Spring, Cave, Dry Lake and Delamar Valleys

Presentation for: Dr. Carl Linvill and John Candelaria

DR. CARL LINVILL Director Integrated Energy Analysis & Planning Division

Academic Background

Doctorate, Economics (Ph.D.), University of North Carolina, Chapel Hill, 1993 B.A., Mathematics and Economics, University of California, Davis, 1984

PROFESSIONAL EXPERIENCE

Carl Linvill directs Aspen's Integrated Energy Analysis & Planning which conducts integrated systems analyses of energy, climate and natural resource issues in California and the Western Electricity Interconnection. Dr. Linvill's current assignments with Aspen include serving as a Director for Western Grid Group bringing independent regulatory and technical expertise to Western Interconnection Planning activities, serving as the Technical Lead on the Western Clean Energy Vision project providing a 2050 vision to support NGO participation in the Western Electric Coordinating Council's (WECC) Regional Transmission Expansion Planning (RTEP), serving as the Project Manager for the consulting team on the Long Term Procurement Plan (LTPP) project at the California Public Utilities Commission (CPUC), supporting the California Energy Commission (CEC) in evaluating its Energy Efficiency and Demand Forecasting methodologies and serving on Majority Leader Reid's Blue Ribbon Commission on Energy Policy. Dr. Linvill also served as as cocoordinator of the Renewable Energy Transmission Initiative (RETI) for the Energy Commission in 2010 and led the Demand Modeling Methodology Evaluation project for the CEC in 2010. Dr. Linvill has previously dealt with issues of climate and electricity policy as a Public Utility Commissioner in Nevada, as Energy Advisor to the Governor, as Director of the Nevada State Office of Energy, as the Western Interconnection representative to the North American Electric Reliability Corporation (NERC), and as a member of the Western Interstate Energy Board of the Western Governors Association.

Aspen Environmental Group

November 2006 to present

Dr. Linvill is Director of Integrated Energy Analysis & Planning at Aspen with research, project management, quality assurance and business development responsibilities involving long term energy policy analysis, conventional and renewable energy supply alternatives planning and evaluation, and energy efficiency and demand response planning and evaluation. He has provided energy and economics expertise to the following clients:

California Energy Commission. Dr. Linvill is **Program Manager** for the Aspen Electricity Supply Analysis Division (ESAD) Technical Services Contract and **Deputy Program Manager** for the Aspen Siting and Planning Technical Services Contract where he supports staff and sub-contractors in producing electricity and natural gas planning analysis studies. He is an active participant in long term resource evaluation projects including direct contributions to the Demand Forecast Assessment, the Demand Forecast Energy Efficiency Assessment, the Scenarios Project and technical program management support for numerous electricity and natural gas projects executed to support the

JOHN E. CANDELARIA Senior Associate

ACADEMIC BACKGROUND M.B.A., Arizona State University, 1992 B.S., Electrical Engineering, Arizona State University, 1983

PROFESSIONAL EXPERIENCE

John Candelaria is a Senior Associate at Aspen and is a specialist in power production, electric and gas resource planning, regulatory policy and utility regulation. He has 27 years of experience in the electric utility industry working for investor owned utilities and regulatory agencies. Mr. Candelaria's current assignments include: Overseeing the development of a coal retirement/renewable resource integration scenario for the WECC Transmission Expansion Planning Policy Committee's 2010 Study Cycle process on behalf of the Western Grid Group; Preparing an economic feasibility assessment of solar resource areas in eastern Nevada for the Southern Nevada Water Authority; Developing a renewable energy resource and transmission right of way land use model for a report currently being prepared for the Western Grid Group; Providing advice and recommendations to the Nevada Bureau of Consumer Protection addressing electric and gas resource planning, rulemakings, proposed legislation, and other regulatory matters; Facilitating a transmission team for the Nevada State Office of Energy to address market and transmission access issues for renewable resources in Nevada; and Assisting Nye County with the identification of transmission access options for renewable energy resources. He is a former Policy Advisor for the Public Utilities Commission of Nevada where he provided advice to Commissioners on a wide range of issues including electric and gas resource planning, conventional and renewable generation options, conventional and renewable long and short-term purchase power contracts, transmission plans, Demand Side Management plans, long and short-term fuel procurement plans, load forecasts, financial plans, rate-making, rule-making and other regulatory issues. Before becoming a Policy Advisor, he represented the Nevada Commission's Staff on electric transmission, generation and other electric resource planning issues, and also addressed gas resource planning, ratemaking and other regulatory issues. He managed the Commission Staff's effort to develop revised resource planning regulations, helped develop State mandated renewable energy regulations and assessed the Nevada utilities efforts to comply with the State's Renewable Portfolio Standard. He spent over eight years working for an investor owned utility gaining experience in power production including construction, energization, operation and maintenance of utility scale power production facilities.

Aspen Environmental Group

March 2008 to present

Mr. Candelaria is responsible for providing advice, recommendations, testimony and comments to clients on federal and state regulatory issues including resource and transmission planning, resource adequacy, renewable energy, reliability, short and long-term resource procurement, demand side management and Nevada utility/customer issues.

SENIOR ASSOCIATE

Nevada Office of the Attorney General, Bureau of Consumer Protection: Mr. Candelaria provides advice & recommendations and prepares testimony and comments regarding electric and gas resource planning, rulemakings, ratemakings and other regulatory issues that come before the Nevada Public Utilities Commission. Since joining Aspen, he has prepared testimony, comments and supported litigation in the follow dockets:

Spring, Cave, Dry Lake, and Delamar Valleys Renewable Energy Viability Report

PRESENTATION TO THE OFFICE OF THE NEVADA STATE ENGINEER

Prepared for

Prepared by

June 2011

CONTENTS

	0	esiii sv					
		nyms and Abbreviations					
Exect	utive Su	ımmary					
1.0	Rene	wable Energy Cost and Resource Potential in Nevada and the West					
	1.1 1.2	Renewable Energy Net Cost1-1Renewable Energy Resource Quality In The West1-2					
2.0	Trans	smission Access Options for Solar Resources Located in the Valleys of Interest 2-1					
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Summary2-1Existing Transmission Facilities in or Near the Valleys of Interest2-1Proposed Transmission Facilities2-4Cost Estimates to Develop Transmission Facilities to Cave, Dry Lake,2-4and Delamar Valleys2-7Market Access Issues of Significance2-142.5.1Introduction2-142.5.2Location of the Resource2-14Transmission Availability2-17Ancillary Services2-17					
3.0		ere a Demonstrated Interest in Solar Development in Spring, Cave, Dry Lake, Delamar Valleys?					
	3.1 3.2 3.3 3.4	Transmission Service Requests 3-1 BLM Renewable Leases/ROW Applications: 3-5 Public Information Suggesting Development at a Particular Site: 3-5 Evidence of an Executed Power Purchase Agreement 3-5					
4.0		Valleys of Interest Projects are not Likely to Compete Successfully in Nevada's Current and Future Market for Renewable Energy					
	4.1	Potential Market for Solar Projects in Nevada: Nevada's Renewable Portfolio Requirements					
5.0		ys of Interest Projects are not Likely to Compete Successfully in ern Renewable Energy Markets for the Foreseeable Future					
	5.1	Demand Assessment for Renewable Resources from Adjacent States					
6.0	Valle	ys of Interest Projects are not Likely to Compete Successfully in REC Markets 6-1					
	6.1 6.2	Tradable Renewable Energy Certificates 6-1 Demand for TRECs in Local and Distant Markets and Expected Revenues from Energy and TREC Sales 6-1					
	6.3 6.4	Ability of the Local Market to Absorb Energy from Renewable Resources6-2Other TREC Related Factors6-3					

CONTENTS (CONTINUED)

7.0	•	s of Interest Projects are Not Likely to be Competitive in State or Regional Markets for the Foreseeable Future
	7.1	Part One: The Competitiveness of Solar Energy should improve Relative to Gas-fired Resources
	7.2	Part Two: A Confluence of Forces may cause Renewable Energy Demand to Rise Significantly
	7.3	Part Three: Self-cleaning PV will be the Solar Technology of Choice
8.0	Conclu	sion
9.0	Glossa	ry
10.0	Refere	nces

Table 1-1Water Use Comparisons for Several Solar Technologies

Solar Technology	BLM Solar PEIS-Overview (Table 3.1-1) Converted from afy/MW ^a	DOE (2009) ^b (gal/MWh)	Western Resource Advocates (2010) ^c (gal/MWh)	BLM Solar PEIS-Amargosa Valley SEZ (Table 11.1.9.2-2) Converted from afy for facilities of given MW capacity
Parabolic trough (wet)	298-1,817 gal/MWh [30%-60% operation + washing]	800	760	298-1,817 gal/MWh [30%-60% operation + washing]
Parabolic trough (dry)	31-143 gal/MWh [30%-60% operation + washing]	78	78	31-143 gal/MWh [30%-60% operation + washing]
Power tower (wet)	298-1,817 gals/MWh [30%-60% operation + washing]	500-750	760	298-1,817 gal/MWh [30%-60% operation + washing]
Power tower (dry)	31-143 gal/MWh [30%-60% operation + washing]	90	78	31-143 gal/MWh [30%-60% operation + washing]
Dish Stirling engine	19 gal/MWh [washing only]	20	78	19 gal/MWh [washing only]
Photovoltaic (utility)	1.9 gal/MWh [washing only]		0 virtually none	1.9 gal/MWh [washing only]

^aThe Bureau of Land Management (BLM) provided a range for 30%-60% operation of annual hours for parabolic trough and power tower technologies. For all technologies, BLM considered mirror/panel washing with a conservative 100% assumption on operational time. ^bIn a report to Congress, the U.S. Department of Energy (DOE) compared the performance of wet- and dry-cooled plants in California and found that the dry-air-cooled plant provided roughly 5% less electric energy on an annual basis than the water cooled plant (DOE, 2009). Similarly, a presentation by the DOE reports that switching from wet-cooled to dry-cooled results in a performance loss of less than 7% (DOE, 2010).

^cTellinghuisen and Milford (2010).

	Solar PV – Crystalline ^(a)		\$11	.6 🔷 ^(b)	\$160	\$19	16			
	Solar PV – Thin-Film		\$87 (c)	\$131		\$182				
	Solar Thermal ^(d)			\$129			\$206			
ALTERNATIVE	Fuel Cell			\$127	\$137					
ENERGY	Biomass Direct	\$65		\$113						
	Geothermal	\$58	\$93							
	Wind	\$57		\$113						
	Energy Efficiency ^(e)	\$0 \$50								
	Gas Peaking						\$225		\$342	
	$IGCC^{(f)}$		\$97 🔷 (g)	\$110	\$141					
CONVENTIONAL	Nuclear ^(h)		\$107		\$138					
	Coal ⁽ⁱ⁾	:	\$78		\$144					
	Gas Combined Cyde	\$7	4 \$	102						
	\$	0 \$50	\$100		\$150 Leve	\$200 lized Cost (\$300	\$350	\$400

Source: Lazard Estimates

Note: Reflects production tax credit (PTC), investment tax credit (ITC) and accelerated asset depreciation, as applicable. Assumes 2008 dollars, 20-year economic life, 40% tax rate and 5-20 year tax life. Assumes 30% debt at 8.0% interest rate and 40% equity at 12% cost for conventional generation technologies. Assumes a coal price of \$2.50 per MMBtu and a natural gas price of \$8.00 per MMBtu.

- (a) Low end represents single-axis tracking crystalline. High end represents fixed installation.
- (b) Represents estimated implied LCOE in 2012, assuming a total system cost of \$3.50 per watt for single-axis tracking crystalline.
- (c) Represents a leading thin-film company's targeted implied LCOE in 20102, assuming a total system cost of \$2.00 per watt.
- (d) Low end represent solar tower. High end represents solar trough.
- (e) Estimates per National Action Plan for Energy Efficiency; actual cost for various initiatives varies widely.
- (f) High end incorporates 90% carbon capture and compression.
- (g) Represents estimated implied LCOE for Southern Company's proposed IGCC facility in Mississippi that is expected to be in service in 2013, assuming a total system cost of \$3.00 per watt and 50% carbon capture per Southern Company public comments.
- (h) Does not reflect decommissioning costs or potential economic impact of federal loan guarantees or other subsidies.
- (i) Based on advanced supercritical pulverized coal. High end incorporates 9-% carbon capture and compression.

Figure 1-7 Levelized Cost of Energy Comparison

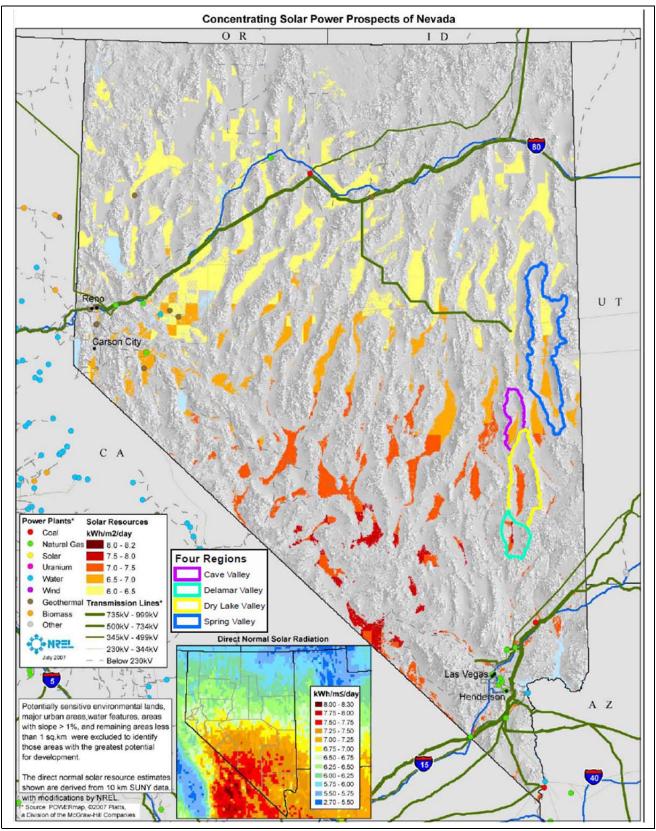
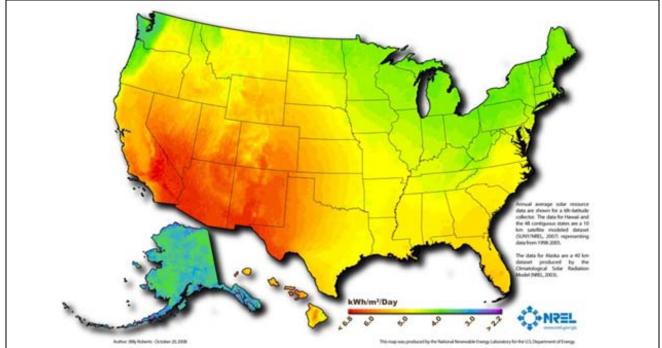
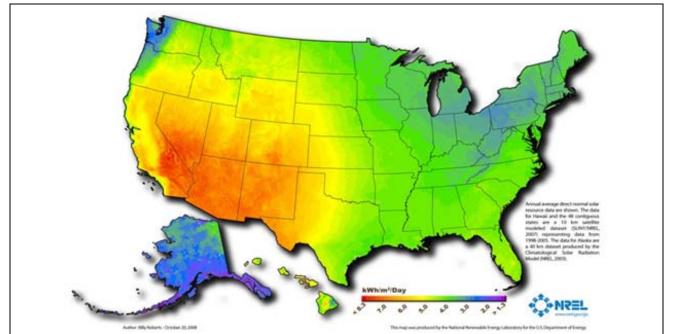




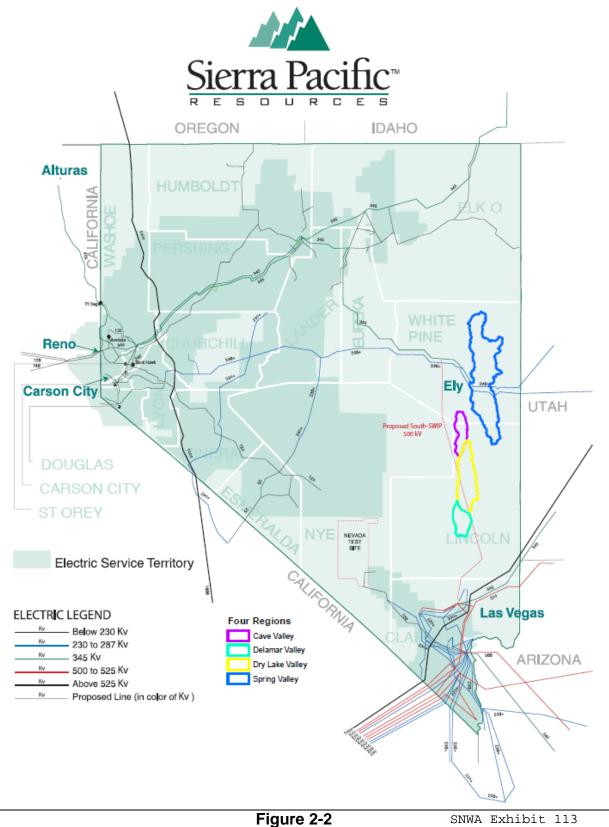
Figure 1-6 Cost Competitiveness of Nevada's Solar Resources

Note: Maps provide average daily total solar resource information on grid cells of approximately 40 km by 40 km in size. The insolation values represent the resource available to a flat plate collector, such as a PV panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. This is typical practice for PV system installation, although other orientations are also used (NREL, 2010).

Figure 1-4 Solar PV Resources

Note: The insolation values represent the resource available to concentrating systems that track the sun throughout the day. Such systems include CSP stations such as trough collectors or dishes (NREL, 2010).

Figure 1-5 CSP Resources

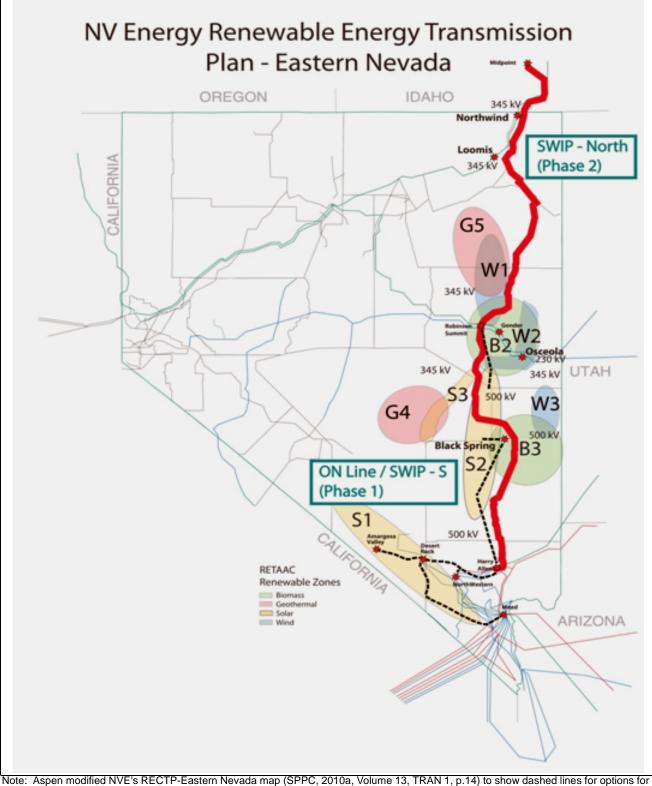

	Solar PV – Crystalline ^(a)		\$11	.6 🔷 ^(b)	\$160	\$19	16			
	Solar PV – Thin-Film		\$87 (c)	\$131		\$182				
	Solar Thermal ^(d)			\$129			\$206			
ALTERNATIVE	Fuel Cell			\$127	\$137					
ENERGY	Biomass Direct	\$65		\$113						
	Geothermal	\$58	\$93							
	Wind	\$57		\$113						
	Energy Efficiency ^(e)	\$0 \$50								
	Gas Peaking						\$225		\$342	
	$IGCC^{(f)}$		\$97 🔷 (g)	\$110	\$141					
CONVENTIONAL	Nuclear ^(h)		\$107		\$138					
	Coal ⁽ⁱ⁾	:	\$78		\$144					
	Gas Combined Cyde	\$7	4 \$	102						
	\$	0 \$50	\$100		\$150 Leve	\$200 lized Cost (\$300	\$350	\$400

Source: Lazard Estimates

Note: Reflects production tax credit (PTC), investment tax credit (ITC) and accelerated asset depreciation, as applicable. Assumes 2008 dollars, 20-year economic life, 40% tax rate and 5-20 year tax life. Assumes 30% debt at 8.0% interest rate and 40% equity at 12% cost for conventional generation technologies. Assumes a coal price of \$2.50 per MMBtu and a natural gas price of \$8.00 per MMBtu.

- (a) Low end represents single-axis tracking crystalline. High end represents fixed installation.
- (b) Represents estimated implied LCOE in 2012, assuming a total system cost of \$3.50 per watt for single-axis tracking crystalline.
- (c) Represents a leading thin-film company's targeted implied LCOE in 20102, assuming a total system cost of \$2.00 per watt.
- (d) Low end represent solar tower. High end represents solar trough.
- (e) Estimates per National Action Plan for Energy Efficiency; actual cost for various initiatives varies widely.
- (f) High end incorporates 90% carbon capture and compression.
- (g) Represents estimated implied LCOE for Southern Company's proposed IGCC facility in Mississippi that is expected to be in service in 2013, assuming a total system cost of \$3.00 per watt and 50% carbon capture per Southern Company public comments.
- (h) Does not reflect decommissioning costs or potential economic impact of federal loan guarantees or other subsidies.
- (i) Based on advanced supercritical pulverized coal. High end incorporates 9-% carbon capture and compression.

Figure 1-7 Levelized Cost of Energy Comparison



NVE and IPA Transmission Facilities Running through Spring Valley

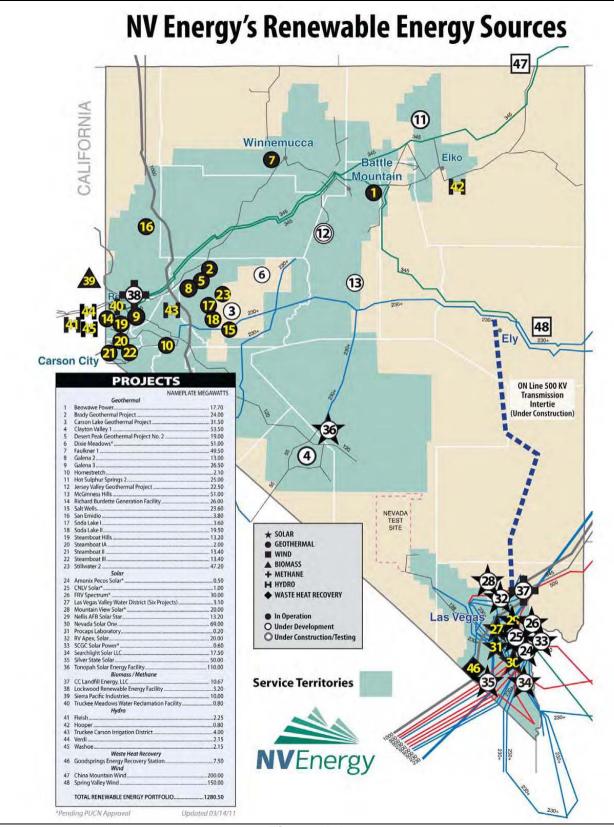
Table 2-4

Transmission Cost Estimate to Access Eldorado Valley from Zones S1 and S2

Access to Zone S1 - Option 1 (\$Millions)	Access to Zone S1 - Option 2 (\$Millions)	Access to Zone S2 (\$Millions)
146.4	0	220.20
-	-	-
29.8	29.8	23.5
-	-	-
134.4		134.4
65.4		
	214	
376.0	269.8	445.3
	Zone S1 - Option 1 (\$Millions) 146.4 - 29.8 - 134.4 65.4	Zone S1 - Option 1 (\$Millions) Zone S1 - Option 2 (\$Millions) 146.4 0 - - 29.8 29.8 - - 134.4 65.4 214

Note: Aspen modified NVE's RECTP-Eastern Nevada map (SPPC, 2010a, Volume 13, TRAN 1, p.14) to show dashed lines for options for providing transmission access to renewable energy zones in Eastern Nevada. Map provided by SPPC.

Figure 2-3 NVE Renewable Energy Transmission Plan–Eastern Nevada


Table 4-2NVE Solar Energy Requirements Through 2029

Year	Retail Sales Forecast (GWh)	NVE RPS Requirement	Solar % RPS	Renewable Energy Requirement (GWh)	NVE Solar Energy Requirement (GWh)	Solar Energy Available from PUCN Approved Resources (GWh)
2010	28,882	12%	5%	3,466	173	221
2011	29,198	15%	5%	4,380	219	354
2012	29,694	15%	5%	4,454	223	489
2013	30,252	18%	5%	5,445	272	489
2014	30,813	18%	5%	5,546	277	757
2015	31,344	20%	5%	6,269	313	1,017 ^a
2016	31,955	20%	6%	6,391	383	1,017 ^a
2017	32,413	20%	6%	6,483	389	1,017 ^a
2018	32,942	20%	6%	6,588	395	1,017 ^a
2019	33,481	20%	6%	6,696	402	1,017 ^a
2020	34,036	22%	6%	7,488	449	1,017 ^a
2021	34,504	22%	6%	7,591	455	1,017 ^a
2022	35,013	22%	6%	7,703	462	1,017 ^a
2023	35,545	22%	6%	7,820	469	1,017 ^a
2024	36,116	22%	6%	7,946	477	1,017 ^a
2025	36,618	25%	6%	9,155	549	1,017 ^a
2026	36,951	25%	6%	9,238	554	1,017 ^a
2027	37,467	25%	6%	9,367	562	1,017 ^a
2028	38,020	25%	6%	9,505	570	1,017 ^a
2029	38,485	25%	6%	9,621	577	1,017 ^a

^aSolar Energy Available from Solar Resources Approved by PUCN through 2010.

Table 4-1 NVE Portfolio Standard Annual Report, Renewable Projects

	NV Energy									
I	Portfolio Standard Annual Report, Compliance Year 2009 Table 3 Renewable Projects									
Map Reference		MW	Increase vs. 2008	Status						
1	Geothermal Beowawe	17.7		In Service						
2	Brady Geothermal Project	21.5		In Service						
3	Carson Lake Basin	62.0		In Development						
4	Carson Lake Geothermal Project	31.5		In Developmen						
5	Clayton Valley*	53.5	53.5	In Developmen						
6	Desert Peak Geothermal Project no. 2	19.0		In Service						
7	Faulkner 1	49.5		In Service						
8	Galena 2	13.0		In Service						
9	Galena 3	26.5		In Service						
10	Homestretch	2.1		In Service						
11	McGinness Hills*	51.0	51	In Developmen						
12	Hot Sulpher Springs 2*	25.0	25	In Developmen						
13	Jersey Valley Geothermal Project	31.5		In Developmen						
14	Richard Burdette Generation Facility	26.0		In Service						
15	Salt Wells	23.6		In Service						
16	San Emidio	3.8		In Service						
17	Soda Lake I	3.6		In Service						
18	Soda Lake II	19.5		In Service						
19	Steamboat Hills	13.2		In Service						
20	Steamboat IA	2.0		In Service						
21	Steamboat II	13.4		In Service						
22	Steamboat III	13.4		In Service						
23	Stillwater 2	47.2		In Service						
	Subtotal Geothermal	569.5	129.5							
	Solar									
24	American Capital Energy-Searchlight Solar LLC	17.5		In Developmen						
25	Fotowatio	20.5	20.5	In Developmen						
26	Las Vegas Valey Water District (six projects)	3.1		In Service						
27	Nelis AFB	12.0		In Service						
28	Nevada Solar One	64.0		In Service						
29	Next Light/Silver State*	50.0	50.0	In Developmen						
30	Procaps Laboratory	0.2		In Service						
31	SolarReserve Tonopah Solar Energy Facility*	110.0		In Developmen						
	Subtotal Solar	277.3	198.0							
32	Biomass/Methane CC Landfill LLC	10.7	10.7	In Developmen						
33	Renewable Energy Ctr @ N NV Corr. Ctr.	10.7	10.7	In Service						
34	Sierry Pacific Industries	10.0		In Service						
34	Truckee Meadows Water Reclamation Facility	10.0		In Service						
36	Waste Management Renewable Energy*	3.2	2.2	In Developmen						
30	Subtotal Biomass/Methane	26.3	13.9	in Developmen						
	,									
37	Fleish	2.3		In Service						
38	Hooper	0.8		In Service						
39	Truckee Carson Irrigation District	4.0		In Service						
40	Verdi	2.2		In Service						
41	Washoe	2.2		In Service						
	Subtotal Hydro	11.5								
	Waste Heat Recovery									
42	Goodsprings	5.8		In Developmen						
	Wind									
	China Mountain	200.0		In Developmen						
	Spring Valley*	150.0		In Developmen						
42	Subtotal Wind	350.0								
	Total Renewables	1,240.1	491.37							

Figure 4-1 NVE's Renewable Energy Resources

Table 5-1 WECC/SPSC Load Forecast

		State-Adjusted 2020 Loads and RPS Requirements in WECC Region (Draft 08-17-10)									
State/ Province	2020 Load Forecast (GWh) by Balancing Areas	RPS% for IOUs in 2020 ^a	RPS% for Other Entities in 2020 ^b	Total RPS Energy (GWh) in 2020	Existing RPS Energy (GWh) 2010	Incremental RPS Energy (GWh) 2010-2020	State % of Total RPS Energy (GWh) in 2020	State % of Incremental RPS Energy (GWh) 2010-2020			
AB	108,555				4,839						
AZ	92,283	10.0%	10.0%	5,238	900	4,338	3.7%	4.8%			
BC	63.241				1,694						
CA	307,183	33.0%	33.0%	89,055	29,796	59,259	63.5%	66.1%			
CO	68,639	30.0%	10.0%	11,632	3,043	8,589	8.3%	9.6%			
ID	27,250				1,142						
MEX	17,484				4,666						
MT	13,527	15.0%		995	456	539	0.7%	0.6%			
NV	39,426	22.0%		5,359	2,033	3,326	3.8%	3.7%			
NM	18,871	20.0%	10.0%	2,777	620	2,157	2.0%	2.4%			
OR	56,717	20.0%	6.7%	8,368	5,585	2,783	6.0%	3.1%			
TX	8,104	5.0%		405			0.3%	0.0%			
UT	37,415	13.3%	13.3%	4,668	2,140	2,528	3.3%	2.8%			
WA	99,539	15.0%		11,789	5,665	6,124	8.4%	6.8%			
WY	23,387										
Total	981,620			140,288	62,579	89,644	100.0%	100.0%			

^aIOU RPS% reflects path of RPS% for investor owned utilities smoother across years for discrete jumps.

^bMunicipals, publics, cooperatives, or smaller utilities

Table 1-2 Weighted Average Rank Costs–All CREZ and Resource Areas (Page 1 of 2)

	()	aye 1012)												
CREZ Name	Net Capacity (MW)	Annual Energy (GWh/yr) ^a	Cumulative Energy (GWh/yr) ^a	Weighted Average Rank (Cost (\$/MWh)										
Solano	894	2.721	2.721	-21										
Palm Springs	333	1,047	3,768	-18										
Round Mountain-A	384	2,557	6,325	-6										
Imperial North-A	1,370	10,095	16,419	4										
Santa Barbara	433	1,121	17,540	4										
Fairmont	2,200	6,015	23,555	7										
San Diego South	678	1,829	25,385	9										
Tehachapi	8,626	21,411	46,795	11										
San Diego North Central	200	502	47,297	15										
Lassen South	410	1,051	48,348	18										
Victorville	1,336	3,196	51,545	18										
Round Mountain-B	132	339	51,883	19										
Barstow	1,986	4,706	56,589	19										
UT_WE	2,144	7,595	64,184	20										
San Bernardino - Lucerne	1,845	4,829	69,013	21										
Lassen North	1,467	3,595	72,608	24										
Kramer	4,866	11,092	83,700	25										
OR_SO	669	2,443	86,143	25										
Inyokern	1,896	4,315	90,459	29										
OR_WE	970	5,393	95,851	29										
NV_NO	1,248	8,389	104,240	30										
Mountain Pass	763	1,741	105,982	32										
Twentynine Palms	1,354	3,012	108,993	33										
Pisgah	1,650	3,680	112,673	34										
Cuyama	300	638	113,311	35										
OR_NE	2,089	5,719	119,031	35										
Carrizo South	2,250	4,721	123,751	38										
San Bernardino-Baker	2,513	5,540	129,291	38										
Carrizo North	1,200	2,501	131,792	38										
Imperial East	1,199	2,708	134,500	41										
Riverside East	7,913	17,504	152,004	41										
Westlands	3,750	7,467	159,472	42										
ID_SW	1,158	3,906	163,378	45										
 WY_EC	2,595	8,236	171,614	45										
AZ_NE	4,063	11,694	183,308	46										
NV_SW	5,042	12,501	195,809	49										
WA_SO	3,752	11,942	207,751	51										
Imperial North-B	1,380	3,190	210,941	53										
Imperial South	2,823	6,714	217,655	54										
ID_EA	1,178	4,934	222,589	54										
Owens Valley	3,750	8,194	230,782	56										
BJ_NO	5,655	16,635	247,417	56										
WY_SO	1,940	5,813	253,230	57										
	.,510	0,010	200,200											

Table 1-2

Weighted Average Rank Costs–All CREZ and Resource Areas (Page 2 of 2)

CREZ Name	Net Capacity (MW)	Annual Energy (GWh/yr) ^a	Cumulative Energy (GWh/yr)ª	Weighted Average Rank (Cost (\$/MWh)
AZ_NW	3,758	9,168	262,397	58
NM_EA	11,292	31,626	294,023	58
AZ_WE	9,373	23,130	317,153	58
WY_NO	3,061	9,217	326,369	58
NV_WE	7,836	20,109	346,479	61
WY_EA	7,257	22,690	369,169	62
Iron Mountain	3,662	8,133	377,302	64
NM_SE	1,894	5,376	382,678	65
BJ_SO	2,650	7,973	390,651	73
NV_EA	7,974	19,332	409,984	73
AZ_SO	6,631	16,265	426,249	76
BC_WC	307	2,121	428,370	95
BC_EA	66	429	428,799	130
BC_SE	230	829	429,627	140
BC_WE	1,370	3,194	432,821	142
BC_NE	4,206	10,638	443,459	148
BC_SW	1,922	4,424	447,883	155
BC_SO	2,441	5,208	453,092	157
BC_NO	2,254	5,486	458,577	161
BC_CT	1,024	2,497	461,074	176
BC_NW	1,402	3,442	464,516	185

Source: RETI Phase 2B report (Black and Veatch, 2010) CREZ = Competitive Renewable Energy Zone

^aIncludes transmission losses.