SNWA_EXH_617 ET slideshow

SE 118, pp. 9-10

The Engineer began his calculation of the Spring Valley appropriation with the 24 25 "estimated average groundwater evapotranspiration (E.T.)," at 84,100 afa. Thus, the 26 perennial yield of Spring Valley is 84,000 afa. ROA 000214. Existing water rights are 18,873 27 afa and "an additional 4,000 afa is reserved for future growth and development for a total of 28 22,873 afa of water committed to the basin. Subtracting 22,873 afa from the perennial yield 2 of 84,000 afa leaves 61,127 afa available for appropriation." ROA 000215.

SE 118, pp. 10-11

Obviously, any water-well cannot capture all of the E.T., and while pumping and E.T. are both occurring, the water table drops. A reasonable lowering of the water table and death of most of the phreatophytes is a trade-off for a beneficial use of the water. "It is a condition of each appropriation of groundwater acquired under this Chapter that the right of the appropriator relates to a specific quantity of water and that the right must allow for a reasonable lowering of the static water level at the appropriator's point of diversion." NRS 534.110(4). The Engineer specifically found "there is no provision in Nevada water law that addresses time to capture, and no State Engineer has required that E.T. be captured within a specific period of time. It will often take a long time to reach near equilibrium in large basins . . and this is no reason to deny water right applications." ROA 000090. The Engineer is correct that the time to reach equilibrium is not a valid reason to deny the grant of water, but it may very well be a reason to limit the appropriation below the calculated E.T.

27

28

1

2

3

4

5

6

7

8

9

4.5 How would long-term pumping affect water resources in the study area?

Table ES-11 provides a comparison of the potential impacts to water resources in the region of study associated with the various alternative pumping scenarios.

Table ES-11Potential Incremental Effects to Water Resources at the Full Build Out Plus 75 Years and Full
Build Out Plus 200 Years Time Frame Resulting from the Alternative Pumping Scenarios1

Water Resource Issue	Proposed Action	Alt. A	Alt. B	Alt. C	Alt. D	Alt. E	No Action
Full Build Out Plus 75 Years							
 Drawdown effects on perennial springs: Number of inventoried springs located in areas where impacts to flow could occur² 	44	29	54	19	13	19	12
Drawdown effects on perennial streams:							
• Miles of perennial stream located in areas where impacts to flow could occur ²	80	58	91	37	4	7	19
Drawdown effects on surface water rights:							
• Number of surface water rights located in areas where impacts to flow could occur ²	145	109	141	78	23	60	105
Drawdown effects on groundwater rights:							
• Total groundwater rights in areas with >10 feet of drawdown	199	174	1184	133	27	70	372
• Number of groundwater rights in areas with >100 feet of drawdown	2	0	8	0	2	0	0
Percent reduction in groundwater discharge to							
evapotranspiration:							
Spring Valley	7%	51%	66%	37%	18%	52%	7%
• Snake Valley	28%	25%	18%	15%	4%	0%	3% 50/
Great Salt Lake Desert Flow System	40/0	3470	3770	2470	1070	2170	570
Full Build Out Plus 200 Years		1					
Drawdown effects on perennial springs:		16	-	24	21	20	20
Number of inventoried springs located in areas where impacts to flow could occur ²	57	46	78	26	31	30	20
Drawdown effects on perennial streams:							
• Miles of perennial stream located in areas where impacts to flow could occur ²	112	81	120	59	48	23	52
Drawdown effects on surface water rights:							
• Number of surface water rights located in areas where impacts to flow could occur ²	212	151	186	98	56	94	164
Drawdown effects on groundwater rights:							
• Total groundwater rights in areas with >10 feet of drawdown	264	223	301	171	213	110	409
• Number of groundwater rights in areas with >100 feet of drawdown	34	2	45	0	6	2	0
Percent reduction in groundwater discharge to							
evapotranspiration:	84%	57%	73%	37%	28%	56%	7%
Spring Valley	33%	27%	24%	17%	8%	3%	3%
 Snake Valley Great Salt Lake Desert Flow System¹ 	54%	39%	44%	25%	16%	24%	5%

¹Supporting information used to develop these estimated effects are provided in Appendices F3.3.6 through F3.3.16.

²Total located in high or moderate risk areas.

GBWN 110

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data

Table 2-1 SNWA 475, p. 2-1

Comparison of SNWA Project Scenarios Before and After NSE Ruling 6164

Factor	Scenario Before Ruling (Used by Court)	Scenario After Ruling (Scenario Needed)	
Model	CCRP Model	Model consistent with NSE Ruling	
ET Discharge in Spring Valley	75,000 afy (Estimated) 77,000 afy (Simulated)	84,100 afy (Estimated)	
SNWA Maximum Production	91,224 afy	61,127 afy	
SNWA Scenario Design Objective	Minimize impact to senior water rights and environment	Capture ET within reasonable time	
SNWA Well Locations	Predominantly outside of ET discharge area	Inside of ET discharge area	

SNWA 475, p. 3-1

In NSE Ruling 6164, before evaluating the results of the conflicts quantitative analysis conducted by Watrus and Drici (2011) using the CCRP model, the NSE describes the CCRP model, its development, and limitations before concluding that:

...the Applicant's model provides a reliable tool to examine potential effects on the groundwater system; however, the model contains many uncertainties that must be kept in mind as it is used to analyze the system (NDWR, 2012a, p. 128).

SNWA 475, p. 3-3

Figure 3-1 Comparison of Water-Level Fit Before and After Model Update

SNWA 475, p. 4-2

Figure 4-1 Location of Pumping Wells for Baseline Scenario

SNWA 475, p. 4-3

Table 4-1

ET-Capture Scenario Groundwater Development Schedule in Spring Valley

Years ^a	Development Stage	Production Rate (afy)
2005-2033	Before Development Starts	0
2034-2041	1	38,000
2042-2049	2	50,000
2050-2250	3	61,127

^aPumping begins on January 1 for the specified year.

SNWA 475, p. 4-4

Figure 4-2 Locations of Pumping Wells for ET-Capture Scenario

SNWA 475, p. 6-1

ET Discharge and Transitional Storage Capture

by ET-Capture Wells as a Function of Time

SNWA 475, p. 6-2

Table 6-1

ET Discharge and Transitional Storage Captured by ET-Capture Wells at Selected Points in Time in Spring Valley

ltem	Description	2125 (+75 years)	2150 (+100 years)	2250 (+200 years)
а	ET-Capture Well Maximum Pumping Rate (afy)	61,127	61,127	61,127
b	Remaining ET under Baseline Scenario (afy)	75,370	75,257	74,982
с	Remaining ET under ET-capture Scenario (afy) [Existing + ET-Capture Wells]	16,890	16,197	15,087
d	ET Captured by ET-Capture Wells (afy)	58,480	59,060	59,894
е	Groundwater Captured by ET-Capture Wells from ET Area (% Maximum Pumping Rate)	96%	97%	98%
f	Storage Captured under Baseline Scenario (afy)	508	434	306
g	Storage Captured under ET-Capture Scenario (afy) [Existing + ET-Capture Wells]	2,539	1,825	751
h	Storage Captured by ET-Capture Wells (afy)	2,031	1,392	445
i	Groundwater Captured by ET-Capture Wells from Transitional Storage (% Maximum Pumping Rate)	3%	2%	1%

Calculations:

d = b - c

e = d / a x 100

h = g - f

i = h / a x 100

Note: For the three times of interest, 1 percent of the well production is captured from boundary flow.

Corrected Figure 6.2 from SNWA 475

Aquaveo Expert Report

1) "Quantifying the safe yield of an aquifer system using a water budget analysis is fundamentally flawed."

USGS Circular 1308

"Water budgets provide a means for evaluating the availability and sustainability of a water supply. The link among all components of a water budget serves as a basis for predicting how a natural or human-induced change to one component, such ground-water extraction, may be reflected in other as components, such as streamflow or evapotranspiration. When viewed with an understanding of the underlying hydrologic processes and the uncertainties associated with quantifying those processes, water budgets form a foundation for evaluating waterresources and environmental planning and management options."

Figure 1-2. Salvage and monitoring well location map

SNWA 611, p.24

(No scale: Maximum distance noross valley is about 50 miles, maximum estimated death to bedrock is 10,000 to 30,000 feet)

Figure 3-1. Cross-section of the San Luis Valley (from *San Luis Valley Project, Colorado, Closed Basin Division, Facts and Concepts*, Reclamation).