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1.0 INTRODUCTION

This study was undertaken to compile background and current information on the physical and
chemical characteristics of the springs and groundwater in the study area.

Section 1.0 n
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2.0 PURPOSE AND OBJECTIVES

The purpose of this report isto provide data and documentation of baseline physical and geochemical
characteristics of spring flow sources in Spring and Snake Valleys in Lincoln and White Pine
Counties, Nevada and parts of Western Utah. The main objectives are:

1. Compilation of historical and current spring flow and spring chemistry data

2. Estimation of reservoir temperature and groundwater circulation depth of the low temperature
geothermal springs using geochemistry, and

3. Determination of the source rock for the low temperature geothermal springs.

The data and the results of the geothermometry calculations will be used in the conceptualization,
construction, and calibration of a groundwater model in the project area.

Section 2.0 “
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3.0 BACKGROUND

Spring development began in the 1860s, when the population of eastern Nevada increased because of
gold and silver discoveries. Since then springs, including their channels and discharge areas, have
been modified to facilitate the beneficial use of their waters. Some modifications range from an
extensive diversion network such as at Big Springs and Gandy Warm Spring in Snake Valley, to the
construction of a simple, small impoundment several yards downstream of their orifice, such as
observed at Willow Spring in northern Spring Valley. The conditions of these diversion works vary
from arelatively good condition such as at Gandy Warm Spring and Big Springs, to diversion works
that appear to be unused and have been long abandoned such as at Swallow Springs. In the past,
spring waters have been used as watering places for travelers, municipal and domestic, mining and
milling, agricultural, wildlife and recreation. Most of the inventoried springs are currently used for
agricultural purposes, such as livestock watering and irrigation. Some of the springs support
populations of endangered species, while others such as Shoshone Pond support an expatriated
population of Pahrump Pool Fish. Spring Creek Spring in Snake Valley supplies water for the
Nevada Division of Wildlife (NDOW) fish rearing station.

The amount of discharge measurement data available is small for most springs. Although Gandy
Warm Spring and Big Springs are the two largest springs in the area, they only recently had gaging
stations installed for continuous discharge measurements.

Geochemistry of the thermal waters in Nevada has been studied by a number of workers (e.g., Hose
and Taylor, 1974; Mariner et al., 1983; Flynn and Buchanan, 1990; Welch and Preissler, 1990). The
Desert Research Ingtitute (DRI) studied the mineral content of selected geothermal watersin Nevada
as part of a study of geothermal resources in the western United States as a source of minerals
(Sanders and Miles, 1974). Most of the geothermal studies in Nevada focused on the use of
geothermal resources in electric-power generation mainly in the north and northeastern part of the
state. Based on these studies, higher-temperature geothermal reservoirs in the northwestern part of
the state are interpreted to be related to the circulation of groundwater to deep levelsalong faultsin a
region of higher-than-average heat flow (Hose and Taylor, 1974). The low to moderate temperature
geothermal waters in east-central and southern Nevada are observed to be related to regional
interbasin groundwater circulation in fractured carbonate-rock aquifer (Winograd and Thordarson
1975; Mifflin, 1968; Garside, 1994). In addition to these studies, datasets of various information on
the geothermal resources of Nevada have also been compiled (Garside, 1994; Shevenell et al., 2000;
Shevenell and Garside, 2003; NBMG, 2006; SMU, 2006), and a more comprehensive study to
geochemically characterize the geothermal systems in Nevada is on going (Arehart et a., 2002) to
enhance the exploration and exploitation of the state's geothermal resources.
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In their study of geothermal waters of Nevada, Garside and Schilling (1979) used a cutoff value of
21 degrees celsius (°C) (70 degrees Fahrenheit [°F]) as the minimum temperature for geothermal
waters. Again, spring and well waters with temperatures greater than 10°C above annual average
temperature at the site, and greater than 20°C, have been noted as warm or hot (Shevenell and
Garside, 2003). Within the study area, springs and groundwater with temperatures greater than 20°C
are considered warm (Thomas et al., 1996) and are believed to have flowed at greater depths on their
way from the recharge areas to the discharge points. Mifflin (1968) observed that groundwaters with
temperatures ranging from about 16 to 27°C are either associated with lateral flow in moderate to low
permeability rock environments several hundred feet (ft) at depth, circulated to moderate depthsin a
regional flow system, or are associated with localized concentrations of thermal groundwater near
major structural features.
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40 TECHNICAL APPROACH/METHODOLOGY

4.1  Data Collection and Compilation

This report presents spring discharge, water temperature, and silica (SIO,) concentrations of selected
springs and wells. The water chemistry data are mainly for Spring and Snake Valleys. They are part
of data compiled from previously published reports by various organizations, published and
preliminary data from the U.S. Geological Society (USGS), and from field investigations conducted
by the Southern Nevada Water Authority (SNWA) from 2003 to 2005 and are given in Attachment A.
The spring discharge data are mainly for Spring and Snake Valleys and adjacent basins and are given
in Table 4-1.

Data collection procedures were established to ensure consistent and accurate compilation and
collection of data during the spring inventory.

4.1.1 Discharge Measurements

Discharge measurements were made at each spring when conditions allowed using the standard
methods outlined by Rantz et al. (1982a and b) and Malone (1931), and the data are given in
(Table4-1). The main condition was accessibility. The locations of the spring sites are given in
Figure4-1. If the spring was inaccessible or other conditions existed that prevented a physical
measurement from being made, then the discharge was estimated. Measurements were made
upstream of any diversions.

4.2  Water Chemistry

Water-chemistry samples were collected to establish baseline conditions at selected springs. These
data were used in the evaluation of the agueous geochemistry for the estimation of the depths of
circulation of groundwater in the area. The water chemistry data have been compiled into the SNWA
database, and the appropriate items for this report are given in Attachment A. The field measured
temperature and laboratory measured silica concentrations were used to estimate the depths of
groundwater circulation of selected springs and wells in Spring and Snake Valleys using
geothermometry.

4.2.1 Geothermometry

Geothermometry is a method of estimating the temperature of a fluid at depth prior to cooling en
route to the surface because groundwater is commonly temperature-equilibrated with the aquifer

Section 4.0 “
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materials. Equilibrium thermodynamics assume that (1) the chemical signature of a fluid does not
change during its ascent to the surface because of fast travel time of the vertical rising fluid and slow
horizontal component of fluid flow; and (2) reequilibration does not occur during ascent and
discharge. Thus chemical analysis of geothermal fluids can be used to estimate the groundwater
(reservoir) temperature (Gemici et al., 2004). The estimated temperature reflects the depth of
groundwater circulation based on an understanding of the regional tectonics and geothermal
gradients.

There are two general types of geothermometers. (1) those based on absolute concentrations of
constituents in solution (e.g., silica[SIO,]); and (2) those based on ratios of two or more constituents
in solution (e.g., Na-K [sodium-potassium] or Na-K-Ca [sodium-potassium-calcium]). Solubility of
these minerals generally changes as a function of temperature and pressure.

The increased solubility of quartz and other silica polymorphs has been used extensively as an
indicator of geothermal temperatures (Truesdell and Hulston, 1980; Fournier and Potter, 1982) and is
widely used to estimate subsurface temperatures. The silica mineral that constitutes the controlling
phase for agueous silica concentrations depends on two counteracting processes: dissolution of the
primary silicate minerals of the rock, and precipitation of a silicamineral (D’ Amore and Arndrsson,
2000). The rate of dissolution of the primary rock minerals is largely controlled by the pH of the
water.

The temperature of groundwater increases as the depth of burial of aquifers increases because of the
geothermal gradient, which is the natural increase in the temperature of the earth as depth increases.
These temperature gradients vary widely over the earth and sometimes increase dramatically around
volcanic areas. Although the geothermal gradient varies from place to place, it averages about
3°C/100 meters (30°C/kilometer [km]) (Mazor, 1991). Temperatures of over 300°C occur in
groundwaters in geothermal wells. The large range in temperatures in groundwater is formed by a
variety of discharge mechanisms and, to alarge extent, by differences in the depths of circulation and
local heat gradients. Thus, temperatures measured in springs and wells reflect the temperatures
attained at depth and therefore provide information on the depth of circulation.

4.2.2 Geothermometer Calculations

Geothermometer equations are usually expressed in the form:

o — a — -
T°C = 5 ~Tog0X) 273.15 (4-1)

where X is SiIO, concentration or Na/K, etc., a and b are constants. Most of the geothermometer
equations are derived from empirical data, so different coefficient values are found in the literature.

Fournier (1977) and Gendenjamts (2003) observed that in geothermal reservoirs with temperatures
ranging from about 120 to 180°C, the solubility of quartz appears to control dissolved silica. At
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lower temperatures, other silica phases such as chalcedony control the concentration of dissolved
silica. When calculating temperatures from the silica content of natural water, assuming equilibrium
with either quartz or chalcedony, the temperatures are termed “quartz equilibrium” and “chalcedony
equilibrium” temperatures respectively. In agueous systems, Na, K, and Ca concentrations are
controlled by temperature-dependent equilibrium reactions with feldspars, mica, and calcite (Fournier
and Truesdell, 1973).
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50 DATA EVALUATION AND ANALYSIS

Discharge, temperature, and major ions concentration data described in the preceding section were
evauated to determine their quality and limitations. Data were filtered to remove poor quality and
erroneous records. The resultant datasets were applied in data analysis completed in support of a
series of geologic, hydrologic, and geochemical investigations to assess the water resources of the
Project Basins and adjacent basins. The results of these investigations were used to support
development of conceptual models of the Project Basins and the groundwater flow systems in which
they occur.

5.1 Data Accuracy and Limitations

5.1.1 Discharge Measurements

The accuracy of al discharge measurements made by SNWA have been rated using the same
excellent (2% error), good (5%), fair (8%) and poor (over 8%). The rating of the measurement is
based on the description of the flow, cross sectional characteristics, and channel control at the time of
the measurement. Discharge measurements used in this report ranged from excellent, when a flume
was used, to poor, when discharge values were estimated.

Limiting factors of the data include the temporal distribution of the miscellaneous measurements, the
areal distribution of the measurements, and the conditions in which the data were collected.
Continuous records are only available for two springs, Big Springs Creek South Channel near Baker,
NV (10243224) and Warm Creek near Gandy, UT (10172860). Each station has arecord of less than
one year in length. The accuracy of the annual records (continuous) depends on the stability of the
stage-discharge relationship, the frequency of discharge measurements, the accuracy of the
measurement of stage, the accuracy of the discharge measurement and calculation of the records
(Table 5-1). The hydrographs for Gandy Warm Spring and Big Springs are shown in Figure 5-1 to
illustrate this point. Continuous records are rated as excellent if about 95 percent of their daily
discharges are within 5 percent of their true values, good if their daily discharges are within 10
percent; fair if their daily discharges are within 15 percent; and poor if more than 95 percent of the
daily discharge values are more that 15 percent of their true value. At Big Springs the record
published for water year 2005 indicates the record as fair except for periods of estimated record
which are rated as poor (USGS, 2005a and b). Gandy Warm Spring was not published in the Utah
2005 data report and is therefore considered preliminary.
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Figure 5-1
Hydrograph of Big Springs and Warm Spring, Snake Valley, Nevada-Utah

5.1.2 Chemistry Data

As stated earlier, numerous sources of geochemical data were used for this study. Data from each
source were originally collected for specific studies. Generally, thereisa paucity of wells tapping the
carbonate-rock aquifer, and the spatial distribution of sample sitesislimited. Therefore, the majority
of the samples are from springs, and these samples complement the well samples in representing
groundwater resources in the study area. There were incomplete sample analyses in some instances,
and there was generally no discussion of analytical and sampling procedures because most of the data
collected from the web sites were in atabular form.

A great effort was made to evaluate most of these data for completeness and quality; however, the
precision and accuracy of all the data could not be ascertained. At a minimum, reaction error
calculations were made to assess the quality of the data. Reaction errors occur because of the
analytical errors of the individual parameters or the fact that not all possible ions are commonly
measured. Reaction error determination is based on the assumption that the sum of cations in a
solution is equal to the sum of anions and is given by the equation:

(antions—Zanions)
Reaction Error = x 100% (5-1)

Zions
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Positive reaction errors indicate excess of cations and negative errors indicate anion excess.
Normally, cut-off percentages of between 2 and 5 percent are commonly used (Mazor, 1991).
However, due to the varied nature of the data sources, a cut-off value of 10 percent was used for
some of the analyses. In some cases up to 15 percent was used. This evaluation however, did not
apply to the SIO, concentrations since silica has no charge. Silica concentrations of samples with
complete analysis and temperatures of 20°C or more were used for calculations. Mean silica
concentrations were used in cases where there were multiple samples for a site; otherwise, the only
available values were used for single measurements.

5.2 Estimation of Temperature and Depth of Groundwater Circulation

Samples from mountain-block and valley floor springs, with discharges ranging from about 0.01
cubic feet per second (cfs) for Caine Spring to about 15 cfs for Gandy Warm Spring in Snake Valley,
Utah, on the Utah-Nevada border, were collected and analyzed for this study. However, depths of
groundwater circulation for only three springs, and two wells with water temperatures greater than or
egual to 20°C were estimated. Groundwater circulation depth of Big Springsin Snake Valley was also
estimated, though its mean temperature of 19°C was less than the cut off value of 20°C. Available
measurements indicate that temperatures of Big Springs fluctuate from 18 to 22°C, so amean value
of 19°C was used to estimate the depth of circulation. Datafor the wells and springs for which depths
of circulation were estimated are given in Table 5-2. The warm temperature of Gandy Warm Spring
suggests that the waters are likely heated by deep circulation.

Temperature-dependent mineral solubilities (geothermometry), geothermal gradients and water
chemistry were used to estimate the average flow depth of water discharging from the thermal waters
of the regional springs and wells that are represented in the groundwater flow model. Temperatures
and depths of circulation of groundwater were estimated for low temperature geothermal waters with
measured surface temperatures of 20°C or more (Thomaset al., 1996).

Using the empirical equation of Fournier (1977):

o _ 1032
e = 4.69—10g(SiO,)

—273.15 (5-2)

for chalcedony for temperatures ranging from 0 to 250°C, the temperatures at depth were estimated.

The estimated groundwater temperatures were then used to estimate the mean depths of circulation at
each spring and well site using the formula below (Waterloo Hydrogeologic, Inc., 2003):

(T) = Tiagt(dT/0Z)xD (5-3)
where,

T = the mean subsurface temperature (°C),
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Ty = themeanrecharge or surface temperature (°C),
dT/0Z = the mean geothermal gradient (°C/km), and
D = the mean depth (km).

Estimated mean recharge temperature of 9°C was used based on current on-going recharge studies by
the DRI within the White River Flow System (Thomas, 2004). The mean recharge temperature was
determined by finding the average between the minimum and maximum recharge temperatures of
6°C and 12°C, respectively, measured by the DRI in parts of the study area. This value seems
reasonable considering that recharge water often has a temperature that differs significantly from the
aquifer temperature (Mazor, 1991) and the fact that the mean annual air temperature in Nevada varies
from about 7°C to over 18°C (Houghton et al., 1975).

The mean chalcedony equilibrium temperatures at depth were estimated by subtracting the mean
recharge temperatures from the calculated chalcedony equilibrium temperatures. Due to the lack of
geothermal gradients at the various spring and well sites, geothermal gradients from existing data in
parts of east-central Nevada were used. Using the mean for the minimum and maximum geothermal
gradients of 15°C/km and 25°C/km respectively in Nevada (NBMG, 2006; SMU, 2006), mean depths
of groundwater circulation were estimated using the mean chalcedony and recharge temperatures.
Davisson et al. (1994) reported geothermal gradients of between 10°C/km and 70°C/km at the
Nevada Test Site using measurements from a drilling project, so the mean gradient of 20°C/km used
for the calculation is quite appropriate.
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6.0 RESULTS AND DISCUSSION

Using the methodology discussed in Section 4.0 and the data given in Section 5.0, the mean depths of
groundwater circulation were estimated for low-temperature thermal springs and moderately deep
wellsin Spring and Snake Valleys, Nevada, and the results are given in Table 5-2. The relatively low
observed measured temperatures suggest that the warm waters might have cooled down during their
ascent to the surface. All the springs and well water samples correspond to immature waters
(Giggenbach, 1988) and were not suitable for the evaluation by K/Na and K/Mg equilibrium
geothermometers. Maturity index values of the wells and springs are generally less than 1 and are
givenin Table 6-1. Cation geothermometers are not considered for waters with maturity index values
of less than 2 (Giggenbach, 1988; Gemici et a., 2004). Chalcedony was chosen as the preferred
geothermometer because it was observed from the low measured temperatures and the calculated
saturation indices to control the silica concentration in the thermal watersin the study area. Quartzis
known to be kinetically unreactive at relatively low temperatures similar to the ones measured in the
springs and wells (Drever, 1988).

Table 6-1
Maturity Index Values for Low Temperature Geothermal Waters in Spring and Snake
Valleys, Nevada

Sample Na K Ca Mg Cl SO4 NO3 | HCO3
Sample ID Ml
Date meq/L | meg/L | meg/L | meqg/L | meqg/L | meg/L | meqg/L | meq/L
Gandy Warm Spring 6/22/2004 | 1.26 | 0.102 2.3 14 0.68 0.48 0.01 3.36 0.47
Caine Spring 7/14/2004 | 0.78 | 0.026 1.8 14 1.02 0.46 0.01 2.43 0.69
Big Springs 6/22/2004 | 0.24 | 0.026 | 2.05 1.65 0.16 0.16 0.01 3.21 0.74
Cedars Flowing Well 7/28/2004 | 0.3 0.026 0.8 0.41 0.14 0.1 0 1.16 0.32
USBLM 7/6/1983 | 0.38 | 0.026 11 0.06 0.06 0.1 0 1.39 -0.25

MI = Maturity Index

All the calculated chalcedony equilibrium reservoir temperatures are generally low (lessthan or equal
to 100°C) but are relatively higher than the measured temperatures in the springs and wells. The low
reservoir temperatures are consistent with the observation by Garside (1994), who concluded that
maximum reservoir temperatures of the low to moderate geothermal resources in the fractured
carbonate-rock aquifer in east-central and southern Nevada were generally less than 100°C and could
be 100 to 150°C (Garside et al., 2002). These low reservoir temperatures suggest that deep
circulation along normal geothermal gradients is more important than heating in a geothermal
reservoir (Schaefer et a., 2006).
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The springs and groundwaters might have circulated to several hundreds or thousands of feet deep.
With the exception of outliers like Big Springs, the mean depths of circulation range from about
3,600 ft to about 6,200 ft. In the case of Caine Spring with very low discharge, even the mean depth
may be considered as minimum depth value because of the very low fluxes. The larger the flux, the
less cooling the water undergoes as it rises to the surface. The estimated depths compare very well
with the depths at which water was encountered during the drilling of oil and gas wells in parts of
southeastern Nevada (Hess and Mifflin, 1978). Depths at which water was encountered in the oil and
gas wells in parts of southeastern Nevada range from 200 to over 9,000 ft (Garside et al., 1988) and
are given in Table 6-2. Garside et a. (2002) stated that temperatures dightly higher than 150°C had
been encountered in some deep oil wellsin eastern Nevada and that groundwater circulation depths of
19,600 ft (6 km) were likely assuming a gradient of 25°C/km. Given that the deepest well drilled in
the valley fill in Snake Valley was completed at a depth of 4,200 ft (Hood and Rush, 1965), the depths
of groundwater circulation estimated from the chalcedony equilibrium temperatures appear very
reasonable. Mifflin (1968) estimated that groundwaters with temperatures of between 18 and 27°C
might have circulated up to 4,000 ft in depth to obtain those temperatures.

The estimated depths were used with geological cross-sections of the study area prepared as part of
the general study (SNWA, 2006) to classify the aquifer types on the basis of the dominant rock type at
the depth of circulation for each of the springs and wells. Lithologies at the depths of groundwater
circulation are also given in Table 5-2.
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7.0 SumMARY

Using standardized data collection techniques, a large variety of springs were inventoried in eastern
Nevada and western Utah. To supplement the field observations, an extensive literature search was
conducted. From the field observations, it has been determined that the vast majority of springs have
been modified to some extent since settlersfirst arrived in the area

Springs were selected for inventory based on their topographic location, spatial distribution,
discharge, geologic conditions, and data availability. Data regarding discharge, geologic setting, and
diversions and water use were collected in the field when possible. Detailed geologic maps were
prepared at selected springs based on topographic and geologic setting.

The amount of data available is small for most springs. Although Gandy Warm Spring and Big
Springs are the two largest springsin the area, they only recently had gaging stationsinstalled. Spring
development began in the 1860s when the population of eastern Nevada increased because of gold
and silver discoveries. Since then, springs, including their channels and discharge areas, have been
modified to facilitate the beneficial use of their waters. Some modifications range from an extensive
diversion network such as at Big Springs and Warm Springs, to the construction of a smple, small
impoundment several yards downstream of their orifice, such as Willow Spring in northern Spring
Valley. The condition of these diversion works varies from good condition such Warm Spring and
Big Spring to diversion works that appear to be unused and have been long abandoned such as at
Swallow Springs. Most of the inventoried springs are currently used for agricultural purposes, such
as livestock water supply and irrigation for crops. In the past, spring waters have been used as
watering places for travelers, municipal and domestic, mining and milling, agricultural, wildlife and
recreation. Other springs support populations of endangered species, while Shoshone Pond supports
an expatriated population of Pahrump Pool Fish. Spring Creek Spring in Snake Valley supplies water
for the NDOW fish rearing station.

The temperature of springs and wells reflects the rock-water interaction in the subsurface.
Specifically, because solubility, exchange and isotopic fractionation are temperature dependent, the
temperature of water-rock equilibration at depth can be estimated. Geothermometry calculations
using chal cedony saturation as the control on temperature have been used to estimate the groundwater
(reservoir) temperatures at depth and the mean depths of circulation of thermal waters in Spring and
Snake Valleys, Nevada. With the exception of an outlier, the mean estimated circulation depths of
groundwater range between about 3,600 and 6,200 ft and are comparable to the depths at which water
was encountered in the drilling and subsequent drill-stem tests of oil and gas wellsin east-central and
southern Nevada. Knowledge of these depths is essential in the conceptualization, construction and
calibration of a groundwater model in assessing the effects of large-scale groundwater development
on the various water sources.
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