# Techniques of Water-Resources Investigations of the United States Geological Survey 

Chapter A8

# DISCHARGE MEASUREMENTS AT 

## GAGING STATIONS

By Thomas J. Buchanan and William P. Somers

Book 3
APPLICATIONS OF HYDRAULICS
9-975
(Abut
1949)
UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
WATER REjOICE DIVISION
DISCHARGE MEASUREMENT NOTES
Mene. No. 264
comp. by TB
Checked by -

Measurement rated excellent ( $2 \%$ ), good ( $5 \%$ ) fair ( $8 \%$ ), poor (over $8 \%$ ), based on following conditions: Cross section Fairly even; stone 4 gravel bottom Flow Good distribution; some Weather Raining
 Gage OK

G. H. of zero flow
$t=\frac{L}{1.3 V}=\frac{3170}{1.3(8.16)}=299 \begin{aligned} & \text { secs. Sheet No. ..................... of sheets. }\end{aligned}=5 \mathrm{~min}$.

Figure 69.-Discharge measurement notes with mean gage height adjusted for time of travel of flood wave.
is not submerged. A weir is not submerged when there is free circulation of air on all sides of the nappe.

The general equation for flow over a sharpedged triangular weir with a $90^{\circ}$ notch is

$$
\begin{equation*}
Q=C h^{6 / 2} \tag{8}
\end{equation*}
$$

where $Q$ is the discharge, $h$ is the static head, and $C$ is the coefficient of discharge. Each weir
should be rated by determining the flow volumetrically. In the absence of such a rating a value of $C$ of 2.47 may be used.

To place the plate in a sand or silt channel, the only tools required are a carpenter's level and a shovel. The level is used to make the top of the plate horizontal and the plate plumb. Another way to level the plate is by fastening a staff gage or level bubble to each end of the weir. The staff gage are set at the same

