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Types of Models
(Konikow and Bredehoeft, 1992)
Types of ModelsTypes of Models
(Konikow and Bredehoeft, 1992)(Konikow and Bredehoeft, 1992)

Conceptual Model
– Hypothesis for how system or process works

– Expressed quantitatively as mathematical model

Mathematical Model
– Abstractions that replace objects, forces, and events

– Contain mathematical variables, parameters, and constants
• Analytical Models

> Exact solutions require parameters / boundaries be idealized

• Numerical Models
> More realistic and flexible, but provide only approximate solutions

> More complexities lead to more model error
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Hydrogeologic Conceptual Model
of The Great Basin

Hydrogeologic Conceptual ModelHydrogeologic Conceptual Model
of The Great Basinof The Great Basin
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Types of Model Errors
(Konikow and Bredehoeft, 1992)

Types of Model ErrorsTypes of Model Errors
(Konikow and Bredehoeft, 1992)(Konikow and Bredehoeft, 1992)

Conceptual Errors
– Theoretical misconceptions (neglecting / misrepresenting) 

basic processes
• Ex:  using Darcy’s Law when not applicable

• Ex:  2D representation when clearly 3D

Data Quality Errors
– Uncertainties and inadequacies in input data or observations

• Ex:  water levels, aquifer properties, spring/stream flows, etc.

Numerical Errors
– Arise from equation solving algorithms

• Ex:  truncation errors / numerical dispersion
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Conceptual Errors – Flow ModelConceptual Errors Conceptual Errors –– Flow ModelFlow Model

Fracture vs. Equivalent Porous 
Media (EPM)
– Flow through fractures and 

solution openings of bedrock 
and porous basin-fill aquifers.

– Fracture-flow simulation is 
impractical at regional scale.

– EPM reasonable when used at 
regional scale.

– Conclusions drawn for site-
specific issues have large error.

Steady-state Assumption
– Models developed at 

assumed predevelopment 
or early-development

– No consistent data set 
exists to quantify water 
levels and flux terms at 
same point in time.

– Current ground-water levels 
and discharge rates may not 
be in equilibrium.
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Conceptual Errors – Flow ModelConceptual Errors Conceptual Errors –– Flow ModelFlow Model

Discretization
– Lower resolution models 

generalize important local-
scale complexities that have 
regional hydrologic impact.

– Prevalent in large hydraulic 
gradient areas with sharp 
geologic contacts or local-
scale fault.

– More refined models are 
required to represent these 
regionally significant, local-
scale features.

Boundary Conditions
– External boundaries 

commonly assigned at top 
of mountains.

– Approximate a “no-flow”
condition.

– Data sparse areas.

– Numerical boundary 
conditions are crude and 
poorly constrained.

– Boundaries rarely are time 
variant.
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RASA Hydrogeologic Discretization
(Congdon, 2006)

RASA Hydrogeologic DiscretizationRASA Hydrogeologic Discretization
(Congdon, 2006)(Congdon, 2006)

Source:  Harrill and Prudic, 1998
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Hydrologic Process Discretization
D’Agnese et al. (2002)

Hydrologic Process DiscretizationHydrologic Process Discretization
DD’’Agnese et al. (2002)Agnese et al. (2002)
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RASA Model Domain
(Harrill and Prudic, 1998 )

RASA Model DomainRASA Model Domain
(Harrill and Prudic, 1998 )(Harrill and Prudic, 1998 )

Source: Harrill and Prudic, 1998
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Model Boundaries
Myers (2006)

Model BoundariesModel Boundaries
Myers (2006)Myers (2006)
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Conceptual Errors –
Hydrogeologic Framework

Conceptual Errors Conceptual Errors ––
Hydrogeologic FrameworkHydrogeologic Framework

Geometry
– Models dramatically generalize complex geometries of 

hydrogeologic materials and structures, including faults, 
stratigraphy, volcanism, and unconformities.

Spatial Variability
– Models dramatically generalize hydraulic property variability.

– Models assume homogeneity within units despite evidence for 
variability resulting from grain-size distribution, hydrothermal 
alteration, fracture density, dissolution, and degree of welding

Horizontal Anisotropy 
– Models assume isotropic conditions, overly simplifying role of 

structures in bedrock and basin-fill units at all scales.
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Loss of Important Geometry in Flow Model
(D’Agnese et al., 2002)

Loss of Important Geometry in Flow ModelLoss of Important Geometry in Flow Model
(D(D’’Agnese et al., 2002)Agnese et al., 2002)
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Source:  SNWA, 2006a
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Source:  SNWA, 2006a
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Conceptual Errors – DataConceptual Errors Conceptual Errors –– DataData

Interpretation of Water Levels
– Field testing and observation not sufficient to conclusively 

distinguish between regional and perched conditions.

– Data, necessary to unequivocally determine the presence of 
perched water, are rarely, if ever, available.

– Large simulated hydraulic-head residuals in recharge areas 
often suggest the possibility of perched water, the hydraulic-
head observation is either removed or the observation 
weight decreased.

– Fewer observations, or observations with lower weights, 
result in less model constraint and higher model uncertainty.
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Representative Water Levels
(Belcher ed., 2004)

Representative Water LevelsRepresentative Water Levels
(Belcher ed., 2004)(Belcher ed., 2004)
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Data Quality ErrorsData Quality ErrorsData Quality Errors

Model Observations – Scarcity, Clustering, Accuracy
– Water-levels constraining models are geographically sparse 

and clustered overemphasizing these areas in calibration.

– Water levels, spring discharge, and stream flows are only 
intermittently measured and usually not at accuracies 
required to adequately constrain models for intended use.

– Evapotranspiration estimates are typically highly uncertain 
over large areas where rates of discharge are small.

– Temporal distribution of all observation data is poor.
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Notable Model Errors - Presented ModelsNotable Model Errors Notable Model Errors -- Presented ModelsPresented Models

• Significant 
uncertainties

• Significant 
uncertainties

• Significant 
uncertainties

Model Observations –Scarcity, 
Clustering, and Accuracy

• Significant 
uncertainties

• Significant 
uncertainties

• Significant 
uncertainties

Data – Interpretation Water Levels

• Horizontal – Yes; 
Vertical – Yes

• Horizontal – No; 
Vertical – Yes

• Horizontal – No; 
Vertical – Yes

Framework – Anisotropy

• Homogeneous• Homogeneous• HomogeneousFramework – Spatial Variability

• Significant to less 
significant 
geometric 
generalization

• Significant 
geometric 
generalization

• Very significant 
geometric 
generalization

Framework – Geometry

• Very simplified, 
but well removed 
from area of 
concern

• Very simplified, 
and very close to 
area of concern

• Very simplified, 
but well removed 
from area of 
concern

Flow Model – Boundary Conditions

• Large to small 
elements

• Large grid cells• Very large grid 
cells

Flow Model – Discretization

• Yes• Yes• YesFlow Model – Steady-state

• EPM / 2D fault 
flow

• EPM• EPMFlow Model – Fracture vs EPM

Durbin (SNWA, 2006b)Myers (WELC)Congdon (FWS)Type of Model Error
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Model Error Understood and Quantified
through Model Assessments

Model Error Understood and QuantifiedModel Error Understood and Quantified
through Model Assessmentsthrough Model Assessments

Model Verification
– Model-to-model comparisons

Model Validation
– “Inner workings of model” comparisons

Model Calibration
– Model-to-real-world comparisons
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Model Assessments
(Konikow and Bredehoeft, 1992)

Model AssessmentsModel Assessments
(Konikow and Bredehoeft, 1992)(Konikow and Bredehoeft, 1992)

Verification / Bench-marking
– Substantiation of algorithms 

and numerical solutions

– Compares model to 
analytical solution

– Congruence does not 
indicate either is reality

– Analytical solution may not 
accurately describe reality

– Extending solutions beyond 
range of known value leads 
to non-verified solutions

Validation
– Analyzes internal 

components

– Tests for detectable flaws 
and internal consistency

– Evaluates how well the 
model represents the 
simplifications and 
approximations of the 
conceptual model, NOT that 
it reliably represents reality
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Model Assessments
(Konikow and Bredehoeft, 1992)

Model AssessmentsModel Assessments
(Konikow and Bredehoeft, 1992)(Konikow and Bredehoeft, 1992)

Calibration
– Varying parameter values within reasonable ranges until 

differences between observed and computed values are 
minimized.

– Simplifications must be explicit.

– Calibration complete when historical data are reproduced 
within some subjectively acceptable level of coherence.

– Influenced by:
• Personal preference / judgment

• Time constraints

• Economic restrictions
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Predictive Capability of Calibrated Models
(Konikow and Bredehoeft, 1992)

Predictive Capability of Calibrated ModelsPredictive Capability of Calibrated Models
(Konikow and Bredehoeft, 1992)(Konikow and Bredehoeft, 1992)

Verification, validation, and calibration does not insure 
effective and reliable predictions.

Conceptual model significantly affects predictions.

Same empirical data can support many conceptual 
models.

Different models calibrated to the same data over 
time may reveal dramatic differences in predictions.

Predictions should be cast in a probabilistic 
framework with confidence limits.
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Confidence in CalibrationConfidence in CalibrationConfidence in Calibration

Parameter Estimation:
– Parameter values estimated to conform to well defined 

observations of hydraulic head or flow

Sensitivity Analysis:
– Calculated through nonlinear regression

– Reflect how important each observation is to a parameter

– Sensitivities answer:
> Are available data sufficient to estimate a parameter?

> Can additional parameters be added and estimated?

> What parameters are influencing predictions?
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Parameter SensitivitiesParameter SensitivitiesParameter Sensitivities
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What Framework Features are Important?What Framework Features are Important?What Framework Features are Important?

Prediction scaled 
sensitivities
– identify parameters 

important to predictions

Composite scaled 
sensitivities
– indicate information 

provided by observations for 
each parameter

Confidence intervals
– quantifies uncertainty of 

parameters or predictions
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Iterative Decision-making 
through Use of Models

Iterative DecisionIterative Decision--making making 
through Use of Modelsthrough Use of Models

Decisions based in part on 
predictions made from 
models

Predictions result from the 
interaction of model 
parameters

Model parameters are 
constrained by observations

Observations are made in 
the field
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Guidelines - Effective Model Calibration
(Hill, 1998)

Guidelines Guidelines -- Effective Model CalibrationEffective Model Calibration
(Hill, 1998)(Hill, 1998)

Fits protocol presented by Anderson and Woessner (1992).
Enhances calibration, prediction, and uncertainty analysis.
Emphasizes testing of different conceptual models.
Model is constructed and data are collected with the purpose of 
model in mind, with the evolving model used to guide data 
collection efforts.
Model evolves through development and calibration particularly 
with the addition of transient data.
During calibration conceptual model and optimized parameter 
values change significantly.
Recommends using model to run predictions only after 
Guidelines 12 and 14.
Provides a set of priorities for model development and 
calibration in a step-wise approach.
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1989 1994 1997 2002 2005

D’Agnese et al (1997): Combine NTS data base into DVRFS model

D’Agnese (1994): Add parameter estimation techniques to DVRFS model  

D’Agnese et al (2002): Add comprehensive geologic
interpretation, reduce uncertainty in observations and
water budget, calibration in transient

Develop ground-water model of DVRFS using new 3D techniques

Belcher (ed.) (2004): Update and
utilize predictive capability

Evolution of the DVRFS ModelEvolution of the DVRFS ModelEvolution of the DVRFS Model
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Adherence to Guidelines 1 through 4 –
Presented Models 

Adherence to Guidelines 1 through 4 Adherence to Guidelines 1 through 4 ––
Presented Models Presented Models 

4

3

2

1

Regression with 
hydraulic heads, 
spring / stream 
flows, and ET as 
observations

No RegressionNo RegressionAdding different kinds of 
data generally provides 
more information about the 
system.

Include many kinds of 
data as observations in 
the regression

Uses RegressionNo RegressionNo RegressionDefine parameters based 
upon need to represent the 
system.

Maintain well-posed, 
comprehensive 
regression problem

YesYesYesUse hydrology and 
hydrogeology to identify 
likely spatial and temporal 
structure.

Use a broad range of 
information

ComplexSimplifiedSimplifiedStart simple and add 
complexity.

Principle of parsimony

Durbin         
(SNWA, 2006b)Myers (WELC)Congdon 

(FWS)DescriptionGuideline
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Adherence to Guidelines 5 through 8 –
Presented Models

Adherence to Guidelines 5 through 8 Adherence to Guidelines 5 through 8 ––
Presented ModelsPresented Models

8

7

6

5

SomeSomeNoUse the methods discussed in 
Hill (1998). 

Evaluate model fit

Convergence 
through 
parameter 
definition

No RegressionNo RegressionUse model fit and the 
sensitivities to determine what 
to change.

Encourage 
convergence by making 
the model more 
accurate

YesNot clearNot clearInitially assign weights to equal 
1/σi

2
Assign weights which 
reflect measurement 
errors

Uses Prior No PriorNo PriorBegin with no prior information; 
add it judiciously.

Use prior information 
carefully

Durbin         
(SNWA, 2006b)Myers (WELC)Congdon 

(FWS)DescriptionGuideline
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Adherence to Guidelines 9 through 11 –
Presented Models

Adherence to Guidelines 9 through 11 Adherence to Guidelines 9 through 11 ––
Presented ModelsPresented Models

11

10

9

NoNoNoUse dimensionless scaled 
sensitivities, composite scaled 
sensitivities, parameter 
correlation coefficients, and 
one-percent scaled 
sensitivities.

Evaluate potential new 
data

Some testingSome testingSome testingBetter models have three 
attributes: better fit, randomly 
distributed weighted residuals, 
and realistic parameter values.

Test alternative models

Uses 
optimization; 
some 
evaluation

No 
Optimization; 
some 
evaluation

No 
Optimization; 
some 
evaluation

Unreasonable estimated 
parameter values could 
indicate model error.

Evaluate optimized 
parameter values

Durbin         
(SNWA, 2006b)Myers (WELC)Congdon 

(FWS)DescriptionGuideline
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Adherence to Guidelines 12 through 14 –
Presented Models

Adherence to Guidelines 12 through 14 Adherence to Guidelines 12 through 14 ––
Presented ModelsPresented Models

14

13

12

Capability 
exists.

NoNoEvaluate all parameters and 
alternative models relative to 
the desired predictions using 
prediction scaled sensitivities 
(pssj), confidence intervals, 
composite scaled sensitivities, 
and parameter correlation 
coefficients.

Formally reconsider the 
model calibration from 
the perspective of the 
desired predictions

Describes 
parameter 
uncertainty; 
does not 
conduct 
predictions

NoNoCalculated intervals generally 
indicate the minimum likely 
uncertainty.
Start by using the linear 
confidence intervals, which can 
be calculated easily.

Use confidence and 
prediction intervals to 
indicate parameter and 
prediction uncertainty.

NoNoNoUse composite scaled 
sensitivities and parameter 
correlation coefficients to 
identify system characteristics 
for which the observations 
contain substantial information.

Evaluate the potential 
for additional estimated 
parameters

Durbin         
(SNWA, 2006b)Myers (WELC)Congdon 

(FWS)DescriptionGuideline
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Good Modeling is Iterative
(Bredehoeft, 2003)

Good Modeling is IterativeGood Modeling is Iterative
(Bredehoeft, 2003)(Bredehoeft, 2003)

Model recalibrated as new data are acquired so that 
predictions are consistent with all the data.

Model becomes a “living tool.”

Modeling strategy evolves over time and requires 
continued monitoring and model updating.

Iterations important to test conceptual model 
adequacy.

Mismatch between prediction and observed data 
allows improvement of conceptual model.
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Iterative Modeling Process Iterative Modeling Process Iterative Modeling Process 
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ConclusionsConclusionsConclusions

All presented models contain significant conceptual model and 
data quality errors.

Errors must be understood and quantified before predictions can 
be reliable.

Calibration through parameter estimation and sensitivity 
analysis required to quantify error and test conceptual models.

SNWA has formulated a basic iterative modeling process that 
includes calibration methods aimed at quantifying error; other 
presented models are not.

SNWA has formulated modeling process that after next 
iterations can be used as management tool.

Predictions made from any of these models in their current state
are inappropriate for this decision-making process.
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