Water Resources Data Nevada Water Year 2002

By Steven N. Berris, E. James Crompton, Joseph D. Joyner, and Roslyn Ryan

Water-Data Report NV-02-1

Prepared in cooperation with the State of Nevada and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information regarding water-resources investigations in Nevada, write to: District Chief, Water Resources Division U.S. Geological Survey 333 West Nye Lane Carson City, Nevada 89706

2003

WATER RESOURCES DATA - NEVADA, 2002

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description.

Local Site Numbers

Local site numbers used in Nevada locate ground-water data sites (wells or springs) by hydrographic areas and by the official rectangular subdivision of the public lands with reference to the Mt. Diablo base line and meridian. Nevada has been divided into 14 hydrographic regions or major basins and 256 individual hydrographic areas or valleys. The classification is used to compile information pertaining to water resources in Nevada. The local site number uses as many as 19 digits to locate the site by hydrographic area, township, range, section, and section subdivision.

The first segment of the local site number specifies the hydrographic area as defined by Rush (1968). The remainder of the number specifies the township north or south of the Mt. Diablo base line, the range east of the Mt. Diablo meridian, the section, and the subdivision of the section. Sections are divided into quadrants labeled counterclockwise from upper right as A, B, C, and D. Each quadrant is then similarly subdivided up to as many as three times, depending on the accuracy of available maps; thus each section of about 640 acres may be subdivided into tracts approximately 330 ft on a side containing about 2.5 acres. Lettered quadrants are read from left to right, with the largest subdivision on the left. Sites within the smallest subdivision used are numbered sequentially with 1 digit. As an example, a well in Fallon (Carson Desert, hydrographic area 101) located within the $SE^{1}_{A}NE^{1}_{A}NW^{1}_{A}SW^{1}_{A}$ (section 6, Township 19) North, Range 28 (East, would have the number 101 N19 E28 6CBAD1. A second well within the same 2.5-acre tract would be numbered 101 N19 E28 6CBAD2.

Prior to January 1976, local site numbers in Nevada were published according to the following general format: 19/28-36aabc1. The first number was the township north of the base line (if the township was south of the base line, the first number was followed by an "S"). The second number was the range east of the meridian, the third number was the section, and the following letter or letters and number indicated the quarter sections and sequence as defined above.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relations between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with digital recorders, data collection platforms, or data loggers that sample stage values at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last