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Groundwater dependent ecosystems (GDEs) rely on near-surface groundwater. These systems are receiving
more attention with rising air temperature, prolonged drought, and where groundwater pumping captures
natural groundwater discharge for anthropogenic use. Phreatophyte shrublands, meadows, and riparian areas
are GDEs that provide critical habitat for many sensitive species, especially in arid and semi-arid environments.
While GDEs are vital for ecosystem services and function, their long-term (i.e. ~30 years) spatial and temporal
variability is poorly understood with respect to local and regional scale climate, groundwater, and rangeland
management. In this work, we compute time series of NDVI derived from sensors of the Landsat TM, ETM+,
and OLI lineage for assessing GDEs in a variety of land and water management contexts. Changes in vegetation
vigor based on climate, groundwater availability, and land management in arid landscapes are detectable with
Landsat. However, the effective quantification of these ecosystem changes can be undermined if changes in spec-
tral bandwidths between different Landsat sensors introduce biases in derived vegetation indices, and if climate,
and land and water management histories are not well understood. The objective of this work is to 1) use the
Landsat 8 under-fly dataset to quantify differences in spectral reflectance and NDVI between Landsat 7 ETM+
and Landsat 8 OLI for a range of vegetation communities in arid and semiarid regions of the southwestern United
States, and 2) demonstrate the value of 30-year historical vegetation index and climate datasets for assessing
GDEs. Specific study areas were chosen to represent a range of GDEs and environmental conditions important
for three scenarios: baseline monitoring of vegetation and climate, riparian restoration, and groundwater level
changes. Google's Earth Engine cloud computing and environmental monitoring platform is used to rapidly
access and analyze the Landsat archive along with downscaled North American Land Data Assimilation System
gridded meteorological data, which are used for both atmospheric correction and correlation analysis. Results
from the cross-sensor comparison indicate a benefit from the application of a consistent atmospheric correction
method, and that NDVI derived from Landsat 7 and 8 are very similar within the study area. Results from
continuous Landsat time series analysis clearly illustrate that there are strong correlations between changes in
vegetation vigor, precipitation, evaporative demand, depth to groundwater, and riparian restoration. Trends in
summer NDVI associated with riparian restoration and groundwater level changes were found to be statistically
significant, and interannual summerNDVI was found to bemoderately correlated to interannual water-year pre-
cipitation for baseline study sites. Results clearly highlight the complementary relationship between water-year
PPT, NDVI, and evaporative demand, and are consistent with regional vegetation index and complementary
relationship studies. This work is supporting land and water managers for evaluation of GDEs with respect to
climate, groundwater, and resource management.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Groundwater dependent ecosystems (GDEs) rely on near-surface
groundwater. They provide critical habitat for many sensitive species
in arid and semi-arid environments and include phreatophyte
shrub lands, meadows, spring areas, and riparian zones. Improved
understanding of how climate and anthropogenic impacts affect the
spatiotemporal variability of GDEs is needed to increase the effective-
ness of ecosystem assessments, monitoring, adaptive management
frameworks, and designations of protected areas (e.g. sage-grouse
habitat). However, the lack of observations provides a constraint on
the utilization of data for decision-making and scientific research.
Long-term remote sensing observations from the Landsat archive have
repeatedly demonstrated value for ecosystem monitoring, and are
increasingly being used to evaluate GDE changes relative to changing
climate, drought, groundwater pumping, and agricultural disturbance
(Elmore et al., 2003; Groeneveld, 2008; Yang et al., 2011; Pritchett and
Manning, 2012; Nguyen et al., 2014; Homer et al., 2015). The longevity
and continuity ofmeasurements from sensors in the lineage of Landsat's
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
Operational Land Imager (OLI), provide important baseline and current
conditions that would not otherwise be attainable.

With free access to the Landsat archive, resource managers can now
rely on long time series of Landsat derived vegetation index information
in order to evaluate important factors affecting vegetation vigor within
GDEs, including natural background variability due to climate, weather,
land surface-atmospheric feedbacks, and anthropogenic factors such as
land use, restoration, and groundwater pumping. However, long time
series analysis with Landsat must deal with number of challenges, in-
cluding data storage, computational efficiency, and changes in sensor
bandwidths over time (i.e. TM, ETM+, OLI). The first two issues can
be easily managed with parallelized cloud computing within Google's
Earth Engine (EE), a powerful new cloud computing and environmental
monitoring platform. The third issue of changing sensor bandwidths
and accurate interpretation of Landsat vegetation index time series,
requires quantification of how changing spectral response functions
between sensors interact with the spectral variability of dynamic
vegetation communities (Li et al., 2013). Effective quantification of
GDE changes, and the credibility of derived resource management
decisions, in part, depends on the compatibility of vegetation indices
derived from different sensors, and the ability to isolate the effects of
climatic and natural hydrologic variability on vegetation vigor from
anthropogenic effects of land and water management.

2. Objective

The objective of thiswork is to 1) use the Landsat 8 under-fly dataset
to quantify differences in spectral reflectance and vegetation indices
between Landsat 7 ETM+ and Landsat 8 OLI for a range of vegetation
communities in arid and semiarid regions of the southwestern United
States, and 2) demonstrate the value of 30-year historical vegetation
index datasets derived from sensors of the Landsat TM, ETM+, and
OLI lineage for assessing GDEs in a variety of land and water manage-
ment contexts. The study approach relies on sensor cross-calibration,
cloud computing of Landsat and meteorological data, and statistical
evaluation of vegetation index time series relative to annual precipita-
tion and evaporative demand, restoration, and changing groundwater
levels. Landsat 7 and 8 images from a brief under-fly test period are
used to develop correction factors that account for differences between
ETM+andOLI, and to assess how discrepanciesmay be correlatedwith
the typical spectral reflectance curves of dominant vegetation commu-
nities within the Great Basin, USA. Two forms of atmospheric correction
are used to evaluate inter-sensor variability of spectral indices: 1) the
at-surface reflectance products of Landsat climate data records available
through the USGS Earth Resources Observation and Science (EROS)
Center Science Processing Architecture (ESPA; USGS, 2015a), and 2)
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the Tasumi et al. (2008) atmospheric correction algorithm that utilizes
meteorological datasets within EE. Time series of corrected Normalized
Difference Vegetation Index (NDVI) are analyzed for six GDE study
areas within the Great Basin to demonstrate the utility of the Landsat
archive for local-scale GDE assessments.

3. Study areas and background

Specific study areas were chosen to represent a range of GDEs and
environmental conditions important for three scenarios: baseline mon-
itoring of vegetation and climate, riparian restoration, and groundwater
level changes (Fig. 1 and Table 1).

3.1. Baseline assessment of vegetation and climate

Spring Valley (Fig. 2a) is located in eastern Nevada, and is of interest
to federal, state, and local water resource and land managers due to the
potential for groundwater development. State of Nevada groundwater
permit terms, along with stipulated agreements by local and federal
agencies, require detailed hydrologic and biological monitoring associ-
ated with groundwater development (NSEO, 2012; Burns and Drici,
2011; BWG, 2009). The alkali shrub phreatophyte area analyzed in
this study is located in the southern portion of SpringValley, and is a pri-
mary groundwater discharge area down gradient from proposed
pumping wells. Depth to groundwater within the study area ranges
from 2 to 10 m below land surface (Moreo et al., 2007). Phreatophyte
shrubs obtain their water requirement from surface water, groundwa-
ter, or both, through root systems that range from shallow to 15 m
depth (Robinson, 1958; Glancy and Rush, 1968; Dawson and Pate,
1996). While phreatophytes within the study area consume ground-
water, they primarily rely on shallow soil water derived from precip-
itation, and typically only consume harder to access groundwater
during summer and early fall when shallow soil moisture levels are
low (Dawson and Pate, 1996; Chimner and Cooper, 2004), thereby
making summer phreatophyte vegetation vigor (i.e. NDVI) a func-
tion of interannual precipitation, soil moisture, and shallow ground-
water level variations.

Indian Valley (Fig. 2b) is located in central Nevada and is of interest
to many wildlife and land managers due to the presence of the greater
sage-grouse (Centrocercus urophasianus), a threatened species that has
been petitioned for formal protection under the Endangered Species
Act (DOI, 2015). Indian Valley has been identified as priority habitat
due to its high sage-grouse lek (themale's mating arena) count, remote
location, and relatively undisturbed phreatophyte meadow and shrub
areas (BLM, 2012). An active area of cross-disciplinary research on
sage-grouse is focused on the use of climate and Landsat archives to
better understanding how climate, vegetation vigor, and sage-grouse
habitat co-vary in time and space, and to identify which areas are resis-
tant to prolonged drought (Aldridge and Boyce, 2007; Homer et al.,
2015; Donnelly et al., 2016).

3.2. Riparian restoration

Maggie Creek (Fig. 3a) and Susie Creek (Fig. 3b), both located in
north-central Nevada, are tributaries to the Humboldt River that
support Lahontan cutthroat trout (Oncoryhnchus clarki henshawi). This
species has been federally listed under the Endangered Species Act
due to its sensitivity to changes in land and water use, prolonged
drought, and changing climate (Williams et al., 2015). Vegetation
communities within riparian zones of Maggie and Susie Creeks are
typical of the Great Basin and include both obligate and facultative
herbaceous and woody phreatophyte species. The Bureau of Land
Management (BLM) collaborated with federal and local government
agencies, non-profit organizations, and local mining and livestock
companies to implement comprehensive watershed and riparian resto-
ration efforts beginning in the early 1990s. Restoration efforts included
te and resource management on groundwater dependent ecosystem
ent (2016), http://dx.doi.org/10.1016/j.rse.2016.07.004

http://dx.doi.org/10.1016/j.rse.2016.07.004


Fig. 1. Study areaswithin the Great Basin and location of the contemporaneous Landsat 7/8 image data. The Landsat 8 under-fly datasetwas acquired onWRS-2 path 38 from rows 31–38,
which spans the Great Salt Lake to Mexico. The brown path represents Landsat 7 with SLC off, and the green path represents Landsat 8.
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fencing, culvert replacement, prescriptive livestock grazing, and devel-
opment of livestock water sources away from stream areas (Elliott et
al., 2004). These efforts led to a recolonization of beaver and advanced
restoration through increased shallow groundwater, stream bank
storage, and habitat resilience (Williams et al., 2015).

3.3. Groundwater level changes

In theGreat Basin, insufficient surfacewater storage requires growers
to irrigate with groundwater. Groundwater pumping for irrigation often
times results in lowering of the groundwater table (i.e. phreatic surface),
Table 1
Study area names, locations, Landsat path and row, and vegetation and groundwater informat

Study area Location (lat, long) Altitude
(m)

WRS-2
path/row

Vegetation
class

Spring Valley, NV 38.8010, −114.4760 1758 39/33 Alkali shrub
Indian Valley, NV 38.8010, −117.5000 2247 41/33 Meadow

Maggie Creek, NV 40.8860, −116.1870 1599 41/32 Riparian
Susie Creek, NV 40.8350, −116.0242 1564 41/32 Riparian
Fish Lake Valley,
CA/NV

37.8036,-118.0667 1476 41/34 Alkali shrub

Snake Valley, UT/NV 38.7556, −114.0296 1662 39/33 Wetland

Please cite this article as: Huntington, J., et al., Assessing the role of clima
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leading to reduced phreatophyte evapotranspiration (ET) and vegeta-
tion vigor (Bredehoeft et al., 1982; Bredehoeft, 2002; Nichols, 2000,
Elmore et al., 2003; Elmore et al., 2006; Naumburg et al., 2005; Cooper
et al., 2006; Patten et al., 2008; Groeneveld, 2008). Shallow groundwa-
ter and spring areaswithin Fish Lake Valley, Nevada (Fig. 4a) and Snake
Valley, Utah, (Fig. 4b) respectively, were chosen to illustrate multi-year
declines of shallow groundwater levels and vegetation vigor associated
with groundwater pumping. These areas support obligate and faculta-
tive herbaceous and woody phreatophyte species, and associated
fauna. The spring study area in Snake Valley, Needle Point Spring, is
the subject of litigation between federal agencies and local irrigators
ion.

Water table (m below land
surface)

Plant types

2–10 Greasewood, sagebrush, saltgrass
0.5–2.5 Greasewood, sagebrush, saltgrass, meadow

grass
0–2 Willow, sedge, rush
0–2 Willow, sedge, rush
4–10 Greasewood, saltgrass

0–3 Cattail, greasewood, sagebrush, saltgrass

te and resource management on groundwater dependent ecosystem
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Fig. 2. Spring Valley alkali shrub (a) and Indian Valley meadow (b) natural variability study areas (black polygons). 2006 National Airborne Imagery Program (NAIP) imagery (left) and
April–October 2014 Landsat 8 median NDVI (right). NDVI values linearly scaled and range from 0.0 (white) to 0.8 (black).

Fig. 3.Maggie Creek (a) and Susie Creek (b) riparian zone study areas (black polygons). 2006 NAIP imagery (left) and April–October 2014 Landsat 8 median NDVI (right). NDVI values
linearly scaled and range from 0.0 (white) to 0.8 (black).
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Fig. 4. Fish Lake Valley shallow groundwater (a) and Snake Valley Needle Point spring (b) groundwater change study areas (black polygons). 2006 NAIP imagery (left) and April–October
2014 Landsat 8 median NDVI (right). NDVI values linearly scaled and range from 0.0 (white) to 0.8 (black).
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since the spring ceased to flow in 2001 (Halford, 2015; Childress and
Smith, 2015).

4. Methods

Landsat data processing for each study area was performed through
the development of Python computer programs that use the EE applica-
tion programming interface (API) to access Landsat and hourly meteo-
rological data archives. The processing workflow implements simple
automated cloud masking (Irish et al., 2006), integration of hourly me-
teorological data for atmospheric correction and at-surface reflectance
estimation (Tasumi et al., 2008), and computation of NDVI from 1985
to the present. Programming within the EE API allowed efficient scene
selection and processing of 403 Landsat images collected over the six
study sites (average of 67 images per study site from 1985 to 2014).

4.1. Sensor cross-calibration

The bandwidths of spectral channels on Landsat satellites have
changed over time. Fig. 5 illustrates the spectral response functions of
red (TM: 630–690 nm, ETM+: 630–690 nm, OLI: 640–670 nm) and
near infrared (NIR; TM: 760–900 nm, ETM+: 770–900 nm, OLI: 850–
880 nm) bands of Landsats 5, 7, and 8 along with representative spectra
from Clark et al. (2007) of five plant species that are found in the study
area (fir, juniper, piñon, sagebrush, and rabbitbrush). ETM+ response
functions are seen to be relatively similar to the original TM, while the
bandwidths of the OLI sensor are narrowed, particularly for the NIR
band. Steven et al. (2003) suggest that there is a 2% increase in NDVI
from TM to ETM+, but their result appears to have been biased up-
wards by questionable outliers that perhaps should have been removed
(Steven et al., 2003, Fig. 3). Martínez-Beltrán et al. (2009) found
increases in NDVI from TM to ETM+ to be b1%, and Vogelmann et al.
(2001) support the interchangeability of the two sensors, so this
Please cite this article as: Huntington, J., et al., Assessing the role of clima
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analysis made no attempt to compensate between TM and ETM+.
However, the more dramatic difference of OLI spectral bands has been
identified as requiring attention (Li et al., 2013; Roy et al., 2016).

The effect of changes in the OLI spectral bands for vegetation in the
Great Basin was assessed using images from OLI and ETM+ that were
acquired within 7 min of each other on March 29, 2013 during the
“under-fly” testing of the Landsat 8 system (Roy et al., 2014; USGS,
2015b). This under-fly dataset was acquired on WRS-2 path 38 from
rows 31–38, which spanned the Great Salt Lake to Mexico (Fig. 1).
Only rows 33–37 were used in this analysis, as the others had too
much cloud cover or haze to be useful. Atmospherically corrected OLI
and ETM+ images were intersected with up to 54 natural vegetation
te and resource management on groundwater dependent ecosystem
ent (2016), http://dx.doi.org/10.1016/j.rse.2016.07.004
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classes of the LANDFIRE vegetation map (USGS, 2010) to determine
how OLI must be rescaled to match ETM+, and to examine the degree
to which differences might be dependent on vegetation class type.
Vegetation-dependent changes in NDVI are detected if different classes
exhibit differing spectral reflectance distributions within the narrower
OLI bands as compared to the broader ETM+ bands.

Twomethods of radiometric and atmospheric correctionswere test-
ed with the Landsat imagery, 1) the Landsat surface reflectance climate
data record provided through the ESPA on-demand interface of the
USGS EROS Data Center (Masek et al., 2006; USGS, 2015a), and 2) a
method following Tasumi et al. (2008) and Trezza and Allen (2013).
The ESPA surface reflectance product uses the USGS Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) software for The-
matic Mapper imagery from Landsats 5 and 7, and the preliminary
USGS L8SR (Landsat 8 Surface Reflectance) software for OLI imagery
(USGS, 2015a). The Tasumi/Trezza method was implemented within
EE with spatially distributed, near-surface hourly vapor pressure from
the North American Land Data Assimilation System (NLDAS; Mitchell
et al., 2004) to estimate precipitable water and atmospheric transmit-
tance (Tasumi et al., 2008). Spatially distributed atmospheric pressure
was estimated from the 30mNational ElevationDataset (NED) following
ASCE-EWRI (2005).

While the under-flight of Landsat 8 was nearly contemporaneous
with Landsat 7, the two paths were not identical (Fig. 1) - the ETM+
scan line correctormirror created data gaps, and cloudsmoved between
acquisitions. As such, amask of themost consistent regions between the
two sensors was required for inter-sensor calibration. Clouds and cloud
shadows in both images were manually masked out with a buffer
distance of approximately 1 km to ensure that gradients and cloud
cover and haze were removed. Areas with a NIR reflectance of b0.05
were masked out to remove water bodies and areas of deep shadow
that affect NDVI. Pixels on either side of boundaries between classes in
the LANDFIRE map were removed to reduce the influence of map mis-
registration, as well as misregistration between the two satellite over-
passes in areas of high relief that arose from the offset in overpass
position. LANDFIRE classes with masked areas containing b1000 pixels
were removed from the analysis to ensure that a stable mean value
was calculated for each land cover class. The mean red, NIR, and NDVI
for each vegetation class was calculated, and OLI mean values were
regressed against ETM+ to determine the appropriate transformation
to make NDVI from OLI consistent with the prior sensors.

4.2. Data preparation for GDE assessments

Boundaries were defined around the six study areas (Figs. 2–4) and
used to spatially and temporally average summer NDVI derived from
cloud-free Landsat images that were closest in time to the middle of
June, July, and August from 1985 to 2014. For riparian restoration
study sites, average summer NDVI was computed from July–August
Landsat images so that the potential for standing water to decrease
NDVI was minimized. Based on results of the sensor cross-calibration
(detailed in the Results section), NDVI was computed using the
Tasumi/Trezza at-surface reflectance method. NDVI was chosen over
other indices (i.e. Soil Adjusted Vegetation Index or Modified Soil
Adjusted Vegetation Index) since NDVI has the breadth and history of
usage that is not matched by other indices, is a popular standard mea-
sure, does not require soil parameter calibration, and has been shown
to outperform other indices for quantifying sparse vegetation cover in
arid environments (McGwire et al., 1999; Wu, 2014). To detect the
signal of interannual groundwater availability within GDEs, it was
important to focus on periods when shallow soils were dry, and when
spectral variability due to the happenstance timing of individual
precipitation events was minimized. Precipitation over the study areas
is generally at its minimum in June for the more southern and eastern
study areas, and in July and August for the northern study areas. Images
acquired during the summer months of June–August were selected to
Please cite this article as: Huntington, J., et al., Assessing the role of clima
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limit the NDVI signal of shallow rooted grasses and forbs, andmaximize
the phreatophyte NDVI signal derived from groundwater.

Summer streamflow, springflow, and shallow groundwater levels in
the Great Basin are highly correlated to annual precipitation due to the
fact that the majority of annual precipitation falls during winter as
snow, and spring snowmelt provides the majority of groundwater
recharge that is later discharged during summer and fall (Huntington
and Niswonger, 2012; McEvoy et al., 2012). Water-year (October–
September) precipitation (PPT) for each study site was estimated from
a hybrid 4 km spatial resolution gridded weather dataset, GRIDMET
(Abatzoglou, 2013), based on the Parameter Regression on Independent
Slopes Model (PRISM) (Daly et al., 1994) and NLDAS (Mitchell et al.,
2004). Evaporative demand (ET0)was estimated using the standardized
Penman-Monteith equation, which is a function of daily solar radiation,
air temperature, humidity, and wind speed (ASCE-EWRI, 2005). Daily
GRIDMET data were accessed within EE to estimate water-year PPT
and ET0 totals at each study site.

Groundwater level data from the Arlemont Ranch well located
within the Fish Lake Valley study area (Fig. 4a), was acquired from the
Nevada Division of Water Resources water level database (NDWR,
2015). Twowater level readings per yearwere typically reported, there-
fore an average of the two readings was computed for each year.
Groundwater level and nearby agricultural pumping data for theNeedle
Point Spring study area (Fig. 4b) was acquired from Summers (2001)
and Halford (2015). Annual average groundwater levels and pumping
rates were compared with summer NDVI and water-year PPT and ET0
to assess historical vegetation response to climate and changing
groundwater levels.

5. Results

5.1. Sensor cross-calibration

Average LANDFIRE vegetation class red, NIR, and NDVI values
derived from USGS ESPA products and the Tasumi/Trezza method are
illustrated in Fig. 6. The Tasumi/Trezza method shows a markedly
higher degree of correspondence in NDVI between ETM+ and OLI
observations. The greater degree of scatter observed in the ESPA plots
is likely due to the mixing of atmospheric correction methods between
sensors, and limitations the current L8SR software has for areas of high
topography (USGS, 2015a). Due to the close correspondence in NDVI
between ETM+ and OLI observations, results presented in the follow-
ing sections were derived solely from the Tasumi/Trezza method.

As might be expected by the greater difference in bandwidths, scat-
ter in Fig. 6 is more pronounced in the NIR than in the red band. While
regression residuals for NDVI were relatively small (maximum absolute
value b0.02), the four most under-predicted classes in Fig. 6 were all
mixed conifer classes, while the two most over-predicted classes
contained Gambel oak (Quercus gambelii). This suggests that some
vegetation communities did have a detectable difference in spectral re-
flectance between the ETM+ and OLI bandwidths. However, there
were seven other conifer classes that were quite close to the regression
line, so a generalization about conifers could not be made. None of the
vegetation classes that appear as outliers (Fig. 6) are present in the
study areas. The Tasumi/Trezza NDVI regression in Fig. 6 was applied
in the EE workflow to compute OLI NDVI for each of the six study areas.

5.2. Baseline assessment of vegetation and climate

Interannual variations of vegetation vigor and climate for Spring
Valley and Indian Valley study areas are illustrated by plotting summer
NDVI with annual PPT and ET0 (Figs. 7 and 8). Results show that NDVI
and PPT time series co-vary and have similar long-term trends
(Fig. 7). While it is evident that NDVI co-varies with annual PPT, statis-
tical correlation between the two variables is only moderate, with R2

values of 0.49 and 0.41 for Spring Valley and Indian Valley, respectively.
te and resource management on groundwater dependent ecosystem
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Fig. 6.Mean values of ETM+versus OLI in LANDFIRE vegetation classes for red (a, b), NIR (c, d), and NDVI (e, f) using USGS ESPA Landsat surface reflectance products (a, c, e) and Tasumi/
Trezza at-surface reflectance (b, d, f). Symbols indicate the generalized life form attribute of each vegetation class.
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Factors limiting the strength of the relationship between annual PPT
and summer average NDVI could include: 1) antecedent soil moisture
conditions, 2) sparse leaf area of Spring Valley setting a lower limit on
detectability; 3) influence of background soil reflectance; 4) presence
of shallow groundwater stabilizing minimum vegetation vigor and
NDVI, and 5) wide range in NDVI during summer months as illustrated
by maximum and minimum values shown in Fig. 7. The deeply rooted
phreatophytes of Spring Valley appear to be buffered against years
with extremely low PPT more than the shallow rooted meadow grass
in Indian Valley (i.e. multi-year drought periods of 1989 to 1994).

Annual vegetation and near-surface atmospheric and climatic feed-
backs are evaluated by plotting summer average NDVI and annual ET0
on the y-axes, with annual PPT on the x-axis (Fig. 8). Illustrating PPT
and ET0 with vegetation and land surface states and fluxes is useful for
evaluating thewell-known complementary relationship between actual
Please cite this article as: Huntington, J., et al., Assessing the role of clima
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ET and ET0 in arid environments (Brutsaert and Stricker, 1979; Hobbins
et al., 2004; Huntington et al., 2011; Jaksa et al., 2013). The use of sum-
mer vegetation indices as proxies for phreatophyte annual ET has been
well established within the Great Basin (Nichols, 2000; Groeneveld et
al., 2007; Smith et al., 2007; Beamer et al., 2013; Garcia et al., 2014).
Fig. 8 illustrates that as annual PPT increases, NDVI increases and ET0 de-
creases. Conversely, as PPT decreases, so does NDVI, while ET0 increases.

These results are consistentwith land surface energy balance theory.
When water is limited, and available energy is fairly uniform in space,
energy that would have been used for ET is instead used in the produc-
tion of sensible heat flux, thereby increasing air temperature, vapor
pressure deficit, and ultimately ET0 (Brutsaert and Stricker, 1979). This
drying scenario is well illustrated in Fig. 8, where ET0 increases as PPT
and NDVI decrease. The complementary relationship between actual
ET and ET0 has been shown to be prevalent at multiple time scales in
te and resource management on groundwater dependent ecosystem
ent (2016), http://dx.doi.org/10.1016/j.rse.2016.07.004

http://dx.doi.org/10.1016/j.rse.2016.07.004


Fig. 7. Spatially averaged summerNDVI and annual PPT time series for SpringValley (a) and IndianValley (b) phreatophyte shrub andmeadowvegetation study areas. NDVI tics represent
June–August maximum and minimum NDVI values. Years with missing maximum and minimum NDVI tics indicate that only one image was available.
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Spring Valley and other phreatophyte shrub areas in Nevada usingmea-
sured energy balancedata (Huntington et al., 2011; Beamer et al., 2013).
These results clearly highlight the complementary relationship between
vegetation vigor, ET0, and PPT, and are consistent with similar remotely
sensed vegetation index and complementary relationship studies
(Goward et al., 1994; Szilagyi, 2002; Mo et al., 2014). The long time
history of Landsat allows for baseline variability of vegetation vigor
and complementary relationships between vegetation and climate to
be established at local to regional scales.

5.3. Riparian restoration

The ecological benefits from watershed restoration of Maggie Creek
and Susie Creek have been previously well documented (Elliott et al.,
2004; Williams et al., 2015). However, interannual Landsat time series
of vegetation vigor offer a new perspective for evaluating how riparian
areas within these restored watersheds have responded to multiple
drought cycles over several decades.Watershed and riparian area resto-
ration efforts within theMaggie and Susie Creek drainages began in the
early 1990s, and since that time riparian area NDVI has markedly
increased (Fig. 9). Maggie and Susie Creek NDVI trends from 1985 to
2014 are statistically significant at the 95% confidence level using the
Mann-Kendall trend test (Helsel and Hirsch, 1992), with p-values of
1.4E−06 and 4.1E−04, respectively. July–August maximum and
Fig. 8. Spring Valley (a) and Indian Valley (b) summer NDVI, annual ET0, and PPT, showing a c
increases with PPT, ET0 decreases due to near surface atmospheric feedbacks.
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minimum NDVI trends are also statistically significant for both sites
(p-values of 1.8E−04 and 4.1E−05 for Maggie Creek, and 1.7E−03
and 3.1E−03 for Susie Creek, respectively). Amore directmetric of veg-
etation change since restoration is the percent increase in July–August
average NDVI from pre- to post-restoration periods (1985–1989 and
1990–2014). Maggie Creek NDVI increased by 54% from 0.288 to
0.444, and Susie Creek NDVI increased by 67% from 0.236 to 0.396.
Average annual PPT increase from pre- to post-restoration was 13%
and 14% for Maggie and Susie Creek, respectively, so only part of the
post-restoration NDVI increase can be attributed to increased PPT and
streamflow given that annual PPT and annual and summer streamflow
are highly correlated in this region (Berger, 2000; Prudic et al., 2006;
McEvoy et al., 2012). An important attribute of successful riparian
restoration is reduced drought stress (Stromberg, 2001; Shafroth et al.,
2002). Reduced drought stress since restoration is evident during
droughts of the late 1990s and early 2000s, 2007 and 2008, and 2012
and 2013, by the increase of July–August average, maximum, and
minimum NDVI values illustrated in Fig. 9.

5.4. Groundwater level changes

Annual PPT, groundwater level, and corresponding summer NDVI
changes for the Fish Lake study area are illustrated in Fig. 10. Groundwa-
ter levels have steadily decreased since 1979 due to groundwater
omplementary relationship between NDVI and ET0. As NDVI (i.e. proxy for ET) generally
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Fig. 9. Spatially averaged July–August NDVI and annual PPT time series for Maggie Creek (a) and Susie Creek (b) riparian restoration sites. NDVI tics represent July–August maximum and
minimum NDVI values.
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pumping for irrigated agriculture adjacent to the study area (Fig. 4).
Depth to groundwaterwas approximately 5m in1985, andhas declined
at a rate of ~0.167 m/year to reach a depth of 10 m in 2014. NDVI has
also declined during theperiod of groundwater level decline, with inter-
mittent NDVI increases that correspond to anomalously high annual
PPT. The trendof June–August averageNDVI from1985 to 2014 is statis-
tically significant at the 95% confidence level, with a p-value of
4.2E−06. Summer maximum and minimum NDVI trends from 1985
to 2014 are also statistically significant, with p-values of 6.9E−04 and
8.7E−05, respectively.

Figs. 11 and 12 illustrate spatially averaged summer NDVI paired
with annual PPT, depth to groundwater, groundwater pumping, and
ET0 for the Needle Point Spring study area, where it is observed that
NDVI begins to decline following the year 1999, and is coincident with
the onset of pumping and drought. According to Summers (2001), Nee-
dle Point spring ceased flowing in 2001. NDVI has continued to decline
since 2001,withNDVI increases that coincidewith years of anomalously
high annual PPT. The downward trend in NDVI from1985 to 2014 is sta-
tistically significant at the 95% confidence level (p-value of 3.4E−04),
and there is a slight positive trend in PPT during this same period.
Summer maximum andminimumNDVI trends are also statistically sig-
nificant, with p-values of 3.7E−03 for both maximum and minimum
NDVI. Average summer NDVI for pre- and post-groundwater pumping
periods (1986–1999 and 2000–2014) was 0.37 and 0.29, respectively,
which equates to a 22% decrease. Average annual PPT was 239 and
221 mm for pre- and post-groundwater pumping periods, an 8%
Fig. 10. Spatially averaged summer NDVI and annual PPT time series (a) and spatially averaged
NDVI time series illustrate a general decline as depth to groundwater increases. NDVI tics repr
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decrease. These results suggest that the post-pumping NDVI decline
(2000 to 2014) could be partly attributed to lower annual PPT. Howev-
er, given the supporting evidence of measured and simulated ground-
water level declines (Summers, 2001; Halford, 2015), long-term NDVI
declines are most likely related to groundwater pumping adjacent to
the spring area (Fig. 12a). Reduced maximum, minimum, and average
summer NDVI peaks during post-pumping further support this hypoth-
esis. For example, average NDVI values coincident with anomalously
high PPT years of 2005 and 2011 never reach the pre-pumping average
NDVI of 0.37 (Fig. 11b). Additionally, the relationship between PPT and
NDVI markedly changed during the post-pumping period (Fig. 12b).

6. Discussion

Isolating the impacts of natural climatic andhydrologic variability on
vegetation vigor, from of the impacts of anthropogenic land and water
management is challenging, yet important for identifying cause and
effect relationships. Having the ability to readily evaluate lengthy and
paired time series of climate and Landsat derived vegetation vigor,
offers land and water managers new and valuable information for
long-term assessment of GDEs. Such lengthy Landsat derived time
series require effective sensor cross-calibration so that cause and effect
are notmisinterpreted (Roy et al., 2016). Fig. 6 demonstrates the impor-
tance of using a consistent atmospheric correction method across
sensor systems. Themagnitude of OLI/ETM+NDVI regression residuals
using the ESPA products was double that of the Tasumi/Trezza method.
summer NDVI and average depth to groundwater (b) for the Fish Lake Valley study area.
esent June–August maximum and minimum NDVI values.
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Fig. 11. Spatially averaged summerNDVI and annual PPT time series (a) and spatially averaged summerNDVI and average depth to groundwater (b) for theNeedle Point Spring study area.
NDVI tics represent June–August maximum and minimum NDVI values.
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While the use of differing atmospheric correction algorithms from
ESPA may be dictated by operational data processing flows, consistent
implementation of the Tasumi/Trezza method using EE cloud comput-
ing allowed rapid on-demand processing and delivery to the desktop
computer with consistent image data products. The near-contempora-
neous collection of images during the Landsat 8 under-fly testing
period, and our averaging of NDVI within boundary-masked areas of
different vegetation classes, essentially eliminated the effects spatio-
temporal misregistration on the regressions of Fig. 6. The high level of
correspondence between Tasumi/Trezza-corrected NDVI across a wide
variety of natural vegetation communities suggests that the dramatic
change in NIR bandwidths from ETM+ to OLI is well corrected by linear
regression and should not generally interfere with time series analyses.
These findings suggest that vegetation index analyses originating from
different Landsat sensors can be made easily compatible, allowing
seamless analysis over the entire archive. However, the consistency of
species composition among the most positive and the most negative
regression residuals indicates that land-cover specific adjustments
may be, in some cases, necessary.

While time series analyses of Landsat data over spatially limited
study areas are often powerful and enlightening, cloud storage comput-
ing capabilities (i.e., co-located storage and parallel processing of
Landsat, meteorology, and climate datasets with geospatial analysis ca-
pabilities) provided by EEmake it possible to easily and rapidly spatially
up-scale. A computation that would take a single computer minutes to
Fig. 12. Groundwater pumping and depth to groundwater for the Needle Point Spring study
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hours can be performed in a matter of seconds. This allows for explora-
tion of multiple interannual temporal and spatial signals over large
regions. Large scale spatiotemporal analyses, previously precluded
due to massive storage and computational volumes, are for the first
time, practical due to geospatially-enabled cloud computing systems.
However, regardless of newly available computing power, a limitation
with respect to seasonal and interannual time series analysis is the
limited number of cloud free Landsat images available for time periods
of interest (e.g. 8 or 16 day returns for calculation of one to three
month summer maximum, minimum, and average NDVI). Integration
of newly available Sentinel 2 imagery with Landsat processing
workflow will increase the probability of cloud free images available
for seasonal and interannual time series analysis.

Future research that combines both time series and spatial analyses
will greatly enhance our ability to rapidly evaluate the magnitude, spa-
tial extent, and cause of GDE changes related to climate, land, andwater
management (Kennedy et al., 2014). Sophisticated tools for Landsat
spatial time series analysis that have traditionally been focused on forest
disturbance and recovery such as LandTrendr and TimeSync (Kennedy
et al., 2010; Cohen et al., 2010), could prove extremely useful for rapid
GDE monitoring within EE. Currently, simple products such as Landsat
scale NDVI anomalies (i.e. per pixel difference from long-term average)
can be rapidly generated within EE to explore and discover relative
change, and be combined with climate, meteorological, and field data.
For example, Fig. 13 illustrates the Needle Point Spring June–August
area (a), and annual PPT, ET0, and summer NDVI, for pre and post-pumping periods (b).

te and resource management on groundwater dependent ecosystem
ent (2016), http://dx.doi.org/10.1016/j.rse.2016.07.004

http://dx.doi.org/10.1016/j.rse.2016.07.004


Fig. 13. Needle Point Spring Landsat 8 median true color composite (a), and NDVI anomaly (b), for June–August 2014.
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2014 NDVI anomaly (i.e. difference) relative to the 1985 to 2014
average using Landsat 5, 7, and 8 top-of-atmosphere reflectance image
collections within EE. While Fig. 13 clearly illustrates that Needle Point
Spring has anomalously low NDVI during summer of 2014, it also
shows anomalously low NDVI within groundwater discharge areas to
the east and southeast of Needle Point Spring (i.e. high reflectance saline
soil areas shown in true color image). Conversely, anomalously high
NDVI areas primarily occur in non-phreatophyte upland areas to the
southwest of Needle Point Spring because of anomalously high rains
that occurred during the summer of 2014. Future efforts for regional
long-term and interannual GDE monitoring could combine spatial and
temporal distributions of vegetation indices with vegetation type, and
climatic, meteorologic, and hydrologic distributions to better isolate
and analyze natural and anthropogenic impacts.

7. Conclusions

This paper highlights the use of the Landsat archive for monitoring
groundwater dependent ecosystems (GDEs). These ecosystems provide
critical habitat for many sensitive species in arid and semi-arid environ-
ments of phreatophyte shrub lands, meadows, spring areas, and ripari-
an zones. The Landsat archive shows meaningful correlations between
changes in annual vegetation vigor (NDVI), precipitation, evaporative
demand, depth to groundwater, and land and water management
within six GDE study areas. The study approach relied on sensor
cross-calibration, cloud computing of Landsat and meteorological data,
and statistical evaluation. This approach can provide rapid, useful
interpretations of GDE conditions. Results indicate a benefit from the
application of a consistent atmospheric correctionmethod across differ-
ent Landsat sensors. Special attention should be given to whether the
observed level of inconsistency in at-surface reflectance for Landsat
can be minimized in future operational products. Having demonstrated
the ability of the current Landsat archive to detect trends in GDEs
related to climate, groundwater, and resource management, that will
ultimately fill critical information needs for science-informed decisions,
it is clear that a compatible remote sensing data stream must be
maintained into the future, and that the value of this consistent growing
archive will compound over time. The longevity and continuity of mea-
surements from sensors in the lineage of Landsats provide important
baseline and current conditions for ecosystem assessments that would
not otherwise be attainable.
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