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Abstract. Thresholds and their relevance to conservation have become a major topic of
discussion in the ecological literature. Unfortunately, in many cases the lack of a clear
conceptual framework for thinking about thresholds may have led to confusion in attempts to
apply the concept of thresholds to conservation decisions. Here, we advocate a framework for
thinking about thresholds in terms of a structured decision making process. The purpose of
this framework is to promote a logical and transparent process for making informed decisions
for conservation.

Specification of such a framework leads naturally to consideration of definitions and roles
of different kinds of thresholds in the process. We distinguish among three categories of
thresholds. Ecological thresholds are values of system state variables at which small changes
bring about substantial changes in system dynamics. Utility thresholds are components of
management objectives (determined by human values) and are values of state or performance
variables at which small changes yield substantial changes in the value of the management
outcome. Decision thresholds are values of system state variables at which small changes
prompt changes in management actions in order to reach specified management objectives.
The approach that we present focuses directly on the objectives of management, with an aim
to providing decisions that are optimal with respect to those objectives. This approach clearly
distinguishes the components of the decision process that are inherently subjective
(management objectives, potential management actions) from those that are more objective
(system models, estimates of system state). Optimization based on these components then
leads to decision matrices specifying optimal actions to be taken at various values of system
state variables. Values of state variables separating different actions in such matrices are
viewed as decision thresholds. Utility thresholds are included in the objectives component, and
ecological thresholds may be embedded in models projecting consequences of management
actions. Decision thresholds are determined by the above-listed components of a structured
decision process. These components may themselves vary over time, inducing variation in the
decision thresholds inherited from them. These dynamic decision thresholds can then be
determined using adaptive management. We provide numerical examples (that are based on
patch occupancy models) of structured decision processes that include all three kinds of
thresholds.

Key words: adaptive resource management; ecological thresholds; patch occupancy models; stochastic
dynamic programming; structured decision making.

INTRODUCTION

Thresholds and their relevance to conservation have

become a popular topic of discussion among ecologists,

conservation biologists, managers and policy makers

(Burgman 2005, Bestelmeyer 2006). Unfortunately, in

many cases the lack of a clear conceptual framework for

thinking about thresholds may have led to confusion in

attempts to apply the concept of thresholds to conser-

vation decisions. Here, we advocate a framework for

thinking about thresholds in terms of a structured

decision making process (SDM; Clemen and Reilly

2001). The purpose of this framework is to promote a

logical and transparent process for making informed

decisions for conservation and management. Specifica-

tion of such a framework leads naturally to consider-

ation of definitions and roles of different kinds of

thresholds in the process.

We distinguish among three kinds of thresholds that

we believe to be relevant to making decisions in

conservation: ecological, utility, and decision thresholds.

Ecological thresholds can be defined generally as values

of system state variables across which small changes

produce either changes in system dynamics of specified

magnitude (typically large or ecologically substantial

changes) or changes to specific values of system-dynamic

descriptive metrics (e.g., P(extinction) ¼ 1). This
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operational definition is generally consistent with

discussions of ecological thresholds encountered in the

literature in which such thresholds are often defined as a

point or a zone at which there is a sudden change in the

condition of a biological system (e.g., system state;

Fahrig 2001, Huggett 2005, Pascual and Guichard 2005,

Groffman et al. 2006, Bennetts et al. 2007). For example,

in the case of vegetation communities in the Chihuahuan

Desert, the ecological threshold may occur when modest

changes in precipitation patterns produce a shift from

grass- to shrub-dominated communities (Brown et al.

1997, Groffman et al. 2006). Another example is the case

of extinction thresholds in metapopulation systems. The

threshold occurs when a small change in some parameter

(e.g., proportion of habitat in a landscape that is

suitable) triggers a change in the equilibrium occupancy

from some positive probability to 0 (Lande 1987, Fahrig

2001, Benton 2003). Ecological thresholds may also be

defined based on movement of systems to permanent

absorbing states rather than to strictly transient states.

This can have important consequences for making

conservation decisions. Indeed, conservation decisions

may be very different if a small change in an

environmental variable shifts the system from a tran-

sient state (e.g., high abundance of a species) to another

transient state (e.g., local extinction but with possibility

of recolonization of the system) rather than to a

permanent absorbing state (e.g., global extinction with

no possibility of recolonization). Other concepts related

to ecological thresholds, such as ecological resilience

(Holling 1973) and elasticity (Bodin and Wiman 2007),

can also have important implications for making

optimal decisions. Ecological resilience can be defined

as the magnitude of perturbation a system can absorb

before it changes from one state to another (Gunderson

2000), whereas elasticity is the time required for a system

to return to its equilibrium state after a perturbation

(Bodin and Wiman 2007). There is now widespread

consensus among ecologists that ecological thresholds

and other related concepts (e.g., resilience and elasticity)

are relevant to both science and management (Bodin

and Wiman 2007). However, in order for ecological

thresholds (and related concepts) to be most useful to

natural resource management and conservation, we

believe that they must be incorporated into models that

are then used to derive management decisions (see also

Conroy et al. 2003, Bestelmeyer 2006).

Two other kinds of thresholds are relevant to natural

resource management and conservation decision mak-

ing. We define utility thresholds as values of state or

performance variables at which small changes yield

substantial changes in the value of the management

outcome. For example, we might specify that an

objective of management of a particular species in a

national park is that the population size should remain

high enough for park visitors to have a reasonable

chance to observe the species during a visit (let’s say

10%). The park managers may have determined that this

population size is about N*. Therefore, according to this

management objective, management should seek to keep

the population size above N* individuals. Unlike

ecological thresholds, which are part of the pattern

and process of nature, utility thresholds are subjective

and determined by human values. In some cases,

however, the development of utility thresholds may be

based on ecological thresholds. For instance, if manag-

ers are concerned about preventing a species from going

extinct, then in this case N* may be determined based on

extinction thresholds and the desire to keep population

size far above such a threshold. But even in this latter

scenario, the decision to focus on preventing the

extinction of a particular species is subjective and based

on human values.

Finally, we define decision thresholds (sometimes

referred to as management thresholds, see Bennetts et

al. 2007) based on values of system state variables that

should prompt specific management actions. Decision

thresholds are thus conditional on, and derived from,

ecological and utility thresholds. For example, if one

state variable (e.g., water levels in a wetland) is

influenced directly by management actions (e.g., irriga-

tion) and is known to affect another state variable (the

proportion of patches occupied by a species, w), the

decision threshold corresponds to the values of water

levels and w at which a small change will prompt a

change in management action (e.g., from no irrigation to

some irrigation) in order to achieve specified manage-

ment objectives (e.g., w . 0.3 see Numerical example 1

for more details).

We believe that discussions of thresholds in the

ecological literature have not always been clear, and

that distinctions among types of thresholds have not

always been adequate. For example, it is very common

to find no distinction in practice between utility and

decision thresholds. A common approach to manage-

ment under the declining-population paradigm (Caugh-

ley 1994) is to view a finite rate of increase (k) of 1

simultaneously as a utility and a decision threshold. A

declining population (k , 1) is viewed as undesirable,

such that k ¼ 1 is a utility threshold. The decision

process entails testing for a negative trend in abundance

(e.g., based on empirical data and statistical models),

with a ‘‘significant’’ negative trend then triggering

management actions (decision threshold). Management

under the SDM approach that we advocate (see below)

tends to produce decision thresholds that are more

conservative than this trend-detection approach. If k¼ 1

is our utility threshold, then management actions

typically occur well before the population is actually

declining, in an effort to keep k � 1. Indeed, the trend-

detection approach has been criticized as leading to

unnecessary delays in management actions (Maxwell

and Jennings 2005, Nichols and Williams 2006). In

addition, the usual approach of placing trend detection

in a hypothesis-testing framework invites discussion

about type I and II error rates (e.g., arbitrary a for
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hypothesis testing) and the relative risks associated with

these errors (see Field et al. 2004 for a discussion of this

topic).

The approach to structured decision making that we

advocate herein focuses directly on the objectives of

management, with an aim to providing decisions that

are optimal with respect to those objectives, given

existing knowledge about system behavior. Such an

approach clearly distinguishes the components of the

decision process that are inherently subjective (manage-

ment objectives, potential management actions) from

those that are more objective (models of system

behavior, estimates of system state) (Williams et al.

2002, Nichols and Williams 2006). Utility thresholds

may be included as components of management

objectives, and ecological thresholds may be embedded

in models projecting consequences of management

actions. Optimization based on these components then

leads directly to decision matrices specifying optimal

actions to be taken at various values of system state

variables. Values of state variables separating different

actions in such matrices are viewed as decision

thresholds. These decision thresholds are neither arbi-

trary nor subjective, but are derived from the manage-

ment objectives, available actions and system models. It

is through this process that utility and ecological

thresholds together yield decision thresholds.

Our primary goals in this paper are to advocate the

SDM process for conservation problems and to clarify

the roles of the three classes of thresholds within this

process. The presentation is structured into four

sections. First, we describe an approach to establish

decision thresholds based on a SDM framework.

Second, we show how these decision thresholds are not

equivalent to, but are modified by, changes in utility

thresholds. Third, we identify sources of uncertainty

that can influence decision thresholds and discuss

methods to account for these uncertainties. Fourth, we

show how learning about ecological thresholds can be

achieved through SDM. Finally, we discuss benefits of

using SDM to identify decision thresholds for conser-

vation. Our presentation includes numerical examples

that illustrate our points and descriptions of analytical

methods that can be applied to implement the SDM

approach.

USING SDM TO ESTABLISH DECISION THRESHOLDS

SDM is a formal method for analyzing a decision by

breaking it into components (Clemen and Reilly 2001).

This approach helps to identify the impediments to a

decision, and to focus effort on the appropriate

component(s). The goal is then to identify the optimal

decision in terms of the specified objectives. SDM is

rooted in decision theory, which provides a powerful

framework for making decisions about the management

of complex systems (Bellman 1957, Intriligator 1971,

Williams et al. 2002, Burgman 2005, Halpern et al.

2006). Examples of useful applications of SDM can be

found in a variety of fields, including engineering,

economics and natural resource management (e.g.,

Johnson et al. 1997, Clemen and Reilly 2001, Miranda

and Fackler 2002, Halpern et al. 2006). In the context of

conservation, the elements of the decision making

process often include the following components: objec-

tives, potential management actions, model(s) of system

behavior (in particular models that predict how system

states change with different management options), a

monitoring program to keep track of the system state

and finally a method to identify the solution (Williams et

al. 2002, Dorazio and Johnson 2003, McCarthy and

Possingham 2007). Two of these components, model(s)

and estimates of system state, are typically characterized

by substantial uncertainties that must be accommodated

in the optimization process.

Objectives and management decisions

The specification of objectives is a critical component

of any decision-making process. Objectives correspond

to what the relevant stakeholders strive to achieve via

the implementation of management actions. Objectives

constitute the basis for assessing alternative decisions,

where the ‘‘success’’ of a decision to meet the manage-

ment objectives serves as a way to evaluate the decision

options (Clemen and Reilly 2001, Conroy and Moore

2001). Conservation objectives, and to a lesser extent,

potential management actions, are typically based on

value judgments of the stakeholders (Nichols and

Williams 2006). Examples of objectives relevant to

conservation include maximizing species diversity in a

natural area or minimizing the probability of quasi-

extinction of a threatened species (Kendall 2001). In

order to take into consideration the concerns of all

relevant stakeholders involved in the decision process, it

is often appropriate to include utility thresholds that can

be viewed as constraints on an objective. For instance, in

the example presented below we envision a situation in

which stakeholders wish to maximize the release of

water for irrigation, while maintaining a specified

proportion of wetlands occupied by a species of special

interest (the utility threshold). The objectives and

associated constraints should generally be determined

through discussions among stakeholders (Kendall 2001).

Formal techniques to narrow down and select appro-

priate objectives may sometimes be helpful (see Clemen

and Reilly 2001, Burgman 2005). Once objectives and

constraints have been selected, they can be formalized

mathematically into an objective function. The objective

function quantifies the benefit (or return) obtained by

implementing specific decisions at each time step,

accumulated over the time horizon of the decision

problem (Lubow 1995, Williams et al. 2002, Fonnesbeck

2005).

Models of system behavior

In contrast to management objectives and potential

management actions, which are inherently subjective
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components of the decision process, models of system

behavior and measures of confidence in the models

should preferably be based on a scientific approach

(Nichols 2001, Nichols and Williams 2006). The model

(or models) of system behavior projects the consequenc-

es of potential management decisions at time t (dt) on

the system (e.g., shift from one state at time t, xt, to

another state at time t þ 1, xtþ1). Information about

ecological thresholds can be incorporated into models of

system behavior (see Numerical example 1).

Models provide a basis for predicting system response

to management actions (e.g., Lubow 1995, Williams et

al. 2002). For example, the equation

xtþ1 ¼ F½xt; dðxtÞ� ð1Þ

describes a Markov process. That is, the probability

distribution of the system state at t þ 1 depends on the

system state at t and the decision at t. Discrete Markov

decision models can be analyzed with dynamic pro-

gramming methods to find the optimal decision at each

time step (e.g., the decision that maximizes the return;

Miranda and Fackler 2002, Burgman 2005).

Analytical method to identify optimal decisions

The Hamilton-Jacobi-Bellman (HJB) algorithm de-

scribes a method for solving a stochastic dynamic

programming problem (Williams et al. 2002):

V�t ðxtÞ ¼ max
dt

UðdtjxtÞ þ
X

xtþ1

Pðxtþ1jxt; dtÞ3 V�tþ1ðxtþ1Þ
" #

:

ð2Þ

where U(dt j xt) specifies the current return derived from

taking decision dt when the system is in state xt, and

P(xtþ1 j xt, dt) corresponds to the transition probabilities

to the system state at tþ 1 (xtþ1), given the current state

(xt) and decision (dt) at time t. These transition

probabilities are obtained from the state dynamic

function (or model of system behavior, see Eq. 1). V�t
is the optimal future value function given xt and

assuming that the optimal sequence of decisions is

followed. The optimal sequence of decisions can be

obtained in principle by repeated recursive applications

of Eq. 2, (see Miranda and Fackler 2002, Williams et al.

2002, for a description on how to solve the HJB

equation).

Decision thresholds, then, arise out of the derived

optimal strategy, as values of state variables across

which the optimal decision changes. When more than

one system state variable is considered, decision matrices

can be constructed (see Example 1 and Fig. 2 for a

graphical representation of a decision matrix). Next, we

illustrate the SDM framework to derive decision

thresholds with a simple hypothetical example that

focuses on a conservation problem. Part of the example

presented below was inspired by Miranda and Fackler

(2002).

Numerical example 1

Water from a large, heterogeneous wetland is used to

irrigate agricultural areas and is also necessary for the

persistence of a species of special interest (hereafter

referred to as species A). The wetland contains Lt units

of water at the beginning of year t, and Rt units are

released for irrigation during year t; pt units of rain

replenish the wetland annually. The wetland can only

hold a maximum of K units of water (K ¼ 2000 in our

example). Any surplus of water flows out without any

costs or benefits. The proportion of suitable habitat

patches within the wetland occupied by species A in year

tþ 1, wtþ1, is influenced by Lt, because Lt governs local

probabilities of patch extinction and patch colonization

for the species.

The stakeholders’ goal is to maximize water use for

economic benefits, but with the constraint that at least

30% of suitable habitat patches will be occupied by

species A. The value of 30% is based on human values,

and could be determined for example by the desire of

managers to maintain the species at historical levels (i.e.,

before the wetland was affected by human activities).

Specifically, 0.3 is a utility threshold, and we greatly

devalue any decision about irrigation, dt, that yields an

expected occupancy less than 0.3 in the next year (i.e.,

ŵtþ1 , 0.3, where ŵtþ1 is the expected probability of a

suitable patch being occupied in year tþ 1, given wt and

dt). A policy that maximizes the economic benefits while

allowing for the persistence of species A in at least 30%

of suitable habitat, can be determined by using

Stochastic Dynamic Programming (SDP) (Bellman

1957, Lubow 1995).

As noted above, this example is highly simplified and

is not intended to be particularly realistic. For example,

we assume that the state variables (i.e., wt and Lt) are

estimated without errors, which is unlikely in reality.

However, incorporation of this source of uncertainty

adds substantially to the complexity of the example

(Williams and Nichols 2001) and would detract from

our main goal of illustrating our conceptual framework

for thinking about thresholds.

Utility function

The utility function for this problem expresses the

current return or utility associated with the decision to

irrigate I units of water,

Utðxt ¼ Lt; dt ¼ ItÞ ¼
0; ŵtþ1 , 0:3

Rt; ŵtþ1 � 0:3:

�

with

Rt ¼ minðK; ItÞ: ð3Þ

This equation indicates that given that the system state

at time t is Lt and that decision It is made at time t, the

utility is equal to Rt if ŵtþ1 � 0.3 and 0 otherwise. For

this problem, the set of management actions is the

number of water units allocated to irrigation, expressed
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in increments of 100 units, with a maximum release of

2000 units (i.e., It 2 f0, 100, 200, . . ., 2000g). The

quantity Rt cannot be greater than the sum of Lt and pt.

The utility threshold is expressed as a constraint (i.e.,

ŵtþ1 � 0.3) in the utility function and is based on value

judgment. Of course, in a more realistic scenario one

would have to probably consider more complex utility

functions. For instance, one may want to consider the

fact that the irrigation needs go down as rainfall goes

up. However, for the purpose of illustration we kept our

problem simple.

Models of system behavior

To solve our decision problem we need to keep track

of two state variables, L (water level) and w (patch

occupancy). The dynamics for the amount of water in

the wetland are described by

Ltþ1 ¼ Lt þ pt � Rt ð4Þ

where pt, which corresponds to the precipitation

between times t and t þ 1, was included in the model

as a normally distributed random variable (with mean¼
550 and SD ¼ 104).

The model for the dynamics of patch occupancy is

wtþ1 ¼ wt 3 ð1� etÞ þ ð1� wtÞ3 ct ð5Þ

where e and c are patch extinction and colonization

parameters, respectively (MacKenzie et al. 2006). We

assume the following relationship between c and L:

ct ¼
0; if Lt , T
0:1; if Lt � T

�
ð6Þ

where T is an ecological threshold, below which c drops

dramatically (Fig. 1a). Thus, information about the

ecological threshold is incorporated into the model of

system behavior. Note that in a real case study the patch

occupancy models described in this section could be

developed and evaluated with empirical data by

following the methods presented in MacKenzie et al.

(2006).

We assume the following linear-logistic relationship

between e and L:

et ¼
1

1þ expð�a� b 3 LtÞ
ð7Þ

where a and b are, respectively, the intercept and slope

of the logistic function.

We view the response of patch extinction presented in

Fig. 1b as a threshold response because of the notion

that a small change in values L can induce a large

change in e (see Farhig 2001, Huggett 2005, Bennetts et

al. 2007). However, for e the ecological threshold is not

as clearly defined as for c. Indeed, there is a range of

values of L that could trigger an abrupt response in e (as
opposed to a single value in the case of c). Thus, the area
between the dotted lines in Fig. 1b illustrates that

ecological thresholds can be viewed as a range of values.

In fact, the bounds of this range of values were

determined subjectively (i.e., by visual examination of

the curve). We realize that often there is some

subjectivity involved when defining a response as a

threshold response (e.g., how steep should the relation-

ship be before it can be viewed as an ecological

threshold), and we leave it up to each investigators to

define particular ecological responses in their study

systems as ecological thresholds or not. The key point is

that ecological models may or may not include

functional relationships that are viewed as thresholds.

The SDM framework accommodates such relationships

and can be used to learn about their functional forms

(see Threshold and adaptive management).

Establishing decision thresholds

The optimal value for the objective function satisfies

the recurrence relationship specified in the HJB equation:

V�t xt ¼ Ltð Þ ¼ max
dt

�
Utðxt ¼ Lt; dt ¼ ItÞ

þ
X

xtþ1

Pðxtþ1 ¼ Ltþ1jxt ¼ Lt; dt ¼ ItÞ

3 V�tþ1ðLtþ1Þ
�
: ð8Þ

FIG. 1. Relationships between water levels and (a) patch
colonization and (b) patch extinction of species A under
Model 1.
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We approximated the decision problem for an infinite

time horizon via backward iteration dynamic program-

ming, by iterating through time steps until a stable policy

was maintained for 100 time periods, using program

ASDP Version 3.2 (Lubow 2001). Fig. 2a shows the

optimal irrigation decisions for a given level of patch

occupancy and quantity of water. For instance, if in a

given year (t) wt ¼ 0.5 and Lt ¼ 1500 units, the optimal

decision is to irrigate It ¼ 600 units during year (t). The

thick lines in Fig. 2a indicate the decision thresholds. As

expected the decision thresholds in Fig. 2a indicate that

more water can be released for irrigation as more water

units are present in the wetland and as more patches

become occupied. In addition, except at high water

levels, the decision threshold between irrigation and no

irrigation occurs at occupancy levels above the utility

threshold of 0.3 (unless the impoundment is quite full).

As noted above, decision thresholds are derived from

all of the components of the decision process, including

utility thresholds and any ecological thresholds that may

be incorporated into the system models. In order to

illustrate the relationship between ecological and deci-

sion thresholds we conducted an analysis in which we

shifted the ecological threshold for patch colonization (T

was set to 800 instead of 1500 in Eq. 6). Hereafter, we

refer to the model with T¼ 1500 as Model 1 and to the

model with T¼ 800 as Model 2. Fig. 2b shows that this

shift in the ecological thresholds induced a shift in the

resulting decision thresholds. For instance, for most

values of w, the decision threshold at the boundary

between no irrigation and some irrigation occurred at

lower water levels when the ecological threshold was set

to 800 (Fig. 2b). We also increased the utility threshold

from 0.3 to 0.5 (in Eq. 3) in order to observe the

resulting change in the decision threshold (Fig. 2c). In

this latter scenario, for most values of w, the boundary

between no irrigation and some irrigation occurred at

higher water levels than when the utility threshold was

set at 0.3 (Fig. 2c).

Fig. 3a shows the trajectory of w over time assuming

that optimal irrigation policies (presented in Fig. 2a) are

followed. The initial drop in w below the utility

threshold reflects transient dynamics associated with

the initial conditions (Fig. 3). As expected, w rarely fell

below the utility threshold of 0.3 (the value specified as a

constraint in the objective function), and indeed is much

larger most of the time (Fig. 3a). In this sense, the

optimal strategy is far more conservative (with respect to

maintaining w � 0.3) than an approach of waiting until

wt approaches 0.3 and only then limiting irrigation. In

contrast, if all the water from the wetland was

systematically released for irrigation, w would rapidly

approach 0. Fig. 3b also shows the evolution of w over

FIG. 2. Plots of optimal irrigation decisions as a function of
water levels (Lt) and patch occupancy (wt) of species A. (a)
Ecological threshold for patch colonization (T ) was set at T ¼
1500 units of water, and (b) T ¼ 800 units of water, with the
utility threshold set at 0.3 in both cases. (c) Utility threshold
was set at 0.5 and T¼ 1500. The shades of gray correspond to
the amount of water released for irrigation (from 0 water units
[lighter shade] to 800 units [darker shade]). Decision thresholds
are represented by these changes in shading. The thick black
lines indicate the decision thresholds at the boundary between
some irrigation and no irrigation. Dot-dashed lines in panels (b)
and (c) indicate shifts in decision thresholds when compared to

 
panel (a). Black arrows point to the irrigation policy at time t:
600 units of water, when w at t is 0.5 and water level at t is 1500
units of water.
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time assuming that optimal irrigation policies for Model

1 are followed but assuming that the utility threshold

was raised to 0.5 (i.e., ŵtþ1 � 0.5, see Eq. 3). Again, wt

rarely fell below the utility threshold (the value of wt

averaged over 30 000 iterations was 0.66, whereas it was

0.46 when the utility threshold was set to 0.3, see Table

1, scenarios 1 and 3). However, when simulating the

average amount of water devoted to irrigation under the

optimal policy, this quantity was greater when the utility

threshold was set at 0.3 (504 6 84 units of water

irrigated per year [mean 6 SD], Table 1, scenario 1) than

when it was set at 0.5 (487 6 55 units of water irrigated

per year, Table 1, scenario 3). To maintain occupancy

above 0.5, the wetland needs to be kept at a higher level;

but this carries the risk that sometimes precipitation that

could have been used for irrigation is lost when the

wetland overflows, thus the long-term average water

withdrawals are lower. In other words, the behavior of

the optimal strategy can be explained in the following

way: the long-term average rate of withdrawal can be no

more than the average annual precipitation, but to take

full advantage of this precipitation, the wetland should

be kept far from capacity, so no water is ever lost to

overtopping. The constraint in the objective (i.e., w �
specified value) works in the opposite direction, howev-

er, by requiring a fuller wetland. The optimal strategy

balances these two competing objectives.

We now consider how the approach described above

would perform when compared to a more typical

decision process by presenting some simulation results

for a hypothetical scenario of a more ‘‘typical’’ process

(hereafter denoted as TYP, this is just one scenario

among many possibilities). Assume that instead of

following the SDM approach, managers decided to

irrigate 550 units of water (which corresponds to the

average amount of annual rainfall) when wt . 0.3 and 0

units of water when wt � 0.3. Thus, in this scenario

managers do not distinguish between utility and decision

thresholds. We used Model 1 as the model of system

behavior to compare the results for both approaches.

The results for the simulation of w for scenario TYP are

presented in Fig. 3c, and show that wt fell below the

utility threshold more often than when using SDM

(compare Fig. 3a and 3c). The average annual irrigation

for the TYP is also smaller (Ī ¼ 409 units of water per

year) than when using the SDM approach (Ī¼ 504 units

of water per year; see scenario 1 in Table 1).

SOURCES OF UNCERTAINTY THAT INFLUENCE

DECISION THRESHOLDS

Uncertainty is an important component of any

decision making process (Williams et al. 1996, Burgman

2005, Halpern et al. 2006). Accounting for uncertainty in

the decision process will often influence the resulting

decision thresholds. There are several types of uncer-

tainty that can influence decisions and associated

thresholds. One of them, environmental stochasticity,

affects almost every natural system. It can result from

FIG. 3. Simulation (100 runs) of patch occupancy (w) of
species A over time (100 years) when optimal irrigation policies
are followed. Each simulation run is represented by a gray line,
and the mean (at each time step over the 100 runs) is
represented by a thick black line. Thin black lines correspond
to 2.5% and 97.5% quantiles. (a) Scenario 1: optimal irrigation
decisions were derived with a utility threshold set at 0.3 (dotted
line). (b) Scenario 2: optimal irrigation decisions were derived
with a utility threshold set at 0.5 (dashed line). (c) Scenario 3:
irrigation decisions were based on a hypothetical scenario
(TYP) in which managers irrigate 550 units of water when patch
occupancy is greater than 0.3 but stop irrigating when patch
occupancy falls below 0.3. The initial conditions for the
simulations were set at w ¼ 0.4 and initial water levels ¼ 1000
units.
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variation in weather patterns or from unrecognized

variation in habitat structure (Williams et al. 1996,

2002). Environmental uncertainty can be incorporated

into the models as process variance (temporal or

spatial), using random variables with specified distribu-

tions. In Numerical example 1, environmental stochas-

ticity entered the model by modeling annual rainfall as a

normally distributed random variable (mean ¼ 550, SD

¼ 104, where the standard deviation reflects the process

variance). In order to illustrate the fact that environ-

mental stochasticity can substantially influence decision

thresholds we incorporated some process variance in

model parameter b (in Eq. 7, we set SD(b) ¼ 0.001),

reflecting unidentified environmental factors that influ-

ence the relationship between water level and patch

extinction probability (e.g., variation in food resources

for species A). Optimal decisions based on this revised

model are shown in Fig. 4a. Incorporating this

additional source of uncertainty led to more conserva-

tive irrigation policies (i.e., for most values of the state

space, less water was allocated to irrigation, see Fig. 4a

and compare with Fig. 2a) than when b was assumed to

be deterministic (i.e., SD (b)¼ 0). Indeed, the amount of

water devoted to irrigation annually, averaged over

30 000 iterations, was reduced when some process

variance was associated with parameter b (see Table 1,

Ī for scenario 1 was greater than for scenario 4; Ī for

scenario 2 was greater than for scenario 5; and Ī for

scenario 3 was greater than for scenario 6). Values of wt

averaged over 30 000 iterations were greater for scenar-

ios 4 and 5 (SD(b) ¼ 0.001) than for scenario 1 and 2

(SD(b)¼0, Table 1). However, w was slightly greater for

scenario 3 (SD(b) ¼ 0) than for scenario 6 (SD(b) ¼
0.001, Table 1).

Process variation can be estimated from historical

data through analytical methods that separate it from

sampling variance (see Gould and Nichols 1998,

Burnham and White 2002). The process variance

associated with modeled parameters allows for the

incorporation of multiple sources of environmental

stochasticity without having to necessarily explicitly

model each source of variation individually. For

instance, if a factor is not directly affected by

management decisions and is difficult to measure, its

effect on system behavior can simply be incorporated as

an unidentified component of a global process variance

that includes effects from several factors. In fact, in

order to derive decision thresholds based on SDP, it is

frequently advisable to model explicitly only the

variables that are directly affected by management

decisions (or alternatively that are assumed to have a

large effect on system behavior; Clark and Mangel

2001).

In the context of management and conservation, there

are at least three other sources of uncertainty that can

influence decision thresholds and that should thus be

noted: partial observability, partial controllability and

structural uncertainty (Williams et al. 1996, 2002,

Johnson et al. 1997, Conroy et al. 2003). Partial

observability occurs when state variables (e.g., wt in

the example of species A) are measured with error. This

form of uncertainty is due to sampling variation

associated with the estimation of the state variable(s)

of interest. Partial controllability results from the

inability to accurately implement specified management

actions and from imprecise translation of management

actions into effects on the system. Structural uncertain-

ty, also called model uncertainty (Burgman 2005),

reflects the incomplete understanding of system behavior

and is frequently dealt with through the simultaneous

consideration of multiple models. For the sake of

simplicity, we restricted our illustration of the effect of

uncertainty on decision thresholds to the treatment of

environmental stochasticity (Numerical example 1) and

structural uncertainty (Numerical example 2, see next

section). We focused on these two sources of uncertainty

because they are particularly easy to understand but also

because they can easily be incorporated into the SDM

process (whereas this is much more difficult for partial

observability). Several studies have explored the impor-

tance of these different sources of uncertainty on the

decision making process in the context of resource

management (e.g., Williams et al. 1996).

THRESHOLDS AND ADAPTIVE MANAGEMENT

In the preceding sections, we described a method to

derive decision thresholds when a single model is

thought to provide a good approximation to system

behavior. However, many real world situations are

characterized by structural uncertainty, reflecting an

TABLE 1. Results from simulations of average annual patch occupancy (w) of species A, water levels (L̄), and irrigation (Ī ) over
time (30 000 iterations) when irrigation policies derived from stochastic dynamic programming (SDP) are followed.

Scenario number Utility threshold SD(b) T w Ī L̄

1 0.3 0.0 1500 0.46 (0.04) 504 (81) 1440 (87)
2 0.3 0.0 800 0.43 (0.05) 540 (124) 1290 (111)
3 0.5 0.0 1500 0.66 (0.06) 487 (55) 1480 (68)
4 0.3 0.001 1500 0.51 (0.11) 475 (82) 1490 (90)
5 0.3 0.001 800 0.50 (0.11) 507 (105) 1420 (112)
6 0.5 0.001 1500 0.64 (0.10) 422 (116) 1560 (119)

Notes: Results for six scenarios are reported. Each scenario differed in at least one of the following categories: specified utility
threshold; the value of T (i.e., the ecological threshold for patch colonization in Eq. 6); the process variation (standard deviation,
SD(b) associated with parameter b in Eq. 7). Numbers inside parentheses correspond to the standard deviations.
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incomplete understanding of system behavior. In such

situations, several hypotheses (each hypothesis can be

represented mathematically by a model) are put forward

to explain the behavior of the system of interest. When

more than one model is considered, decisions can be

based on the weighted average of the dynamics predicted

by the different models. Model weights (i.e., probabil-

ities reflecting the relative degrees of faith in the

predictions of the different models) can be assigned to

all candidate models. These model weights characterize

the perceived relative abilities of the different models to

predict changes in system state following the implemen-

tation of specified management decisions. Sometimes

SDM is applied to one-time decisions (e.g., land

purchases), whereas at other times we face sequential

decision processes in which a decision is repeated

periodically (e.g., ongoing habitat management). For

both one-time processes and the beginning of sequential

SDM processes, model weights can be based either on

inference from analyses of historical data or on political

expediency (e.g., equal weights give no perception of

advantage to a particular model).

Regardless of the origin of initial model weights,

sequential processes provide an opportunity to learn

about the predictive abilities of the different models. Let

pi(t) denote the weight associated with model mi at time

t, where

Xn

i¼1

piðtÞ ¼ 1

and n is the total number of models. Bayes’ Theorem

provides a means to update model weights (Williams et

al. 2002):

piðt þ 1Þ ¼ piðtÞ3 Piðxtþ1j xt; dtÞ
Xn

i¼1

piðtÞ3 Piðxtþ1j xt; dtÞ
ð9Þ

where Pi(xtþ1 j xt, dt) is the probability of the observed

state at tþ 1 under model mi, given that the system was

in state xt at time t and that decision dt was

implemented. Updating is then a function of the model

weight or prior probability at time t, reflecting

accumulated knowledge, and the new information about

how well the model predicted the state transition

between t and t þ 1. These updated probabilities then

become the new model weights (or new priors) for the

next decision and set of predictions (Kendall 2001,

Nichols 2001, Williams et al. 2002). Provided that

reasonable models have been included in the model

set, this iterative process should lead to the identification

(high model weights) of models that provide good

predictions. This application of SDM to sequential

decision processes is typically referred to as adaptive

management (Walters 1986, Williams et al. 2002) and

provides decision thresholds at each decision point and

also improves knowledge of the ecological system

(including ecological thresholds). There is some ability

FIG. 4. Plots of optimal irrigation decisions as a function of
water levels and patch occupancy (w) of species A for (a) Model
1, (b) Model 2, and (c) assuming equal weights for Model 1 and
Model 2. Here the standard deviation associated with
parameter b in Eq. 7, SD(b), for Model 1 and Model 2 was
set to 0.001. The shades of gray correspond to the amount of
water released for irrigation (from 0 water units [lighter shade]
to 800 units [darker shade]).The thick black line in panel (a)
indicates the decision threshold at the boundary between some
irrigation and no irrigations. The dot-dashed line in panel (a)
indicates a shift in the decision threshold when compared to
Fig. 2a [in Fig. 2a, SD(b) ¼ 0].
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of this adaptive management process to accommodate

situations in which system behavior and associated

ecological thresholds change over time. However, this

ability requires that the timescale of changes in system

behavior be large relative to the timescale of the decision

process itself (Williams et al. 2007).

When more than one model is considered for

sequential decision processes, two approaches can be

applied: passive or active adaptive management. Opti-

mization algorithms for passive adaptive management

treat the model weights as fixed values that remain

constant over the time frame of the optimization.

Learning about the system behavior occurs, but as a

byproduct of management (Williams et al. 2002). By

contrast, in active adaptive optimization the model

weights are included as an information state during the

optimization process (Williams 1996). Thus, active

adaptive management is a formal attempt to deal with

the so-called dual control problem of simultaneously

meeting short-term system objectives and learning in

order to make even better decisions in the future

(Williams et al. 2002). The illustrative example presented

next uses passive adaptive optimization algorithms, but

both passive and active adaptive optimizations are

implemented in the program ASDP (Lubow 2001).

Numerical example 2

In the preceding example we determined decision

thresholds with only one model at a time. Now suppose

that there are two prevailing hypotheses about how the

system works, but that current scientific knowledge is

equivocal about which hypothesis better conforms to

reality. Under the first hypothesis, patch colonization is

only possible when water levels reach 1500 units of water

(this corresponds to Model 1 described earlier), whereas

under the second hypothesis patch colonization can

occur at 800 units of waters (this corresponds to Model

2 described earlier). Decision thresholds obtained from

single-model optimization for Model 1 and Model 2 are

presented in Fig. 4a, b, respectively (these models

assumed SD(b) ¼ 0.001). These results emphasize the

points that knowledge of the nature of this ecological

threshold is indeed relevant to management, and that

the reduction of structural uncertainty is likely to lead to

better management.

The ability to consider multiple models in decision-

making provides a transparent means of dealing with

competing hypotheses about system behavior. If no

previous data tend to support one model more than the

other, equal weights can be assigned to each model

(Kendall 2001). We computed decision thresholds using

a passive adaptive optimization algorithm with equal

weight assigned to Model 1 and Model 2, and the

resulting decision thresholds are represented in Fig. 4c.

Not surprisingly, the decision thresholds resulting from

the passive adaptive optimization were intermediate

between the ones obtained from the single-model

optimizations of Model 1 and Model 2 (Fig 4). Note

that in the case of the passive adaptive optimization we

have to rerun the optimization at every time period to

revise the decision. Thus, at each time step predictions

from each model can be confronted with the monitoring

data and new weights can be computed. As the weights

assigned to each model evolve over time (i.e., as we

learn), the decision thresholds will also change over

time.

DISCUSSION

The above examples were intended to illustrate the

SDM process and to highlight the roles of the three

defined classes of thresholds in that process. Indeed, the

SDM framework specifies an unambiguous context

within which the three kinds of thresholds, and their

respective roles in management, can be understood.

Based on our operational definitions, ecological thresh-

olds are incorporated into system models that are used

to project the consequences of management actions to

system state variables. The identification and modeling

of such thresholds are important components of the

science associated with conservation, in general, and

SDM, in particular. In contrast, utility thresholds are

subjectively determined and reflect stakeholder values by

specifying desirable and undesirable values of system

state variables. Utility and ecological thresholds may

coincide, but there is no necessary relationship between

them. Finally, we have defined decision thresholds as

derivative of the other components of the decision

process (Fig. 5). Under the SDM process that we

outlined above, decision thresholds are not determined

subjectively or arbitrarily, as is common to many current

approaches to conservation. Instead, they can be based

on optimization algorithms, with specific values condi-

FIG. 5. Flow chart showing the relationship among the
different types of thresholds. Ecological thresholds are deter-
mined by our understanding of the ecology of the system and
are incorporated into models of system behavior. Utility
thresholds are determined subjectively and reflect stakeholder
values (although in some circumstances these values can be
based on knowledge of the ecology of the system, as indicated
by the dashed arrow). Decision thresholds are conditional on
and derived from ecological and utility thresholds.
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tional on stated objectives, available management

actions, and the models of system behavior. Thus, while

ecological and utility thresholds may be completely

unrelated, decision thresholds are related in a very

formal way to these other two types of thresholds. We

make no claim that our framework provides the only

possible way of viewing thresholds. However, we do

claim that it is logical, consistent and can be proven to

yield optimal management decisions conditional on the

current state of knowledge (in this case the models and

their respective weights represent our current state of

knowledge).

With respect to ecological thresholds, SDM provides

a way to judge the relative importance of different

thresholds to management. Wiens et al. (2002) noted

that ‘‘nature is full of thresholds layered upon thresh-

olds’’ (reviewed in Bestelmeyer 2006). Thus, one

temptation may be for biologists to become distracted

by attempting to identify and measure thresholds that

may be scientifically interesting, but not necessarily of

high conservation significance. However, by stating clear

conservation objectives and potential management

actions, and then focusing on models of system response

to those actions, conservation biologists can focus on

the ecological thresholds that are most relevant to use of

those actions to achieve objectives. Conveniently, when

applied to sequential decision processes the SDM

framework also enables investigators to learn about

ecological threshold(s) at each iteration of the process.

New information about ecological thresholds can be

incorporated into models of system behavior, which in

turn can help improve the management of the system.

Furthermore, there is some ability of this adaptive

management process to accommodate situations in

which system behavior and associated ecological thresh-

olds change over time. Of course as with any other

approach to management decisions, SDM can only

work when the state variables of the managed system are

within controllable bounds of the state space. For

example, in the case of fisheries management if the

management goal is to control an invasive species, and if

the management action consists of harvesting the

invasive species, there may be a limit beyond which

the population of invasive becomes uncontrollable with

respect to the available potential management actions

(Zipkin et al. 2008).

One common misconception is that a system, with its

various ecological thresholds, must be well understood

before one can develop useful models for conservation

purposes (see also Clark and Mangel 2001). This

misconception can lead to calls for additional monitor-

ing and information that frequently represent inefficient

uses of conservation funds (Nichols and Williams 2006).

SDM can be applied even when little information is

available about system behavior. All that is required is

some basis for making predictions about effects of

management actions on managed systems, a logical

requirement of any type of informed management. The

approach provides a way to apply available knowledge

to manage the system at present and to increase this

knowledge for better management in the future (Wil-

liams et al. 2007). Uncertainty about system behavior

can always be incorporated in the models. Most

important management decisions simply should not be

postponed indefinitely, especially given that making no

decision is itself a decision, and SDM focuses on making

decisions based on available knowledge of system

behavior and responses to management actions. Thus,

the approach provides managers with a defensible set of

policies. We note that in some cases SDM is built upon

expert opinions (and perhaps competing opinions), but

in a logical, transparent and rigorous way.

To conclude, SDM can be very beneficial to

conservation by adding transparency to the process that

produces decision thresholds. Given that the concept of

threshold has now entered the public arena and is even

used by the U.S. Congress to discuss natural resource

issues (Bestelmeyer 2006), it is essential that the different

kinds of thresholds and their respective roles in decision

processes be clearly understood by those involved in the

processes. Similarly, consideration of SDM clarifies the

respective roles of policy makers and scientists. The

SDM framework distinguishes the components of the

decision process that are inherently subjective (objec-

tives and management actions) from those that are more

objective (models of system behavior, estimates of

system state and analytical methods to derive decision

thresholds). This distinction draws a boundary between

the components that are driven primarily by value

judgments and the components that are more in the

domains of ecological and management science. Clari-

fying the role of scientists and policy makers when

setting thresholds for conservation could prove to be a

valuable step toward the implementation of better

conservation decisions.
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