т
Medicago polymorpha				-	-		1.0	2.5	-	-				
Melilotus officinalis	1.0			-	t		1.8			-				
Mimulus guttatus	0.3	1.0	0.4	0.8	0.1	4.3	1.7	0.5	0.3	0.1	0.6	1.0		1.2
Moss	3.3	0.1	0.7	0.3	3.9	1.9	1.2	0.2					8.6	1.6
Nasturtium officinale	32.9	21.8	2.3	2.9	0.6	8.0	4.1	9.3			5.4	39.4	38.1	58.0
Pascopyrum smithii		1.4			1									
Phragmites australis								-	-	1			1	-
Poa pratensis	0.9	0.1	0.2	1	1.1	0.2	1.6	2.3	0.7	0.6	0.1	0.2	1	1
Poa secunda		1.2		0.8	1	3.2		1.0		-		0.1		
Polygonum aviculare					1	t	2.0	1.4						
Populus angustifolia					1					-				
Potamogeton foliosus ssp. foliosus					-			8.8						
Potamogeton sp.	1.1	2.0	10.2	21.8	0.4	-	14.5	13.5	-	1	1	0.4	1.7	

Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010 at the 14 Aquatic Sites in Spring and Snake Valleys (Page 3 of 6) Table E-5

				- 6 1		/								
	Big Sp	orings	Four Wh	Four Wheel Drive	Kee	Keegan	Minerva	erva	North	North Little	South	South Millick	State	Stateline
Species or Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Ranunculus sceleratus	-		1	1	-	1	t	1	1.0	-	-	-	-	1
Rhus trilobata	1		0.2	1	-	-	1	1	1	1	1	-	-	1
<i>Ribes</i> sp.	1		1	1.1	-	1	1	1	1	1	1	-	-	1
Rorippa sinuate	1		1	1	-	1	1	1	1					1
Rosa woodsii	0.2	t	6.0	6.3		-	6.5	10.6	0.8	0.3				1
Sagittaria cuneata	-		1	1.2		t	1	1	-	ţ				1
Salix sp.	1		1	1		-	1	-						-
Sambucus nigra	-		1	ł		-	1	1	-					1
Schedonorus pratensis	3.3	3.3	1	Т	0.5	t	7.9	17.6						-
Schoenoplectus acutus					0.8	2.1					7.8			
Sium suave					1	1.0	-							
Sparganium emersum						4.4	-							
Sparganium angustifolium					0.2	0.7	0.1	0.1						
Spartina gracilis		0.1					-					1.6		0.2
Sporobolus airoides			1	1.2		t	-							0.2
Stuckenia filiformis				-	0.1		3.8				3.7			
Stuckenia filiformis ssp. filiformis	1		1	1		t	1	-				2.0		-
Stuckenia filiformis ssp. occidentalis					-		-	1.8						
Symphyotrichum eatonii						0.2	0.1				0.2			
Taraxacum officinale					1.0	2.2	0.1	0.2						0.2
Thermopsis rhombifolia			0.7	0.5	6.2	11.2	6.5	10.0						
Trifolium pretense					1		1.2							
Trifolium repens	0.3	t			1.1	1.5	t							
Typha latifolia			0.9	2.6	5.4	15.9	-							
Utricularia macrorhiza					0.4	2.6								
Veronica anagallis-aquatica		6.0		Т	-	1.7		0.6		0.0				
Viola nephrophylla	1	t	1	1	ł	1	1	0.3	1	1	1	-	-	

Table E-5 Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010 at the 14 Aquatic Sites in Spring and Snake Vallevs	(Page 4 of 6)
--	---------------

								$\left\ \right\ $						
	Stone	Stonehouse	Swa	Swallow	Unna	Unnamed 1	Unnamed 5	ned 5	West Spri	West Spring Valley	Will	Willard	Willow Spring	Spring
Species and Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Achillea millefolium	-	-	t	0.1	1	1	1	1	0.1		3.6	3.4	1	ł
Agrostis gigantean	t	0.3	3.3	3.7	2.1	1.6	0.5	0.7	6.5	6.8	2.2	0.1	2.3	5.2
Algae	0.4	1.7	1	ł	0.4	1	3.4	10.5		0.6	1	1	0.8	0.2
Alisma plantago-aquatica					1	-							1	ł
Arctium minus			1	ł	-	1		1					1	ł
Argentina anserine	-	1.1	1	1	0.2	0.5	2.8	2.0	0.9	2.8	6.4	6.0	4.9	3.4
Artemisia tridentata					-								3.8	4.1
Bassia scoparia			1	4.4	1	1.0		1					1	ł
Berula erecta	1.8	3.8	5.3	12.8	16.0	17.8	6.0	2.9	8.7	8.5	0.4	2.8	0.7	5.5
Branched moss						-								1
Bromus tectorum				1.8	-							0.2	1	1
Carex nebrascensis	19.7	18.6	1.0	0.6	1.4	2.7	11.1	19.9	4.6	8.6	15.8	15.0	11.2	13.6
Carex praegracilis		1.4	0.2		1.2	3.8	0.4	4.4	5.7	9.7	8.9	6.1	0.7	0.2
Carex rostrata	1.5	1.4				-	3.4	3.3	1.4					ł
Carex simulate	39.3	25.7				2.0	4.4	0.8	0.7	1.3	2.9		1.7	2.7
Carex sp.			t		2.2		0.1		2.9		0.1			ł
Catabrosa aquatic	1.2													1
<i>Chara</i> sp.			0.2		2.5	3.6	19.3	12.9			-		1.3	0.3
Cirsium arvense									7.0	11.4				1
Cirsium scariosum		0.1			0.1	0.3	0.1	0.1		1.3	1.0	1.3	0.1	0.1
Cirsium vulgare						-							1.0	ł
Clematis ligusticifolia var. ligusticifolia			1.0	2.8										ł
Deschampsia caespitosa	t	0.1			0.6	2.0					3.4	4.2		ł
Distichlis spicata	t				0.5	1.3	0.1	0.1	0.9	1.0	0.2	0.3	0.3	0.6
Eleocharis palustris	3.9	0.3	t		0.1	-	3.1	5.3	0.3	0.3			5.2	6.6
Eleocharis rostellata		0.5			13.4	24.1	1.1		3.1	4.9	1		ł	1
Elymus trachycaulus		t			0.3	0.5			1.6	0.7	0.3	0.6		0.0
Epilobium sp.					1	t	ł	t		0.6	-	1.5	1	0.2

Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010 at the 14 Aquatic Sites in Spring and Snake Valleys (Page 5 of 6) Table E-5

					9	~								
	Stone	Stonehouse	Swa	Swallow	Unnamed 1	ned 1	Unnamed 5	ned 5	West Spri	West Spring Valley	Will	Willard	Willow Spring	Spring
Species and Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Epilobium ciliatum					-		1	-		1.3				t
Equisetum arvense				-	0.1	0.1	0.2	0.2	1.2	1.4	0.7	0.5	0.4	0.5
Ericameria nauseosa							-			1.3		0.1		0.4
Glaux maritime		0.1		-	-	0.4	1	t				t		0.3
Hippuris vulgaris				-			2.1	3.9			0.1			
Hordeum brachyantherum				1		-	-	-	1		1.1	3.0	0.2	0.2
Hordeum jubatum				0.2	0.1	0.6	-		t	0.3	4.6	3.0		
Iris missouriensis	6.0	0.4		1		-		-	1			1	1.2	1.4
Iva axillaris			0.2	0.2					1.5	2.2			2.5	4.9
Juncus arcticus ssp. littoralis	7.2	5.0	0.2	0.1	2.4	3.4	1.6	3.3	3.9	4.9	2.6	6.7	2.3	3.5
Juncus nevadensis				-	0.5	3.1	1.4	1.4	0.8	1.4	2.7	1.4		
Juniperus scopulorum				-										
Lemna minor		3.3		-	0.1				8.9	22.9				
Lemna minuta		4.9		-										
Leymus triticoides	0.1			t	0.2	0.4	0.1	0.2	0.3	2.5	2.4	1.3		t
Medicago polymorpha			1.9	2.2	t				1.4	1.5				
Melilotus officinalis			t	1					t					1
Mimulus guttatus	0.1	0.5	0.1	1.8	1.0	5.8	0.1	0.3	2.2	8.5	0.2		1.0	1.4
Moss	0.6	0.1	1.0	0.7	8.9	15.1	0.4	t		0.2			0.2	1.2
Nasturtium officinale	6.1	7.1	7.4	17.4	10.9	13.8			2.3		0.2		3.4	0.1
Pascopyrum smithii				-		1.2								
Phragmites australis				-					3.0	1.2		-	-	-
Poa pratensis			4.7	5.2	0.1	0.3	0.2	0.1	3.0	2.1	5.0	4.1	1.1	
Poa secunda			1.3	3.8		1.1	t	0.5	t	3.6				0.6
Polygonum aviculare							t		t		0.3	0.2	t	
Populus angustifolia			51.9	51.5										
Potamogeton foliosus ssp. foliosus	-	1	1	1	1	-	1	1	-	1	-	1	1	-
Potamogeton sp.	:	ł		1	I	ł	11.1	17.0	0.4	1.1	ł	ł	1	1

Table E-5 Mean Percent Cover (MH) of Dominant Taxa along Aquatic Transects for 2009 and 2010	at the 14 Aquatic Sites in Spring and Snake Valleys (Page 6 of 6)
--	--

		ľ												
	Stone	Stonehouse	Swa	Swallow	Unna	Unnamed 1	Unna	Unnamed 5	West Spri	West Spring Valley	Wil	Willard	Willow	Willow Spring
Species and Taxa	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Ranunculus sceleratus	0.2	-	-	ł	1	1	t	1	-		t	-	0.5	ł
Rhus trilobata			4.7	3.2			ł						ł	
<i>Ribes</i> sp.			1	ł			1				-		-	
Rorippa sinuate	1	1	1	1		1	1	1	1		6.4	1	ł	1
Rosa woodsii	-	:	9.0	10.0	0.1	0.3	ł	-	1	-	1	1	1.9	1.1
Sagittaria cuneata	1	1	-	1	-	1	1	-	1		1	1	1	1
Salix sp.	1	1	5.2	7.8		1	ł	1	1	-	1	1	ł	ł
Sambucus nigra	1	1	1.4	1.4		1	1	1	1		1	1	ł	1
Schedonorus pratensis	0.1	1	-	0.1	1.3	0.9	1	1	1.2	1.8	1	1	1	ł
Schoenoplectus acutus	t	0.6		1		1	ł		1.1	0.6	1	-	I	ł
Sium suave	1	1	-	1		1	1	1	1		1	1	1	1
Sparganium emersum	1	1	1	ł		1	1	1	1	-	1	1	1	1
Sparganium angustifolium			0.1	ł			4.4	0.6	9.0	0.2			ł	
Spartina gracilis						t	1						1	
Sporobolus airoides							-	1.5			1		1	
Stuckenia filiformis			1	ł			1				-		-	
Stuckenia filiformis ssp. filiformis							-						-	
Stuckenia filiformis ssp. occidentalis			1	1										
Symphyotrichum eatonii							0.3		1.7	2.6			-	1.0
Taraxacum officinale		t	0.2	0.1	0.1	0.3	t	t	2.0	0.2	1.3	1.0	t	0.1
Thermopsis rhombifolia							-		4.7	18.1	0.5	1.1	-	
Trifolium pretense							1						1	-
Trifolium repens						0.6	0.3	t	1.3	0.6				-
Typha latifolia							-				1		3.3	1.3
Utricularia macrorhiza							11.1	8.1					-	
Veronica anagallis-aquatica				4.7		t	1						1	-
Viola nephrophylla										1.0				
Noto: Mana parcent cover is the mean parcent cover par	a 101/00 +0		transact for orch	oojoo oo		0 0 qt 101 10	o roqui	averaged over the number of transect	e nor cito /t	por cito (the grand mean)	1000			

 Table E-6
 Mean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010 at the Eight Wetland/Meadow Sites in Spring and Snake Valleys (Page 1 of 6)

								~								
	Blind	Blind Spring	Burb Mead	bank Idows	Keegar Complex	Keegan Spring Complex (North)	Minerva Spring Complex	l Spring plex	Shoshone Ponds	one ds	Stonehouse Spring Complex	omplex	The Seep	Seep	West Spr Comp	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Achillea millefolium			1	1	0.50	0.94	06.0	0.83	0.70	0.35			t	1	0.20	0.06
Agoseris glauca var. glauca		-		1	1	t		1	1	00.00	-	-		1	-	-
Agrostis gigantean	1	1	0.50	0.23	0.30	3.01	9.70	4.30	1.30	1.28	0.60	0.58	2.30	1.68	3.20	3.62
Algae	1	0.65	1	1	1.00	0.93	1.90	1.48	1	0.48	0.10	0.73	1	1	0.80	2.95
Aquilegia formosa	1	1	1	1	1	1	ł	0.10	1	ł	ł	1	1	1	1	ł
Argentina anserine	1	t	7.60	7.78	4.90	7.83	1.50	1.37	3.10	1.66	0.70	1.07	12.40	7.02	06.0	2.85
Artemisia tridentata				1	1			1		t		-		t	-	
Aster sp.	1	1	1	0.18	1	0.21	ł	t	ł	0.77	1	t	1	0.81	1	0.36
Astragalus sp.	1	1	1	1	1	t	ł	1	1	ł	ł	1	1	1	1	0.06
Atriplex micrantha				1	1	t		-	-	-						0.32
Atriplex serenana		0.44		-				-								
Bassia scoparia	1.60	2.59	0.10	0.11	-		06.0	0.10					t		t	t
Berula erecta			t	-	0.20	1.43	1.60	1.07	0.10	0.12	1.30	0.32	t		5.30	7.02
Bidens cernua						0.45										
Boragaceae									-	t				-		
Branched moss						0.51										
Bromus sp.				1	1			1				-		-		0.12
Bromus inermis				1	1			1				-		-	1.20	1.96
Bromus tectorum				t				0.59		t						0.12
Carex sp.				1.71	1.70	t	09.0	0.45	0:50	2.57	2.60	0.78		0.17	4.70	
Carex aurea				1	1	-		1		1		0.05		1	1	
Carex douglasii				-		t		-		0.47		1		1.02		0.05
Carex nebrascensis	0.40	7.33	t	0.08	6.50	12.13	5.00	8.31	2.50	2.70	16.20	17.57	6.70	5.76	5.10	11.80
Carex praegracilis			10.70	10.49	4.60	9.05	1.90	3.97	12.60	9.72	2.80	5.06	3.30	0.30	3.60	8.95
Carex rostrata	4.30										5.10	3.90			3.00	
Carex simulate	2.10	5.25		-	2.80	9.95	1.00	09.0			16.70	14.44			2.00	2.07
Castilleja minor ssp. minor				-												0.04
Catabrosa aquatic												0.08				
Centaurium exaltatum						t			-	t						
Ceratocephala testiculata									-	0.10	-			-		1

Appendix E

Table E-6	fean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 201	at the Eight Wetland/Meadow Sites in Spring and Snake Valleys	(Page 2 of 6)
-----------	---	---	---------------

Iable E-0	Mean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010	at the Eight Wetland/Meadow Sites in Spring and Snake Valleys	(Pade 2 of 6)
-----------	--	---	---------------

						285 IV	0 1 0	5								
	Blind	Blind Spring	Burbank Meadows	oank dows	Keegan Spring Complex (North)	Spring (North)	Minerva Spring Complex	Spring plex	Shoshone Ponds	none Ids	Stonehouse Spring Complex	omplex	The Seep	Seep	West Spring Va Complex #1	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Chara sp.	2.20		1	1	0.20	0.60	1.70	1.64	1	-	t	1	1	1	1	-
Chenopodium sp.	1	0.65	1	1	1	1	1	ł	1	!	ł	1	1	1	ł	1
Chenopodium humile	1	-	ł	1	1	1	1	ł	1	1	ł	0.07	1	ł	ł	1
Cirsium arvense	1	-	1	1	1	1	1	1	1	!	1	1	1	1	5.50	7.73
Cirsium scariosum	1	-	1.10	1.35	0.20	0.43	0.30	0.65	0.10	0.25	t	0.07	0.30	0.91	ł	-
Cirsium vulgare	1	-	1	ł	1	0.22	ł	ł	1	1	ł	1	1	1	ł	0.10
Convolvulus arvensis				1	1	1			1		1			1		0.16
Conyza canadensis	1	-	1	1	1	1	1	1	ł	t	1	1	1	1	1	1
Crepis runcinata ssp. glauca	1		3.20	3.27	1.00	1.67	0.20	0.11	0.10	t	0.20	0.22	1	t	t	t
Dactylis glomerata				I	1	1	1	t	ł		1	1	-	1	1	1
Deschampsia caespitosa	1		t	t	t	0.73	0.50	2.36	1	-	0.20	0.12	1.30	1.09	ł	0.20
Descurainia pinnata				1	1	1			!	t	1			1		1
Descurainia sophia				1	1	1		0.05	1	t	1	-		1		1
Distichlis spicata	4.60	4.62	8.40	12.37	1.90	2.62	0.80	0.68	3.30	3.14	0.80	1.01	1.70	1.07	0.40	0.24
Dodecatheon sp.				-	1	1		t	-		-					1
Dodecatheon pulchellum				0.19	1	1			1	t	1			-		1
<i>Draba</i> sp.				1	1	1			1	t	1	-		1		1
Elaeagnus angustifolia	1	-	1	1	1	1	1	1	1	1	ł	1	1	1	1	0.19
Eleocharis sp.			t	t	1	t	1		0.50		t	t		t		1
Eleocharis palustris	2.80	3.13	t	t	1.00	1.11	06.0	1.51	0.40	1.42	4.60	0.07	0.60	0.12	0.60	1.75
Eleocharis parishii	1	-	1	0.16	1	t	1	1	ł	!	1	0.77	1	1	1	1
Eleocharis quinqueflora				1	1	0.63	1		1		ł	0.16		1		1
Eleocharis rostellata	1.00	5.07	1	t	0.10	1.02	2.50	6.11	1	!	5.90	9.47	t	1	6.60	6.91
Elymus trachycaulus			0.10	0.26	1	1.46	6.50	4.08	1	0.10	t	0.05		1	t	0.37
Epilobium sp.		t				0.43		t								0.60
Epilobium ciliatum						0.05						t				2.65
Equisetum arvense			t		0.10	0.51	0.40	0.60	t	t	t		t	0.06	1.50	1.10
Ericameria nauseosa			-	-		0.39		t	1	0.53			-	0.24		1.27
Erigeron lonchophyllus	ł		0.20	0.40	t	t	0.10	0.06	09.0	0.27	t	0.05	0.50	0.65	-	0.15

Table E-6
 Mean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010

						n age		'n								
	Blind	Blind Spring	Burb Meac	rbank idows	Keegar Complex	Keegan Spring Complex (North)	Minerva Com	Minerva Spring Complex	Shoshone Shoshone	none ids	Stonehouse Spring Complex	omplex	The	The Seep	West Spr Comp	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Eriogonum sp.	-	1	-	t	1	1	-	-		t	-		1		1	1
Festuca idahoensis	1	I	1	1	1	0.74	-	ł				1	1	1	ł	0.66
Galium trifidum		1		1	-	0.13	1				!		1		1	t
Glaux maritime	1	1	0.70	1.25	0.10	0.71	t	t	0.10	0.07	0.70	0.96	1	1	ł	1
Helianthus nuttallii	1	1	1	1	1	1	1	0.40	1	1	!	1	1	1	1	1
Hesperochiron pumilus	ł	I	1	1	1	1	-	ł	-	0.08	-	0.20	1	1	1	1
Hippuris vulgaris	6.10	4.81	ł	1	0.10	t	1	ł	1	1	0.10	0.06	1	1	ł	1
Hordeum brachyantherum	1	1	0.10	0.10	0.60	0.83	0.20	t	0.10	0.18	1.30	0.11	1	1	ł	1
Hordeum jubatum	1	0.06	06.0	0.40	0.60	2.54	4.90	1.66	-	!	t	t	1.40	0.14	t	0.12
Hymenoxys lemmonii		1		0.05	1	1	1			0.10	!		1	1	ł	1
Iris missouriensis	1	1	0.10	1	0.20	0.24	0.20	0.35	-	!	1.50	1.81	1	1	ł	t
Iva axillaris	0.10	0.11								t			1	t	1.10	0.91
Ivesia kingie			t	t	0.10	0.08			0.40	0.35	-		0.70	0.37		ł
Juncus arcticus ssp. littoralis	t	0.04	8.90	9.29	5.30	8.71	1.60	3.70	4.80	7.02	9.40	8.60	2.30	2.84	7.00	7.98
Juncus bufonius													0.50	t		-
Juncus longistylis						0.12				t						
Juncus nevadensis						1.22		66.0		t		t	1	0.32		1.73
Juncus torreyi		t				-		0.05						t		t
Juniperus scopulorum									1.40	1.49						-
Lactuca serriola						t							1			0.20
Lactuca tatarica var. pulchella						t										-
Lemna sp.		1		!	0.10	0.05	1	0.35			0.30		ł		3.90	0.09
Lemna minor						0.52		t			t	0.63			2.20	13.78
Lemna minuta												0.51	1			
Lemna trisulca				-		t	-				-					00.0
Lepidium campestre		1		!		1	1				-		ł		1	0.35
Lepidium perfoliatum										t			-			-
Leymus cinereus						t										-
Leymus triticoides			4.20	4.79	2.60	10.16	2.90	1.11	0.20	0.10	0.60	0.75	0.60	0.23	0.20	0.47
Lupinus sp.		-													ł	t

Table E-6 ean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010 at the Finht Wetland/Meadow Sites in Spring and Spake Valleys	at the Fight rectain measure dies of 6) (Page 4 of 6)
---	---

						085 ./	5.5.5	5								
	Blind	Blind Spring	Burbank Meadows	ank Iows	Keegan Spring Complex (North)	Spring (North)	Minerva Spring Complex	Spring plex	Shoshone Ponds	hone Ids	Stonehouse Spring Complex	house	The Seep	Seep	West Spring Va Complex #1	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Medicago polymorpha	-	1		1	1	1	1.30	2.04	0.10	0.08	-		t	1	0.10	t
Melilotus officinalis	ł	1	-	1	t	1	1.60	0.06	1	1	1	1	1	1	t	ł
Mimulus guttatus	0.50	0.98		1	0.40	3.88	0.40	0.52	t	1	0.10	0.07	1	1	1.90	3.19
Moss	0.70	t	1	1	3.60	0.49	1.20	0.39	0.10	0.60	0.10	0.42	1	1	0.10	0.41
Muhlenbergia sp.	1	1	-	1	1	t	1	1	1	0.22	1	1	1	0.54	1	0.07
Muhlenbergia asperifolia	ł	1	0.10	t	ł	0.95	0.10	0.19	0.50	0.24	1	0.05	0.20	1	t	0.13
Muhlenbergia richardsonis	1	1	-	t	0.40	0.24	t	1	0.40	0.40	1	0.05	0.30	t	0.10	0.18
Mushroom	ł	1	-	1	1	t	1	1	ł	1	1	1	1	1	1	ł
Myriophyllum verticillatum	ł	1	-	1	1	1	1	0.54		1	ł	1	1	1	1	0.17
Nasturtium officinale		1		1	06.0	5.78	2.20	2.47	0.10	0.20	0.70	0.54	-	1	0.10	ł
Nitrophila occidentalis		1		0.70	1	0.15	1	1	1	t	-	0.11		1	1	1
Pascopyrum smithii		1		1	1	t	1	-	1	-	-		-	1	1	ł
Phalaris arundinacea	1	1		1	1	1	1	1	ł	1	1	t	1	1	1	ł
Phleum pretense	ł	1	-	1	1	0.11	1	t	ł	1	1	1	1	1	1	0.18
Phragmites australis		1		1	1	1	1	1	1	-	-			1	1.90	0.78
Plagiobothrys sp.		1		1	1	1	1	1	1	0.09				1	1	1
Plagiobothrys scouleri		1		t	1	1	1	ł	1	1				1	1	ł
Plantago major	1	1	-	0.05	1	1	1	1	1	0.06	1	1	1	t	1	1
Poa sp.	ł	1	-	1	1	1	1	1	ł	1	1	1	1	t	1	ł
Poa pratensis	1	1	0.10	t	1.90	1.48	2.00	1.94	0.50	1.42	0.10	t	0.10	t	1.70	0.71
Poa secunda				0.17		2.92		1.43		1.56		t		0.26		1.91
Polygonum sp.																0.07
Polygonum amphibium				1	-	0.35	1		1	-					1	
Polygonum argyrocoleon																0.57
Polygonum aviculare		0.07	t	t		t	1.30	0.97		t			3.80	2.85	t	
Polygonum ramosissimum	-	1		1	1	t	1	1	1	1	-	-	1	1	1	t
Polypogon monspeliensis		0.38		0.13		t										0.05
Potamogeton sp.	0.30		0.10			0.05	6.60	10.92								
Potentilla gracilis		-	1	ł	-	0.05	I	-	ł	0.05	-		I	ł	1	-

 Table E-6
 Mean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010 at the Eight Wetland/Meadow Sites in Spring and Snake Valleys (Page 5 of 6)

						(r aye		(n								
	Blind	Blind Spring	Bur	Burbank Meadows	Keegan Complex	Keegan Spring Complex (North)	Minerv: Com	Minerva Spring Complex	Shoshone Ponds	ioshone Ponds	Stonehouse Spring Complex	nouse complex	The 3	The Seep	West Spr Comp	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Puccinellia sp.	1	1	1	1.10	1	1	1	1	ł		1	-	1		1	-
Puccinellia distans	t	1	0.20	1	1	1	t	1	I	1	0.20	0.13	1.80	0.24	ł	1
Puccinellia lemmonii	1	1	6.40	8.01	0.70	1.78	1.50	1.25	2.70	1.18	0.50	0.53	1.30	0.05	0.10	0.26
Pyrrocoma lanceolata	1	1	0.10	0.59	0.10	0.15	0:30	09.0	0.40	0.35	0.10	0.37	0.10	0.16	0.10	0.48
Ranunculus cymbalaria	1	0.18	1	0.07	1	t	ł	t	1	t	1	0.16	ł	0.49	ł	1
Ranunculus sceleratus	1	1	ł	t	1	t	1	t	ł	1	ł	0.11	1	1	1	t
Rosa woodsii	1	1	ł	1	1	1	4.60	7.56	1	-	1		ł	1	ł	1
Rumex crispus	1	1	ł	1	1	0.14	1	0.28	1	1	1	-	ł	t	ł	0.38
Sagittaria cuneata	1	0.52		!	1	1			1		1				ł	
Sarcobatus vermiculatus	1	0.15		1	ł	0.06			ł	1	1			1	1	-
Schedonorus pratensis	1	1	1	t	0.30	t	8.80	15.77	0.10	1	t		1	1	0.50	0.64
Schoenoplectus acutus	2.80	3.10	1	1	0.20	0.10	ł	1	1	1	0.70	0.73	ł	1	1.90	1.52
Schoenoplectus americanus	2.10			1	t	1			1	-	t			-	t	-
Schoenoplectus pungens	1	2.71	1	1	1	t	ł	0.41	1	t	1	0.10	ł	1	ł	0.42
Sida neomexicana	-			1	-	t			1		1			1	1	
Sidalcea neomexicana	1			-	-	0.30			1		1				1	-
Sisyrinchium halophilum	1	1	1	0.10	1	t	1	t	ł	0.08	1	-	ł	0.35	ł	t
Sium suave	1			-	-	0.36			1		1				1	-
Solidago nana								t							-	
Sparganium emersum				-		0.64			-							
Sparganium angustifolium	5.80	3.94		!	0.20	1.66		0.14	1		1				0.40	0.46
Spartina gracilis	1		2.80	2.89	0.20	0.64	0.20	0.11	0.30	0.33	1	t	0.40		1	
Sphagnum Moss					-	0.81			1		-	0.07				
Sphenopholis obtusata	1			0.09	1	0.06			1	t	1			-	1	-
Sporobolus airoides	1	1	0.50	0.47	1.40	2.76	1.80	1.93	t	t	1	1	5.70	2.70	0.30	0.28
Stellaria longipes	1	1	1	1	1	0.10	1	1	ł	1	1	-	1	1	ł	t
Stuckenia filiformis	-	t	:					0.65							1	
Suaeda calceoliformis				t	-	1			1		1				-	
Symphyotrichum eatonii						0.28		t							-	0.48
Symphyotrichum spathulatum			1			0.08						0.07				-

Table E-6 lean Percent Cover (MH) of Dominant Plant Taxa on Wetland/Meadow Transects for 2009 and 2010	at the Eight wetiand/meadow Sites in Spring and Shake valleys (Page 6 of 6)
--	--

	Blind	Blind Spring	Burb	oank Iows	Keegan Spring Complex (North)	Spring (North)	Minerva Spring Complex	ı Spring plex	Shos Por	Shoshone Ponds	Stonehouse Spring Comple	Stonehouse Spring Complex	The (The Seep	West Spring Va Complex #1	West Spring Valley Complex #1
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Taraxacum officinale			0.10	0.22	06.0	1.85	0.10	0.22	0.20	0.26	1	t	0.40	0.35	0.20	t
Thelesperma megapotamicum		-		ł	I	1	1	1.36	1	1	1	:	1	1	1	1
Thermopsis rhombifolia			1	1	7.40	11.59	7.70	8.69	1	1	1	-	1	1	5.60	11.88
Tragopogon dubius	1	1	1	1	1	t	1	1	1	1	1	1	1	1	1	1
Trifolium sp.	1	1	06.0	0.67	0.30	1.12	1	0.59	1	0.28	1	1	1	1	1	t
Trifolium fragiferum	1	1	1	0.75	1	t	1	0.08	1	1	1	1	1	1	1	0.13
Trifolium hybridum	-	-		1	1	1	1	t	1		1			-	-	1
Trifolium longipes	1	1	1	ł	ł	0.26	ł	1	ł	ł	ł	1	1	1	ł	ł
Trifolium pretense	-	-		1	1	t	1.10	0.23	1		1			-	t	t
Trifolium repens			t	-	0.70	1.11	0:30	0.11	1.70	0.82	0.10	0.05			0.20	0.20
<i>Triglochin</i> sp.				1	1	1		1	1		1	t		-	-	1
Triglochin concinna				-	1	1		1	1		ł	0.06			-	1
Triglochin maritime	1	1	1	0.46	1	t	1	0.15	1	ł	ł	0.48	ł	1	1	t
Triglochin palustris	1	1	1	ł	1	1	ł	1	ł	ł	ł	t	1	1	ł	ł
Typha latifolia	5.00	3.56	1	1	1.10	4.06	1	1	1	1	0.50	0.27	1	1	09.0	0.84
Utricularia macrorhiza	34.80	24.16		-	0.30	0.25		1	1		ł				-	1
Utricularia minor	1	1	1	1	1	0.08	1	1	1	1	1	1	1	1	1	1
Verbena bracteata				-	1	1		1	1		1			t		1
Veronica anagallis-aquatica				1	0.80	1.33	0.10	0.37	t	0.19	ł		0.10	t	-	1
Viola nephrophylla				-	1	t		0.28	1		1			0.05		0.91
Zannichellia palustris	6.20			1	1	1		1	1		0.10	0.13			-	1
Zigadenus paniculatus				1	-	-	1	1		0.05	-			-		-
Note: Mean percent cover is the mean percent cover per tr	e mean p	ercent co	ver per tr	ransect f	or each s _f	ansect for each species, averaged over the number of transects per site (the grand mean)	raged ov	er the nur	nber of t	ransects	per site (t	he grand i	mean).			

'n A "t" indicates a trace amount (\leq 0.05%). Dashed lines (---) indicate that the taxa was not present at that site (cover = 0). ź

Table E-7 Mean Percent Cover (MH) of Dominant Plant Taxa along Greasewood -Dominated Phreatophytic Shrubland Transects for 2009 and 2010 within the Five IBMA Zones in Spring, Hamlin and Snake Valleys (Page 1 of 2)

		g Valley orth	Spring Mid	-	Spring Soເ	-		nlin North	Snake Sou	
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Achnatherum hymenoides				t				t	t	0.22
Artemisia tridentata	0.20	0.34	1.50	1.44	0.30	0.70				
Atriplex canescens									0.20	0.16
Atriplex confertifolia	0.40	0.94	0.40	0.58	0.90	1.35	0.50	0.96	0.50	0.50
Atriplex serenana						0.05				
Bassia americana				t					0.40	0.83
Bassia scoparia		t		t	0.20	0.25				
Bromus tectorum		t		t						0.06
Chenopodium humile										0.14
Chenopodium incanum			0.20	t						
Chenopodium leptophyllum	0.10	0.05						t		t
Chenopodium sp.					t					
Chrysothamnus humilis										0.42
Chrysothamnus viscidiflorus	0.10		t							
Chrysothamnus viscidiflorus ssp,. puberulus		0.07								
Cleomella plocasperma						t				
Cordylanthus ramosus						0.06				
Cryptantha circumscissa										t
Cryptantha scoparia		t								
Descurainia pinnata		0.05								
Descurainia sophia	t	1.16		0.10				t		
Distichlis spicata	0.10	0.25	0.10	0.34	1.60	2.32				
Elymus elymoides		0.33	t	0.11		0.09	t	0.21		t
Ephedra nevadensis										t
Ephedra viridis									t	
Eriastrum diffusum				0.50						
Ericameria nauseosa	0.20	0.59	0.10	0.31	0.70	1.00				
Erodium cicutarium				0.92						
Gayophytum		t								
Gilia sp.		t								0.11
Grayia spinosa	t	t	t	t			0.80	1.93		
Gutierrezia sarothrae									0.60	
Halogeton glomeratus	1.40	1.03					0.20	0.86		0.23

Table E-7 Mean Percent Cover (MH) of Dominant Plant Taxa along Greasewood -Dominated Phreatophytic Shrubland Transects for 2009 and 2010 within the Five IBMA Zones in Spring, Hamlin and Snake Valleys (Page 2 of 2)

		g Valley orth	Spring Mid	-	Spring Sou			nlin North	Snake So	-
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Hordeum jubatum				t						
lva axillaris			0.10	0.27						
Krascheninnikovia lanata								t	0.20	
Lactuca serriola				t						
Lappula occidentalis var. cupulata		t		0.33				0.11		t
Lepidium densiflorum				t						
Lepidium perfoliatum		0.43								
Leymus triticoides						t				
Machaeranthera carnosa			t							
Machaeranthera carnosa var. carnosa				t						
Mentzelia nitens				0.06				0.14		
<i>Opuntia</i> sp.		t								t
Opuntia polyacantha		t		t						
Picrothamnus desertorum				t			0.10	0.24	0.20	0.43
Poa secunda	t	t								
Polypogon monspeliensis				t						
Puccinellia lemmonii				t						
Salsola tragus				t						
Sarcobatus vermiculatus	17.80	22.03	11.00	17.03	12.90	16.29	11.40	16.03	15.40	13.55
Sphaeralcea ambigua				t						
Sphaeralcea coccinea									t	t
Sporobolus airoides	t		0.20	0.28	0.10	0.15				
Sporobolus cryptandrus				t						
Suaeda calceoliformis				0.25	0.60					
Suaeda moquinii			0.70	1.21		1.53		t	t	t
Tetradymia glabrata								t		0.08
Tetradymia spinosa	0.10	0.18	t	0.16					0.30	0.06

Note: Mean percent cover is the mean percent cover per transect for each species, averaged over the number of transects per site (the grand mean).

A "t" indicates a trace amount (≤0.05%).

Dashed lines (---) indicate that the taxa was not present at that site (cover = 0).

Mean Percent Cover (MH) of Dominant Plant Taxa on Valley-Floor Rocky Mountain (VFRM) Juniper Woodland Belt Transects for 2009 and 2010 at Two Populations in Spring Valley (Page 1 of 4) Table E-8

	Mean Ov	ver All		Sw	amp Ced	Swamp Cedar North				Sw	amp Cec	Swamp Cedar South	-	
	Transects	ects	Grand	Grand Mean	Wet Sites	Sites	Dry Sites	ites	Grand	Grand Mean	Wet 9	Wet Sites	Dry Sites	ites
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Achillea millefolium	0.1	0.1	1	t		t	1	t	0.2	0.2	0.3	0.4		ł
Achnatherum hymenoides	t	t	ł	t	1	t	1	1	t	t	1	t	t	t
Agrostis gigantean	0.2	0.5	ł	1	1	1	1	1	0.5	1.0	0.9	1.9	1	ł
Aquilegia formosa	t	1	1	1	1	1	1	1	t	1	t	1	1	ł
Argentina anserine	0.1	t	0.1	t	0.2	0.1	1	1	t	t	0.1	t	1	ł
Artemisia tridentate	0.7	0.8	0.2	0.3	1	1	0.3	0.5	1.2	1.3	0.3	0.3	2.1	2.3
Aster	1	t	ł	0.1	1	0.1	1	1	1	t	1	t	1	ł
Astragalus sp.	t	t	0.1	t	0.1	t	t	1	1	1	1	1	1	ł
Astragalus convallarius	t	1	ł	1	1	1	1	1	t	1	t	1	1	ł
Atriplex confertifolia	1	t	1	t	1	1	1	t	1	1	1	1	1	ł
Atriplex micrantha	t	0.2	t	0.5	t	0.9	1	1	t	t	0.1	t	1	ł
Atriplex rosea	-	t	1	1	1	1	1	1	1	t	1	0.1	1	ł
Atriplex serenana	t	t	t	t	-	1	t	t		1	1			ł
Atriplex truncate	t	0.1	0.1	0.1	0.2	0.1	0.1	0.1	t	t	t	0.1	1	ł
Bassia scoparia	0.8	1.0	0.5	0.9	1.0	1.7	1	1	1.2	1.2	2.4	2.4	1	ł
Bromus tectorum	t	t	t	t	t	0.1	1	t	1	1	1	1	1	ł
Carex sp.	0.1	0.1	0.1	0.1	0.2	0.1	1	1	F	0.1	Т	0.1	t	ł
Carex nebrascensis	0.1	t	t	1	t	1	1	1	0.1	0.1	0.2	0.1	1	ł
Carex parryana		t	-	0.1		0.1	ł	ł		-	1			ł
Carex praegracilis	0.7	0.8	0.2	0.3	0.3	0.4	0.1	0.1	1.3	1.2	2.4	2.5	0.1	ł
Carex simulate	t	-	t		t	1	1	1		-	1			ł
Castilleja minor ssp. minor		t	-	t		t	ł	ł		-	1			ł
Caulanthus sp.	t	1	1		-		1	1	t	1	t			ł
Centaurium exaltatum	t	t	t	t	t	t	1	1		-	1			ł
Chenopodium sp.	t	-	t		t	-	1	1	t	1	t			ł
Chrysothamnus viscidiflorus	t	1	1	1	1	1	1	1	t	1	1	1	1	1

	Mean Over All	ver All		Sw	Swamp Cedar North	lar North				Sw	amp Ced	Swamp Cedar South		
	Transects	ects	Grand	Grand Mean	Wet Sites	Sites	Dry (Dry Sites	Grand	Grand Mean	Wet Sites	Sites	Dry Sites	sites
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Cirsium sp.	ł	t	ł	1		-	1		1	t	1	t	1	ł
Cirsium scariosum	0.4	0.2	0.6	0.4	0.7	0.4	0.4	0.3	0.3	t	0.5	t	1	
Cirsium vulgare	t	0.5	ł	1		1	1	1	0.1	1.0	0.1	2.0	1	
Cleomella plocasperma	t	t	t	1	t	1	1	1	t	t	t	0.1	1	-
Comandra umbellate	t	t	t	t		1	t	t	1	1	1	1	1	-
Conyza canadensis	t	t	1	1		1	1	1	t	t	t	t	1	1
Cordylanthus ramosus	t	0.1	t	0.1		1	t	0.3	1	1	1	1	1	-
Crepis runcinata ssp. glauca	0.1	0.1	0.3	0.3	0.6	0.5	1	1	1	t	1	t	1	1
Dactylis glomerata	ł	t	ł	1		ł	ł	1	1	t	1	t	1	
Descurainia sophia	t	t	t	t	t	t	ł	t	1	1	1	1	1	
Distichlis spicata	1.2	1.7	1.4	1.6	2.5	3.0	0.3	0.3	0.9	1.7	1.7	3.3	0.2	0.2
Dodecatheon pulchellum	0.2	0.1	0.5	0.2	0.9	0.4	t	1	1	-	1	1	1	
Elymus elymoides	t	0.1	t	0.1		t	t	0.2	1	t	1	t	1	t
Elymus trachycaulus	1	0.1	1	0.1		0.2	1	t	1	t	1	t	1	
Equisetum arvense	0.3	0.3	0.5	0.5	0.9	0.9	0.1	0.1	0.1	t	0.1	0.1	1	1
Ericameria nauseosa	2.0	2.5	2.8	3.2	1.4	1.1	4.2	5.2	1.2	1.8	1.4	2.3	1.1	1.3
Erigeron lonchophyllus	1	t	1	1		1	1	1	1	t	1	t	1	1
Eriogonum cernuum	t	t	1	-			ł		t	t	-		t	t
Eriogonum microthecum	1	t	1	1		1	1	1	1	t	1	1	1	t
Gentianella amarelle	t	t	t	t	0.1	t	1	1	1	1	1	1	1	-
Glaux maritime	t	t	t	t	t	t	ł			-	-		-	1
Gutierrezia sarothrae	1	t	1	1			ł			t	1		1	t
Hordeum jubatum	t	t	t				t		t	t		t	t	-
Hymenopappus filifolius	t		t	1	t	-	1			1	-		1	ł
Hymenoxys lemmonii	0.2	6.0	0.4	0.6	0.4	0.6	0.4	0.6	t	t	t	0.1	t	-
Ipomopsis aggregate	t	1					1	ł	t		t	1	-	-

Mean Percent Cover (MH) of Dominant Plant Taxa on Valley-Floor Rocky Mountain (VFRM) Juniper Woodland Belt Transects for 2009 and 2010 at Two Populations in Spring Valley (Page 3 of 4) Table E-8

	Mean Over All	ver All		Sw	amp Cec	Swamp Cedar North				Sw	amp Cec	Swamp Cedar South		
	Transects	ects	Grand	Grand Mean	Wet 3	Wet Sites	Dry Sites	Sites	Grand	Grand Mean	Wet Sites	Sites	Dry Sites	ites
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Iris missouriensis	t	0.1	0.1	0.1	0.1	0.3	1	1	t	t	t	t	1	1
Iva axillaris	t	1	t	-	t	-	1	1	1	1	1	1	1	1
Ivesia kingie	0.1	0.1	0.2	0.2	0.3	0.3	t	t	1	t	1	1	t	t
Juncus arcticus ssp. littoralis	0.3	0.4	0.4	0.5	0.7	0.7	0.1	0.2	0.3	0.3	0.5	0.6	0.1	0.1
Juncus nevadensis	1	t	1	-		1	1	1	1	t	1	t	1	1
Juniperus scopulorum	47.0	48.4	45.7	48.8	49.6	54.0	41.7	43.5	48.4	48.0	59.3	57.8	37.6	38.3
Lactuca serriola	t	t	t	t	t	t	1	1	1	1	1	1	1	1
Leymus cinereus	t	t	1	1		1	1	1	t	t	1	1	t	t
Leymus triticoides	3.0	3.7	5.6	7.2	10.3	13.0	0.8	1.3	0.3	0.3	0.7	0.6	t	t
Maianthemum racemosum	0.1	1	0.2	1	0.3	ł	1	1	1	1	1	1	1	1
Maianthemum stellatum	1	0.1	1	0.1		0.2	1	1	1	1	1	1	1	1
Medicago polymorpha	t	t	1	-		1	1	1	t	t	t	0.1	1	1
Melilotus officinalis	t	t	-				1	1	t	t	t	t	-	1
Moss	1	t	1	1		1	1	1	1	t	1	t	1	1
Muhlenbergia asperifolia	t	t	t	0.1	0.1	0.1	1	1	1	1	1	1	1	1
Muhlenbergia richardsonis	t	0.1	t	0.1	0.1	0.2	1	1	0.1	0.1	0.1	0.2	1	1
Musineon sp.	1	t	1	t		t	1	t	1	1	1	1	1	1
Musineon divaricatum	t	1	÷	1	t	1	0.1	1	t	1	t	1	1	1
Nitrophila occidentalis	0.2	0.2	0.3	0.3	0.7	0.6	1	1	1	1	1	1	1	1
Phacelia peirsoniana	1	t	1	t		1	1	t	1	1	1	1	1	1
Phlox pulvinata	t	t	t	t		-	t	t	1	t	1	t	1	t
Plantago major	1	t	1	-		-	1	1	1	t	1	0.1	1	1
Poa pratensis	0.6	0.4	0.1	0.3	0.1	0.6	1	1	1.1	0.6	2.3	1.2	1	1
Poa secunda	0.3	1.5	0.4	2.5	0.4	1.9	0.4	3.0	0.1	0.5	0.2	0.8	t	0.2
Polygonum aviculare	t		-				1	1	t	1	t		-	1
Puccinellia lemmonii	1.6	1.6	2.9	3.2	4.4	6.2	1.5	0.2	0.2	t	0.4	t	0.1	1

					,									
	Mean Over All	ver All		Sw	Swamp Cedar North	lar North				Sw	Swamp Cedar South	lar South	-	
	Trans	Transects	Grand	Grand Mean	Wet 3	Wet Sites	Dry 9	Dry Sites	Grand Mean	Mean	Wet Sites	Sites	Dry Sites	bites
Species	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009	2010
Pyrrocoma lanceolata	0.4	0.4	0.7	2.0	1.3	1.2	0.2	0.1	t	t	0.1	0.1	t	1
Raillardella argentea	t	t	1	1		1	1	1	t	t	t	t	1	1
Ranunculus cymbalaria	1	t	1	1		1	1	1	1	t	1	t	1	-
Rosa woodsii	0.2	0.3	0.1	0.1	0.2	0.2	1	1	0.4	0.4	0.8	0.8	1	
Sarcobatus vermiculatus	0.5	0.5	0.5	0.6	0.8	0.6	0.3	0.5	0.4	0.5	0.2	0.5	0.6	0.4
Schedonorus pratensis	0.1	0.1	ł	1		1	1	1	0.1	0.3	0.3	0.6	1	
Sisyrinchium halophilum	0.1	t	0.1	t	0.2	0.1	1	1	1	t	1	t	1	1
Solidago nana	t	t	t	0.1	0.1	0.1	1	t	1	1	1	1	1	-
Spartina gracilis	0.7	0.6	1.1	1.1	2.2	2.1	0.1	0.1	0.2	0.2	0.3	0.2	0.1	0.1
Sporobolus airoides	2.6	3.0	3.1	3.8	2.0	2.3	4.2	5.3	2.1	2.2	3.1	3.4	1.2	1.0
Suaeda calceoliformis	1	t	1	0.1	-	1	1	0.1	1	t	1	t	1	1
Suaeda moquinii		t	1	t		t		-	1	-				-
Symphyotrichum eatonii	t	0.1	t	0.1	0.1	0.2	1	1	t	t	t	t	1	1
Symphyotrichum spathulatum	t	-	ł	1		1	1	1	t	1	t	1	1	1
Taraxacum officinale	0.1	t	ł	t		t	1	1	0.2	t	0.5	t	1	
Thelypodium sagittatum ssp. sagittatum	1	t	ł	t		t	1	t	1	t	1	1	1	t
Trifolium sp.	1	t	1	1	-	1	1	1	1	t	1	0.1	1	1
Trifolium repens	0.1		1	1		1	1	1	0.2	1	0.4	1	1	-
Triglochin maritime	t	t	t	t	t	t	1	1	1	1	1	1	1	
Veronica peregrine ssp. xalapensis	1	t	1	1	-	1	1	1	1	t	1	t	1	1
Vesicarpa potentilloides var. nitrophilum		t	1	t				t	1	-				-
Total Live Cover	65.2	71.3	69.3	79.1	83.5	96.0	55.3	62.2	61.2	63.5	79.7	83.1	43.2	43.9
Note: Mean percent cover is the mean percent cover per transect for each species, averaged over the number of transects per site (the grand mean). A "t" indicates a trace amount (≤0.05%). Dashed lines () indicate that the taxa was not present at that site (cover = 0).	cent cover s not prese	per transeo nt at that si	rtransect for each spe at that site (cover = 0).	species, a - 0).	veraged o	ver the n	umber of	transects	per site (t	he grand r	mean).			

This Page Left Intentionally Blank