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82 METHODOLOGY
prior distributions for which such calculations are possible. Thus, Bayesian estimation
and inference is often carried out using Markov chain Monte Carlo (MCMC) computer
algorithms that are designed to provide a simulated sample from the posterior distribution,
from which any quantities of interest can be estimated (see Gelman et al., 1995, Part 111
for an overview). MCMC methods are also extremely useful for the fitting of complex
models in situations where direct calculation of the likelihood is infeasible. In R, libraries
RoWinBUGS (Sturtz, Ligges and Gelman, 2005) and BRugs (Thomas et al., 2006) provide
interfaces to packages such as WinBUGS (Lunn et al., 2000) and OpenBUGS (Thomas
et al.. 2006), which can be used to carry out MCMC computations for a wide range of
Bayesian analyses. BayesX (Belitz et al.. 2009) is another freely available package for
Bayesian computation; this is used in Chapter 10 of the present volume.
In many environmental situations. a Bayesian approach provides an appealing means
knowledge into an analysis via the prior distribu-

of incorporating genuine subject-matter

tion. For example, Leith and Chandler (2010) carry out a Bayesian analysis of simulated
climate data for the end of the twenty-first century, in which physical limits on the climate
system are incorporated by using the ranges of historical climate observations to set prior

distributions for regression coefficients representing future means and linear trends. If, on
the other hand, little subject-matter knowledge is available then this can be represented
by using prior distributions with very large variances. although such ‘noninformative’ or
‘diffuse’ priors can have unexpected implications in some circumstances (Davison, 2003,
Section 11.1.3).

The need to specify a prior distribution is sometimes seen as a disadvantage of
Bayesian methods because it introduces an element of subjectivity: two analysts, fit=
ting the same model to the same data but with different priors, could reach different
conclusions. However, it can be shown that in large samples irrespective (within reas
of the choice of prior, the results from Bayesian and likelihood based analyses are alm
the same; for example, the Bayes estimator and credible intervals are very similar to the
MLE and corresponding confidence intervals (Davison, 2003, Section 11.2). Therefore;
given enough data, our two analysts should be able to resolve their differences. If
cannot do this and their priors are both justifiable on subject-matter grounds, the impli
tion is that the available data do not contain enough information to discriminate be!

alternative plausible scenarios.

3.2 Multiple regression techniques

An obvious extension to the linear trend model (3.2) is to supplement, or replac
time index ¢ with the values of other quantities that may be responsible for chan
the variable of interest. Such quantities are referred to as covariates, and the varid
interest is often called the response variable. The simplest way (0 model the efit
several covariates is via a multiple regression model of the form

P
Yp:.30+Zﬁfxu+6p:m+8n83y (I:L'-'!T)‘

Here, x;; denotes the value of the ith covariate at time 7. ]

The multiple regression model can once again be written in the matrix form
the only differences being that B=(Bo P - ,81,)’ now has length k=
that X has dimensions T x k. As before, the intercept Bo is accommodated BY
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first column of X with ones. A consequence of the matrix representation is that all of the
results from the previous section are applicable here as well. Techniques for identifying
influential observations can be used without modification; the diagnostics described in
Section 3.1.1 can also be used to check the model. Additionally, it can be useful to plot
the residuals against each of the covariates individually to check for unmodelled structure.
Some effort can be saved by plotting the residuals against the fitted values, rather than
against each covariate individually. The plot.1m function in R produces a variety of
diagnostics for multiple regression models; straightforward summaries of the main ideas
can be found in Davison (2003, Section 8.6) and Faraway (2005, Chapter 4). For more
extensive discussion and details of more sophisticated diagnostics, see Cook and Weisberg
(1999, Chapter 14) and Fox (2002, Chapter 6).

When the underlying assumptions are satisfied, multiple regression provides the abil-
ity to represent all of the processes affecting the quantity of interest within a single
model. This contrasts with the common approach of standardising time series data prior
to analysis so as to remove structure that is not of direct interest. A disadvantage of the
latter approach is that any form of adjustment, such as the removal of seasonality. is a form
of preprocessing and therefore needs to be accounted for subsequently. By way of illus-
tration, consider a hypothetical example involving the association between air pollution
and human mortality. Mortality time series typically show seasonal fluctuations, some but
not all of which may be attributable to seasonal variation in pollution (Schwartz, 1994).
If seasonality is removed from a mortality time series prior to analysis, for example by
subtracting monthly means, it is likely that some of the pollution effect will be removed
inadvertently at the same time. Moreover, if the resulting anomalies are regressed on raw
or deseasonalised pollution levels, the standard errors of regression coefficients will tend
to be underestimated because the analysis does not allow for the possibility that pollution
is responsible for some of the discarded seasonal structure. The problem can be avoided
entirely by fitting a multiple regression model to the raw data, containing covariates that
represent seasonality explicitly as described below.

In principle, multiple regression models can also be used for extrapolation, using the !
methodology described in Section 3.1.4. However, in practice this is only possible if future i
ues of the covariates are available. One way to achieve this is by using lagged values of
ovariates in the model, if such lagged values have any explanatory power at the time
izon of interest. An alternative is to base extrapolations on ‘scenarios’, whereby the i
ect of a prespecified sequence of covariates is investigated. Scenario based extrapolation
eful in situations where the future values of the covariates are, at least nominally,
t the control of policymakers — examples of such covariates might include levels of
ial sulfur emissions and fisheries quotas.

1 Representing seasonality in regression models

ality is often one of the most important factors controlling environmental processes
-annual timescales. In some cases, it arises mainly due to dependence on one or
easonally varying covariates, and can be accounted for by including these covariates
wltiple regression model. However, if there are no plausible covariates to which
ity can be attributed, or if data on such covariates are not available, a different
ch 18 required.

fude way to handle seasonality is to fit separate models for different times of year.
-. the multiple regression framework offers the possibility of representing seasonal
explicitly via the use of ‘dummy’ covariates. The simplest option is perhaps
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to define binary indicator variables for each time period. For example, for quarterly
data one could define variables xy,. x2,, x3, and x4, such that x;, takes the value 1 for
observations in quarter j and zero otherwise. A multiple regression model involving just
these covariates takes the form

4
Yo=Bo+ ) Bixii +& (3.35)

j=l

In this model, the fitted value for quarter j will be By + B;. since x;, = 1 during this
quarter and the other covariates are all zero. A least squares fit will, in principle, equate
Bo + B, with the mean of the observations for quarter j (j = I....,4). However, this
reveals a problem: since there are only four quarterly means. it is not possible to estimate
the five coefficients Bp to Bs4. The model is said to be overparameterised. The difficulty
is usually resolved by imposing a constraint on the coefficients. for example by setting
one of them to zero. The precise choice of constraint does not affect the fitted values
from the model, but it does affect the interpretation of the coefficients. Consider, for
example, setting Bp = 0 in (3.35). In this case, the fitted value for quarter j is just f;,
which can therefore be interpreted as the mean level for that quarter. If instead we set
Bi = 0, then the fitted value for quarter | is By and the fitted value for any other quarter
J is Bo + B;. In this case therefore, By is the mean for quarter | and, for quarter j > 1.
B, is the difference between the means for quarters 1 and j.

The use of indicator variables can also be regarded as a means of adjusting for
seasonality. The residuals from model (3.35) are precisely the anomalies that would be
obtained by subtracting the quarterly means prior to analysis. If the purpose of the analysis
is to assess the effect of some other covariate on the response, this can be quantified by
fitting an extended model incorporating the extra covariate in addition to the seasonal
indicators. The fitted values from such a model will be the same as those from a separate
analysis of the anomalies, but the regression coefficient corresponding to the covariate of
interest, and its standard error, may be rather different since they take into account all of
the available information.

In the discussion above, the dummy covariates xj, to x4, effectively code for a sin
gle variable ‘quarter’, which defines four separate groups or categories. Such groupi
variables are called factors; the separate groups are referred to as levels. Regression soff
ware will usually handle factors automatically, providing they are defined as such (corr
behaviour can be guaranteed in R by using characters, rather than numbers, to represe:
the different groups). The issue of overparameterisation is, however, always present a
to interpret software output, it is necessary to know what constraints have been impo
In R, the default behaviour for unordered factors is to use ‘corner-point’ constraints
which the coefficient associated with the first level (8, in the discussion above) is
to zero. Another option is to constrain all of the coefficients associated with a fac
sum to zero. In model (3.35). if there were equal numbers of observations in each qui
then, under a sum-to-zero constraint, the estimate of 8y would be the overall mean
series and B; would be the average deviation from this overall mean in quarter j.
interpretation is less straightforward with differing numbers of observations per q
For further details of factor coding in general, see Dobson (2001, Section 2.4). Fox |
Chapter 4) and Venables and Ripley (1999, Section 6.2) give a comprehensive a
of the facilities available in R.

The factor based approach to modelling seasonality is similar in spirit to the k
of fitting separate models to different subgroups of observations. In both cases the
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