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2. Carson River
3. Colorado River
4. Humboldt River
5. Jordan River

14. Sevier Lake
15. Utah Lake
16. Walker Lake

9. Sevier River
10. Truckee River
11. Walker River

19. Carson Sink
20. Death Valley

Figure 1.—Location of the study area and principal geographic

features within fthe study area
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EXPLANATION
HYDROGRAPHIC-AREA BOUNDARY—Numbers correspond to those used in
the adjacent list. Numbers for areas in Nevada are those generally used by
State agencies to identify specific areas. Numbers for areas outside of Nevada
are index numbers assigned only for purposes of this report. In accompanying
list, hydrographic areas are grouped by flow system. Parenthetical flow-system
numbers are those shown in figure 6. Asterisk indicates a hydrographic area
. with subareas in more than one major flow system.
-------------- HYDROGRAPHIC-SUBAREA BOUNDARY
MAJOR FLOW-SYSTEM BOUNDARY
————— STUDY-AREA BOUNDARY
200 MILES
122 GABBS VALLEY (22) 244 Valjean Valley
136 MONTE CRISTO VALLEY (23) 245 Shadow Valley
SOUTH-CENTRAL MARSHES (24) NEWARK VALLEY SYSTEM (29)
113 Huntoon Valley 154 Newark Valley
114 Teels Marsh Valley 155 Little Smoky Valley *
117 Fish Lake \éallleifi r A. Northern Part
118 Columbus Salt Marsh Valley
119 Rhodes Salt Marsh Valley RA]LSOASE\}’]ATLE::'SYSTEM (30)
120 Garfield Flat * 150 Little Fish Lake Valley
I24F 8 sedzspinie 166 Little Smoky Valley*
; astern Part
135 Lone Valley C. Southern Part
137 Big Smoky Valley * 156 Hot Creek Valley
A. Tonopah Flat 173 Railroad Valley *
141 Ralston Valley B. Northern Part
142 Alkali Spring Valley 170 PENOYER VALLEY (31)
143 Clayton Valley INDEPENDENCE VALLEY SYSTEM (232)
149 Stone Cabin Valley : 177 Clover Valley
138 GRASS VALLEY (25) 188 Independence Valley
1378 NORTHERN BIG SMOKY VALLEY (286) * RUBY VALLE 3YSTEM (33)
DIAMOND VALLEY SYSTEM (27) 176 Ruby Valley
139 Kobeh Valley 178 Butte Vall
140 Meonitor Valley -
A NesthorPart A. Northern Part
BT SouthernPast COLORADO .SYSTEM (34)
151 Antelope Valley (Eur & Nye) 164 lvanpah Valiey
152 Stevens Basin A.  Southern Part
153 Diamond Valley B. Northern Part
DEATH VALLEY SYSTEM (28) 165 Jean Lake Valley
144 Lida Valley 166 Hidden Valley (South)
145 Stonewall Flat 167 Eldorado Valley
146 Sarcobatus Flat 171 Coal Valley'
147 Gold Flat 172 Garden Valley
148 Cactus Flat 174 Jakes Valley
157 Kawich Valley 175 Long Valley
158 Emigrant Valley 180 Cave Valley
A. Groom Lake Valley 181 Dry Lake Valley
B. Papoose Lake Valley 182 Delamar Valley
159 Yucca Flat 183 Lake Valley
160 Frenchman Flat 198 Dry Valley
161 Indian Springs Valley 199 Rose Valley
162 Pahrump Valley 200 Eagle Valley
168 Three Lakes Valley (Northern Part) 201 Spring Valley
169 Tikapoo Valley 202 Patterson Valley
A.  Northern Part 203 Panaca Valley
B. Southern Part 204 Clover Valley
173 Railroad Valley * 205 Lower Meadow V Wash
A. Southern Part 206 Kane Springs Valley
211 Three Lakes Valley (Southern Part) 207 White River Valley
225 Mercury Valley 208 Pahroc Valley
226 Rock Valley 209 Pahranagat Valley
227 Fortymile Canyon 210 Coyote Spring Valley
A. Jackass Flats 212 Las Vegas Valley
B. Buckboard Mesa 215 Black Mountains Area
228 Qasis Valley 216 Garnet Valley
229 Crater Flat 217 Hidden Valley (North)
230 Amargosa Desert 218 California Wash
240 Chicago Valley 219 Muddy River Springs Area
241 California Valley 220 Lower Moapa Valley
242 Lower Amargosa Valley 221 Tule Desert
243 Death Valley 222 Virgin River Valley

INTRODUCTION

This atlas is one of several reports that are products of an analysis of regional
aquifer systems in the Great Basin of Nevada, Utah, and adjacent States. The
Geological Survey program of regional aquifer-system analyses is a nationwide study
of ground-water systems on a regional scale. The program is intended to establish a
framework of geologic, hydrologic, and geochemical information for each regional
aquifer system studied. As of 1985, studies have been started or completed in 19
areas. The scope of the Great Basin Regional Aquifer-System Analysis is outlined by
Harrill and others (1983). The purpose of this report is to bring the findings of several
studies together into a map report that discusses regional aspects of ground-water
flow in the Great Basin, delineates the major ground-water flow systems, and briefly
describes some of their characteristics.

This atlas is Chapter C of a three-part series. Chapter A delineates and describes
hydrogeologic units in the Great Basin region, and Chapter B shows the generalized
distribution of hydraulic potential.

THE STUDY AREA

The Great Basin region discussed herein includes about 140,000 mi2, largely in
Nevada and Utah, but with smaller components in Arizona, California, Idaho, and
Oregon (fig. 1). The study area generally conforms to the Great Basin region as shown
by Stewart (1980, p. 7); however, it includes an area of southeastern Nevada that is
tributary to the Colorado River, and it excludes some of the Great Basin parts of
southeastern California and southern Oregon and the headwater areas of some of the
principal drainages in the Sierra Nevada and Wasatch Range. The study area is
characterized by generally north-trending mountain ranges more than 50 miles long,
separated by alluvial and fluviolacustrine basins. Most mountain ranges are 5 to 15
miles wide and rise 1,000 to 5,000 feet above the adjoining basin floors, which are also 5
to 15 miles wide. The area has had a complex geologic history that includes major
episodes of sedimentation, igneous activity, orogenic deformation, and continental
rifting. Major tectonic activity beginning about 17 million years ago involved
extensional faulting that formed the major basins and ranges which characterize the
present physiography (Stewart, 1980, p. 5). Many of the structural basins are
topographically closed; however, others are interconnected by river systems, which
terminate in major lakes or sinks. The Great Salt Lake of Utah and Pyramid and
Walker Lakes of Nevada are remnants of two large lakes that occupied much of the
study area from more than 26,000 years ago to about 11,000 years ago (Bensen, 1978,
p. 313, and Arnow, 1984, p. 2). Lake Bonneville covered a maximum area of about
20,000 mi? in Utah, and Lake Lahontan covered a maximum of about 8,000 mi2 in
Nevada. About 12,000 mi? in the southeast part of the study area drains to the
Colorado River; however, most of this drainage is in the form of interbasin ground-
water flow rather than streamflow.

PREVIOUS WORK

Several investigators have delineated regional ground-water flow systems in
parts of the Great Basin. The most extensive work has been in southern Nevada
(Winograd, 1962; Winograd and Eakin, 1965; Blankennagel and Weir, 1973; and
Winograd and Thordarson, 1975). Eakin (1966) described the White River flow system
in southeast Nevada using ground-water budget techniques and hydraulic gradients.
Mifflin (1968) evaluated flow systems throughout Nevada and identified 136 systems,
separating them into two groups on the basis of the presence or absence of interbasin
flow. Mifflin’s work was augmented by Rush and others (1971) who prepared a map
summarizing interbasin flows for 232 hydrographic areas in Nevada. Winograd and
Friedman (1972) demonstrated that ratios of the isotopes deuterium (hydrogen-2) and
hydrogen-1 in ground water are useful tools for tracing regional flow in the Great
Basin. Gates and Kruer (1981) described areas thought to be associated with regional
ground-water flow in western Utah. Bedinger, Harrill, and Thomas (1984) and
Bedinger, Gates, and Stark (1984) have prepared flow-system maps of the Basin and
Range Province in Nevada and Utah, which delineate the shallowest observed or local
flow systems on the basis of the water-table configuration. Bedinger, Reed, and
Langer (1984) delineated regional flow systems underlying the local systems using a
rationale devised for mapping the hydraulic head for regional ground-water flow.

HYDROGEOLOGIC UNITS

Because the Great Basin has had a complex geologic history, a wide variety of
rock types and structural features are present. All rocks in the area can be grouped
into three categories: basin fill with mostly moderate to high permeability, consoli-
dated rocks with generally low permeability, and consolidated rocks with moderate
and locally high permeability (fig. 2).

The basin fill consists primarily of unconsolidated and weakly consolidated
deposits of gravel, sand, silt, and clay derived from adjacent mountains. Some
volcanic rocks also are included in the fill. Thickness of the basin fill is generally
between 2,000 and 5,000 feet, but exceeds 10,000 feet in the deepest basins. Sand and
gravel deposits to depths of about 1,500 feet are the most productive aquifers, and
supply almost all water withdrawn by existing major water users. The deep basin-fill
deposits are unexplored in most places; however, the sparse information available
indicates that they generally do not yield water as readily as the shallower deposits,
and that some may contain water of poor quality.

The consolidated materials of generally low permeability include clastic sedi-
mentary rocks, intrusive and extrusive igneous rocks, and metamorphic rocks, which
generally do not transmit water readily unless they have been extensively fractured, as
is the case for the area in figure 2 that includes highly fractured welded tuff. Another
exception is basalt, which locally can be highly permeable. Carbonate rocks
(limestone and dolomite) also can have a low permeability where they are unfractured
or where fractures enlarged by solution are not common and not interconnected.

The bedrock of moderate to locally high permeability includes primarily
carbonate rocks within which secondary permeability has been developed, probably
by solution enlargement of fractures. These rocks undetlie a large area in western
Utah and eastern Nevada—the carbonate-rock province—where thick sequences of
carbonate sediments were deposited in Paleozoic and early Mesozoic time. In this
province, geologic formations of Paleozoic and early Mesozoic age range in aggregate
thickness from 20,000 to 30,000 feet, and much of this sequ:nce is composed of
carbonate rocks. The carbonate-rock province is typified by complex interbasin
regional flow systems that include both basin-fill and carbonate-rock aquifers.
Regional structural features that might lead to the formation of significant fracturing
and resultant secondary permeability include overthrust zones, strike-slip shear
zones, and low-angle extensional fault zones (detachment surfaces). Locally, high-
angle normal or listric faults may also cause significant fracturing and resultant
permeability.

HYDROGRAPHIC AREAS

A total of 260 hydrographic areas or subareas are presently recognized within the
Great Basin region (fig.3). These areas usually are the basic units used by State and
local agencies for planning and management of water resources, and they commonly
include only one topographic basin. Most areas contain a basin-fill ground-water
reservoir and include the drainage area in the adjacent mountains. Generally, the
topographic and geologic features that constitute the geographic boundaries of
hydrographic areas and subareas correspond to hydrologic boundaries; conse-
quently, boundaries of larger ground-water flow systems generally correspond to
boundaries of either hydrographic areas or subareas.

Modified from Toth {1963, fig.3)
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GOSHUTE VALLEY SYSTEM (35)

Butte Valley *

B. Seuthern Part

Steptoe Valley
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GREAT SALT LAKE DESERT SYSTEM (37)
Grouse Creek Valley
Pilot Valley
Deep Creek Valley
Snake Valley
Pine Valley
Wah Wah Valley
Tule Valley
Fish Springs Flat
Dugway-Government Creek Valley
Park Valley *
A. West Park Valley
Great Salt Lake Desert *
A.  West Part
Spring Valley
Tippett Valley
Antelope Valley
A. Southern Part
B. Northern Valley
Thousand Springs Valley
A.  Herrell-Brush Creek
B. Toano-Rock Spring
C. Rocky Butte Area
D. Montello-Crittenden
Pilot Creek Valley
GREAT SALT LAKE SYSTEM (38)
Park Valley *
B. East Park Valley
Great Salt Lake Desert *
B. East Part
Tooele Valley
Rush Valley
Cedar Valley
Utah Valley Area
A. Goshen Valley
B. Southern Utah Valley
C. Northern Utah Valley
Northern Juab Valley
Salt Lake Valley
East Shore Area
West Shore Area
Skull Valley
Sink Valley
Cache Valley
Malad-Lower Bear River Area
Pocatello Valley
Blue Creek Valley
Hansel & N. Rozel Flat
Promontory Mtns Area
Curlew Valley
Great Salt Lake
SEVIER LAKE SYSTEM (39)
Beryl-Enterprise Area
Parowan Valley
Cedar City Valley
Beaver Valley
Milford Area
Leamington Canyon
Pavant Valley
Sevier Desert

BASIS FOR DEFINING FLOW SYSTEMS

Theoretical aspects of ground-water flow systems were examined in the 1960’s by
Toth (1962, 1963) and Freeze and Witherspoon (1966, 1967), who modeled
hypothetical systems along vertical sections. Toth (1963, p. 4807) used a system of
uniform permeability to demonstrate that, if the potential on the surface of the system
differed from a linear gradient, circulation cells would form in response to local areas
of recharge and discharge that correspond with areas of localized high and low
potential, respectively. Toth was able to identify three types of flow systems—local,
intermediate, and regional—on the basis of the length of flow lines and whether flow
passed beneath local areas of high or low potential. These types of systems are
illustrated in figure 4. His findings that are most applicable to the Great Basin are (1)
the concept that deep regional flow can pass beneath shallow local areas of high
potential (ground-water divides) and (2) the example that variations in permeability
within the system can cause appreciable discharge upgradient from the hydraulic
terminus of the system.

Freeze and Witherspoon (1967, p. 626-632) evaluated the theoretical effects of
subsurface permeability variations on regional ground-water flow. They developed a
number of two-dimensional vertical sections that illustrate the diversity of possible
regional-flow patterns. A general conclusion from their work is that when permeability
in the deeper part of the system is increased, deep circulation of flow increases,
discharge becomes concentrated near the terminus of the system, the vertical
component of flow in the shallower parts of the system is increased, and circulation
cells representing local or intermediate systems are less likely.

POTENTIAL FOR REGIONAL GROUND-WATER FLOW

Large ground-water flow systems are driven by hydraulic gradients that are
continuous over long distances. These large systems generally are either the regional
or intermediate types described in the preceding section. Bredehoeft and others
(1982) reviewed the development of concepts relating to regional ground-water flow.
One of the principles they listed as governing regional ground-water flow was that
“differences in hydraulic head produced by topographic relief on the boundaries of the
system are, in most instances, the driving force for the flow.” This principle was used
to evaluate the potential for regional flow in the Great Basin. The approach taken was
to determine the lowest water-level altitude in the basin-fill deposits of each valley
(which generally is only slightly below the topographically lowest point in the basin),
and then to draw smooth contours through the point altitudes for each valley. Figure 5
shows indices of the regional flow potential obtained using this method. If deposits and
rocks are sufficiently permeable, regional flow would be toward the Colorado River or
major sinks. More detailed information on regional hydraulic gradients is presented by
Thomas and Mason (1986). Bedinger, Reed, and Langer (1984) devaloped a rationale
for mapping hydraulic head for regional flow and applied it to the Bonneuville region of
the Basin and Range Province. The resulting contours (Bedinger, Reed, and Langer,
1984, pl. 2) are quite similar to the indices of regional flow potential shown in figure 5.

MAJOR FLOW SYSTEMS IN THE GREAT BASIN

The general concepts outlined above were helpful in delineating the major flow
systems in the study area. The “major flow system” is herein considered to be the
local, intermediate, or regional system that is dominant—usually the one conveying
the largest percentage of ground water in the area. Where consolidated rocks are
permeable enough to afford significant identifiable hydraulic continuity on a regional
scale, the local and intermediate types of systems were considered to be subsystems
within major regional-flow systems. Where consolidated rocks have only low
permeability and where water-budget studies do not indicate interbasin flow, regional
flow was considered insignificant and the local and intermediate types of systems were
considered to be the major flow systems. Where several basins are traversed by a
major stream, and continuity between the basins is provided primarily by the stream,
these interconnected basins are considered to consitute a complex regional-scale
major flow system involving substantial interaction between ground water and surface
water. The Humboldt, Truckee, Carson, and Walker River basins of Nevada are
examples of this situation. A basic premise is that each flow system terminates in a
discharge area. Consequently, if all of the terminal discharge areas are identified, the
task of delineating a flow system is reduced to identifying areas that contribute flow
toward the specified discharge area. For local systems consisting of only one basin or
of a discharge area and one or more tributary basins, the task is simple, providing
adequate hydrologic data are available; however, some of the larger regional systems
extend for more than 100 miles and have flow paths that traverse as many as seven
basins. In most instances, some water discharges at intermediate points along this
path from local or intermediate flow systems; consequently, only some of the water
flows all the way to the regional discharge area. Boundaries between systems are only
generally defined; some may represent physical barriers to flow such as masses of
intrusive rocks and others represent ground-water divides or divisions where an area
of parallel flow ultimately diverges downgradient. Again, adequate hydrologic data are
needed to precisely define flow-system boundaries. For much of the Great Basin,
these data are not yet available.

A delineation of the major flow systems was made using the general procedures
outlined in the preceding paragraphs and information published through 1984 on
hydraulic heads, water budgets, and interbasin flows. This information was developed
from data biased toward the shallower parts of the systems. Consequently, the
boundaries of deeper major flow systems are delineated primarily on the basis of
inference from information regarding the shallower part of the systems. The 39 major
flow systems delineated are shown in figure 6 and, in detail, on sheet 2; some of their
general characteristics are summarized in table 1.

The 39 flow systems identified in table 1 range in area from 30 to 18,000 mi? .
Sixteen are single-basin systems, the remainder are multibasin systems which may
include as many as 34 hydrographic areas or subareas. Large multibasin flow systems
outside of the carbonate-rock province are generally coincident with major river
systems. Large multibasin systems within the carbonate-rock province typically have
little surface flow; instead, they may contain ground-water flow paths more than 100
miles long that traverse several basins. Discharge from these systems is typically from
large springs. This discharge generally is consumed by evapotranspiration in the
vicinity of the spring. Altitudes of terminal discharge areas range from about 5,800 feet
in high parts of central Nevada to a low of about 200 feet below sea level in Death
Valley.

An alternate interpretation of the data for Utah is possible. The Sevier Lake,
Great Salt Lake Desert, and Great Salt Lake systems could have been grouped into a
large system with its terminus at the Great Salt Lake. There is some geologic and
hydrologic evidence for regional continuity between these areas, but significant
hydraulic gradients between the areas are virtually nonexistent; consequently, the
volume of subsurface flow is relatively small. Moreover, each of the three areas has a
distinctive hydrologic character. Consequently, this part of the region is described as
three major flow systems with three terminal discharge areas.

In southern Nevada, the hydrologic character of parts of the western boundary of
the Colorado system is not well understood and its location is uncertain. Additional
information probably will allow significant refinement of this boundary.
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CONVERSION FACTORS AND ABBREVIATIONS

“Inch-pound” units of measure used in this report may be converted to
International System (metric) units by using the following factors:

Multiply By To obtain
Feet (ft) 0.3048 Meters (m)
Miles (mi) 1.609 Kilometers (km)

Square miles (mi?) 2.590 Square kilometers (km2)

Sealevel: Inthisreport “sealevel” refers to the National Geodetic Vertical Datum of
1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the
first-order level nets of both the United States and Canada, formerly called “Sea Level
Datum of 1929”.

Map No.:

Major ground-water flow systems shown in figure 6.

TABLE 1-CHARACTERISTICS OF MAJOR FLOW SYSTEMS

Ground-water recharge: Natural recharge. Excludes irrigation return flows and other man-induced forms of recharge. Primarily a compilation Number of
of published estimates. Where information was not available, rough estimates were made for this compilation. hydrographic Ground-water
Ground-water storage: Represents water stored in basin—-fill reservoirs. Number is the amount of water (in acre-feet) that would be released Area areas or Ground-water storage
from storage if the water table in a given area were uniformly lowered 1 foot. Storage for a given interval of dewatering can be estimated Map (square subareas recharge (acre-feet
by multiplying the per-foot values by the total interval, in feet, to be dewatered. Volumes estimated may include some water of poor No. Flow-system name miles) included (acre-feet) per foot) System characteristics References
quality. Does not include water stored in comsolidated rock. Values are based primarily on published estimates. Where information was not
available, rough estimates were made for this compilation using approximate areas of saturated basin fill and an average specific-yield = e
value of 10 percent. 23 Monte Cristo 284 1 500 7,200 Consolidated rock is volcanic, metasedimentary R52
References: Letters refer to report series; number indicates the specific report number (see accompanying list). B, Water—Resources Valley and metavolcaniec, with some intrusives., Is an
Bulletin, Nevada Department of Conservation and Natural Resources; OF, Open—File Report, U.S. Geological Survey; P, Professional Paper, arid single-basin flow system (playa altitude
U.S. Geological Survey; R, Water—Resources Reconnaissance Report, Nevada Department of Conservation and Natural Resources; TP, Technical about 5,268 ft).
Publication, Utah Department of Natural Resources; W, Water—Supply Paper, U.S. Geological Survey; WRI, Water—Resources Investigations
Report, U.S. Geological Survey. See accompanying list for more complete citatiom. 24 South Central 6,790 12 65,000 190,000 Consolidated rock is primarily volecanic and B41, R12, R28,
Marshes intrusive, with some areas of carbonate and R45, R52, R58
clastic sedimentary. Is an arid area with
Number of interbasin flow through fractured rocks.
hydrographic Ground-water Terminal discharge area includes five individual
Area areas or Ground-water storage areas situated in topographic lows along the
Map (square subareas recharge (acre-feet Walker Lane structural zone. Clayton Valley
No. Flow-system name miles) included (acre-feet) per foot) System characteristics References playa (altitude about 4,265 ft) is lowest point
in system.
1 Continental Lake 409 2 16,000 6,100 Consolidated rock is primarily volecanic. Flow R22 25 Grass Valley 595 1 12,000 16,000 Consolidated rock is primarily volcanic, with R29
system between basins is primarily in surface streams. some siliceous sedimentary. Is a single-basin
Flow in consolidated rock not determined; small if system (playa altitude about 5,620 ft).
any. Altitude of terminus at Continental Lake
about 4,213 ft. 26 Northern Big 1,320 1 65,000 50,000 Consolidated rock is primarily volcanic, B41
Smoky Valley intrusive, clastic sedimentary, and carbonate.
2 Virgin Valley 494 1 7,000 420 Consolidated rock is primarily volcanic. Minor R22 Is a single-basin system (playa altitude about
surface-water flow to Continental Lake system, but 5,620 ft); however, south boundary is formed by a
for purposes of this study, area is considered a ground-water divide in alluvium.
single-basin system (lowest point in area is at
altitude of about 4,805 ft). Flow in consolidated 27 Diamond Valley 3,120 6 58,000 88,000 Consolidated rock is primarily volecanic, B35, R6, R3O0,
rock not determined; small if any. system siliceous sedimentary, and carbonate. Area R3l,
contains a large Pleistocene drainage area from
3 Swan Lake Valley 226 1 6,700 1 Consolidated rock is primarily voleanic. R15 which present day runoff is ephemeral. Interbasin
Hydrologic system is dominated by surface-water flow is primarily through basin fill, with minor
flow. No large basin-fill reservoir is present. leakage through consolidated rock into Diamond
Altitude of terminus at Swan Lake Reservoir is Valley. Diamond Valley playa (altitude about
about 5,635 ft. 5,775 ft) is terminus of system. Significant
discharge occurs in upgradient basins. Area may

4 Long Valley 729 &4 12,000 12,000 Consolidated rock is primarily volcanic. R15 contribute some flow to Fish Springs in adjacent
Continuity between areas is primarily by Newark Valley system. Several large springs are
ground-water flow in alluvium and shallow present in Diamond Valley.
consolidated rock. Altitude of terminus at
Massacre Lake is about 5,620 ft. 28 Death Valley 15,800 30 98,000 380,000 Consolidated rock is predominantly carbonate and B5, B6,

system volcanic, which is commonly fractured intensively OF77-728,

5 Duck Lake Valley 533 1 9,000 5,600 Consolidated rock is primarily volcanic. In wet R17 by structural deformation along regional-scale OF80-569,
years, surface water flows to adjacent Surprise shear zones within Walker Lane. System is OF81-635,
Valley, Calif. Playa altitude is about 4,680 ft. characterized by major interbasin flow and large OF83-542,

regional springs. The Death Valley playa P494-B,

[ Black Rock Desert 9,100 18 170,000 230,000 Consolidated rock is primarily volcanic and B31, B34, B37, (altitude about 200 ft below sea level) is P712-B,

system intrusive. Black Rock Desert is a regiomal R4, R7, RI1, terminus of system. System includes several P712-C, P927,
ground-water sink (playa altitude is about R20, R&44 subsystems that discharge at intermediate points. R10, R14, R45,
3,905 ‘ft). Most prominent of these is Ash Meadows flow RS54, W1832
system. Character of northeast boundary is not

7 Humboldt system 16,800 34 500,000 330,000 Consolidated rock is predominantly volcanic and B32, B39, well understood.
siliceous sedimentary in lower basin, and clastic  P491-D, R2,
sedimentary, metamorphiec, volcanic, and carbonate R5, R19, R29, 29 Newark Valley 1,450 3 22,000 17,000 Consolidated rock is volcanic, clastic R1, R38
in upper basin. Hydrologic system is dominated R31, R32, R35, system sedimentary, and carbonate. Interbasin flow is
by Humboldt River. Eleven basins are along R37, WL1581, primarily through alluvium. The Newark Valley
mainstem; remaining basins are tributary areas. W1754, W1795, playa (altitude about 5,835 ft) is the terminus
Regional discharge is to Humboldt Sink (altitude wilsle, of the system. Several large springs occur in
about 3,890 ft), with surface-water overflow to Newark Valley. The character of the east and
Carson Sink. southeast boundaries is not well understood.

8 Buffalo Valley 504 1 12,000 17,000 Consolidated rock is primarily siliceous sedimentary B32 30 Railroad Valley 4,130 4 65,000 92,000 Consolidated rock is primarily volcanic and R38, R60
and volcanic. Is an arid single-basin system system carbonate. Railroad Valley playa (altitude about
(playa altitude about 4,600 ft). 4,710 ft) is terminus of system. Area is

characterized by large springs. Character of

9 Buena Vista 742 1 10,000 24,000 Consolidated rock is primarily fine-grained B13 north boundary is not fully understoocd.
marine and continental clastic sedimentary, with
some volcanic and intrusive. Is an arid single- 31 Penoyer Valley 700 1 4,300 22,000 Consolidated rock is volcanic, with some R60
basin system (playa altitude about 4,035 ft). carbonate. Is a single-basin system (altitude

about 4,710 ft) that may overlie part of a deep
10 Granite Springs 1,300 2 4,500 36,000 Consolidated rock is primarily wvolcanic, and R55 regional flow system.
system fine-grained marine and continental clastic
sedimentary, with some intrusive. Flow between 32 Independence 1,030 2 30,000 33,000 Consolidated rock is primarily carbonate, B12
basing is through fractured non—carbonate Valley system metamorphic, and volcanic. Discharge is
consolidated rocks. Discharge area is Granite significant in both basins, with possible minor
Springs Valley playa (altitude about 3,898 ft). flow between basins. FPlaya in Independence
Valley (altitude about 5,585 ft) is terminus of
11 Winnemucca Lake 371 1 2,900 9,600 Consolidated rock is primarily volcanic and R57, W1539-C system.
Valley intrusive. Is considered a single—basin system,
but when Pyramid Lake was at higher stages this 33 Ruby Valley 1,280 2 72,000 43,000 Consolidated rock is primarily carbonate and B12, R49
area received intermittent surface-water inflow system metamorphie. Ruby Marshes (altitude about
from Truckee River. Altitude of Winnemucca Lake 5,965 ft) are terminus of system. Area receives
playa is about 3,770 ft. ground-water inflow from Huntington Valley as a
result of flow through carbonate rocks.

12 Truckee system 1,700 9 73,000 36,000 Consolidated rock is primarily volcanic, with OF84-433,
some areas of marine and continental metasediments OF84-465, R41, 34 Colorado system 16,300 34 200,000 440,000 Consolidated rock is primarily carbonate and B3, B4, B5,
and metavolcanics. System is dominated by the R43, R57, volcanic, with some clastic sedimentary and B6, BB, BlS,
Truckee River, which is supplied by runoff from W1779-8, intrusive. Area is characterized by major B29, B33, B44,
Sierra Nevada. Interbasin flow is primarily by interbasin ground-water flow and large regional R3, R13, Rl6,
surface water. Terminus of system is Pyramid Lake, springs. Colorado and Virgin Rivers act as R18, R21, R24,
except for water diverted to the Carson system. drains at terminus of system, but most discharge R25, R27, R36,
Lake altitude has fluctuated between a historical occurs upgradient at discharge points of major R46, R50, R51,
high of 3,878 ft in 1891 and a historical low of regional subsystems. Since 1930's, altitude of R54, W1780
3,784 ft in 1967. Lake Mead at Hoover Dam has fluctuated between

1,226 ft in 1983 and 1,083 ft in 1956. Altitude

13 Lemmon Valley 111 3 1,800 4,100 Consolidated rock is primarily marine and B42, OF80-1123 prior to comstruction of Hoover Dam was about
continental metasediments, intrusive, and some R43, 600 ft. Boundary of northwest margin of system
volecanics. Flow between basins is inhibited by is not precisely defined.

. faults. Ground-water outflow occurs, probably
through fractured granitic rock. Discharge is 35 Goshute Valley 3,640 3 110,000 94,000 Consolidated rock is primarily carbonate, B12, R42, R49
primarily by evapotranspiration in and near two system volecanic, and intrusive. Goshute Valley playa
playa areas. Altitude of lowest playa is about (altitude about 5,585 ft) is terminus of system,
4,915 ft. but significant discharge occurs in two
upgradient areas. Interbasin flow is relatively
14 Cold Spring 30 1 900 450 Consolidated rock is primarily marine and OF80-1287, R43 small and occurs through consolidated rock and
Valley continental metasediments, with some volcanics. basin fill. Part of area may be underlain by
Is a single-basin system. Significant surface- intrusive or metamorphic rocks that restrict deep
water flow reaches Alkali Flat area in most interbasin flow. Ground-water outflow to Great
years. Playa altitude is about 5,035 ft. Salt Lake Desert is relatively minor, due to
restricted flow in consolidated rock.
15 Fernley Sink 356 3 960 9,000 Consolidated rock is primarily volcanic. System R55
system receives inflow and leakage from Truckee Canal 36 Mesquite Valley 236 1 1,400 7,000 Consolidated rock is primarily carbonate and R46
in addition to natural recharge. Discharge is clastic sedimentary. Part of area may be
primarily from Bradys Hot Spring and Fernley Sink underlain by an intrusive mass at depth. Is a
playa areas. Altitude of Fernley Sink Playa is single-basin flow system. Playa altitude about
about 4,012 ft. 2,540 ft.

16 Carson system 3,520 5 45,000 110,000 Consolidated rock is primarily volcanic, 0F80-1224, 37  Great Salt Lake 18,000 20 370,000 430,000 Consolidated rock is primarily carbonate and R33, R34,
intrusive, and slightly metamorphosed marine and OF80-2042, Desert system clastic sedimentary, with some volcanics and R47, RS56,
continental sedimentary and velcanic. System OF82-345, intrusives. Terminus of system is Bommneville TPl4, TP24,
is dominated by Carson River, which is supplied P417-F, Salt Flats in Great Salt Lake Desert (altitude TP29, TP30,
by runoff from Sierra Nevada. Regional R39, R59 about 4,210 ft); however, because of lack of TP41, TP43,
continuity is primarily by way of surface-water definition of ground-water divides, parts of TP47, TP51,
flow. Carson Sink (altitude about 3,870 ft) is area may contribute minor outflow to Great Salt TP56, TP39,
terminus of system. Lake. Large springs discharge significant flow TP64, TPT1,

from terminal areas of major subsystems. w2057

17 Walker system 3,220 9 47,000 78,000 Consolidated rock is primarily volcanic, B38, B43, Probably receives some minor ground—water inflow
intrusive, and slightly metamorphosed marine and OFB0-427, from Sevier Lake system.
continental sedimentary and volcanic. System is 0F80-1217,
dominated by Walker River, which is supplied by Or80-2046, 38 Great Salt Lake 12,900 21 1,380,000 310,000 Consolidated rock is primarily carbonate and 0F69-28, P518,
runoff from Sierra Nevada. Regional continuity R40, R52, RS3, system clastic sedimentary, with some volcanics and TPl6, TPl7,
is primarily by surface-water flow. Walker Lake  W1228, intrusives. Great Salt Lake is terminus of TP18, TP23,
is terminus of system. Lake-surface altitude has system and receives surface-water inflow from TP25, TP26,
fluctuated between a historical high of 4,078 ft runoff generated in Wasatch Range and Uinta TP28, TP30,
in 1908 and a historical low of 3,953 ft in 1982. Mountains, as well as ground-water inflow. TP31, TP33,

Ground water supplies about 3 percent of average TP35, TP36,
18 Dixie Valley 2,380 7 15,000 56,000 Consolidated rock is primarily marine and R23 annual inflow to lake. Lake altitude has TP38, TP42,
system continental sediments, volcanic, and some fluctuated between historical high of 4,212 ft TP44, TP45,
intrusive. Flow between basins is through in 1873 and a historical low of 4,191 ft in TP69, TP8O,

alluvium and fractured noncarbonate rock. Is an 1963. Wl412,
arid region, with Dixie Valley playa area as main WRIB5-4007,
discharge area. FPlaya is lowest point in western WRI83-4272

Nevada (altitude about 3,370 ft).
39 Sevier Lake 9,100 8 310,000 310,000 Consolidated rock is primarily volcaniec, OF83-4179
19 Edwards Creek 416 1 8,000 7,000 Consplidated rock is primarily volcanic. R26 system carbonate, and clastic sedimentary. Receives TP13, TP43,
Valley Is a single-basin flow system. surface-water inflow from Sevier River, which TP60, TP63,
dominates hydrology of part of system. TP73, TP79,

20 Smith Creek 582 1 12,000 15,000 Consolidated rock is primarily volcanic. R28 Interbasin flow occurs through consolidated W1794, W1848,

Valley Is a single-basin flow system. rock and basin fill. For purposes of this study, W1854
Sevier Lake (altitude about 4,520 ft) is terminus

21 Rawhide Flats 227 1 150 600 Consplidated rock is primarily volcanie. R4O of system, but some ground-water outflow may
Area receives some ground-water inflow from occur along west and northwest boundary to Great
Carson system. Flow occurs through fractured Salt Lake Desert system.
rock. Playa altitude is about 3,880 ft.

22 Gabbs Valley 1,280 1 5,000 16,000 Consolidated rock is primarily veoleanic and B9 Totals (rounded) 140,000 257 3,800,000 3,500,000
marine and continental sedimentary. Is an arid
single-basin flow system. Playa altitude is
about 4,105 ft.
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HYDROGRAPHIC-AREA BOUNDARY WITHIN MAJOR FLOW SYSTEM

GENERAL DIRECTION OF GROUND-WATER FLOW IN BASIN-FILL DEPOSITS

— LARGEPERENNIAL STREAM OR RIVER IN HYDRAULIC CONTINUITY WITH
<M> ADJACENT AQUIFERS :
<{==3@1 FLOW ACROSS HYDROGRAPHIC-AREA BOUNDARY —Number is rate of
<14=> flow, in thousands of acre-feet per year; M indicates that flow is minor. Solid arrow
indicates that flow is primarily through basin fill or alluvium; dashed arrow indicates
that flow is primarily through permeable consolidated rock
z LOCATION WHERE FLOW FROM HEADWATER AREA OR MAJOR RIVER
Bear River  ENTERS THE STUDY AREA
(11) NATURAL GROUND-WATER RECHARGE TO A HYDROGRAPHIC
ARFA—Estimated rate, in thousands of acre-feet per year
?5 LARGE SPRING—Discharge is generally greater than 1,000 gallons per minute in
Utahand most of Nevada; in more arid parts of Nevada and in California, springs
with discharges greater than 200 gallons per minute are shown where they are
g i considered to have regional significance. Number indicates number of springs
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("Major Ground-Water Flow Systems in the Great Basin Region of Nevada, Utah, and
Adjacent States," by James R. Harrill, Joseph S. Gates, and James M. Thomas; 1988)

Sheet 1:

In table 1, the value shown for recharge to the Death Valley flow system {(Map No.
28) should be 94,000 acre-feet per year instead of 98,000 acre-feet per year.

Sheet 2:

The value shown for natural ground-water recharge to the Amargosa Desert
hydrographic area (No, 230), Nev.-Calif., should be "(0.5)" instead of "(5)."

The value shown for subsurface flow across the hydrographic boundary between the
Amargosa Desert and Death Valley hydrographic areas (Nos. 230 and 243) in
California should be "<3 to 19?>" instead of "<3>." This indicates a possible
range from about 3,000 acre-feet per year, based on spring-discharge measurements
(Miller, 1977, table 4), to perhaps as much as 19,000 acre-feet per year, as
discussed by Rush (1970, p. 18-19),

The boundary between the Shadow Valley and Valjean Valley hydrographic areas
(Nos. 245 and 244, in California west of Mountain Pass) should contain a dashed
blue arrow and the label "<1.2>" to indicate subsurface flow from Shadow Valley
to Valjean Valley.

The boundary between the Valjean Valley and Death Valley hydrographic areas (Nos.
244 and 243) should contain a dashad blue arrow and the label "<1.6>" to indicate
subsurface flow from Valjean Valley to Death Valley.

The boundary between the southern and northern parts of Railroad Valley (Nos.
1737 and 173B), Nev., should contain a dashed blue arrow and the label "<4>" to
indicate subsurface flow from southern Railroad Valley to northern Railroad
Valley.

The three spring symbols shown in T. 14 S., R. 66 E., at the southern end of the
Lower Meadow Valley Wash hydrographic area (No. 205), Nev., should instead be
shown in T. 14 S., R. 65 E., in the Muddy River Springs hydrographic area (No.
219). The relative position within the township is correct.

The boundary between the Lower Meadow Valley Wash and California Wash

hydrographlic areas (Nos. 205 and 218) is along the channel of the Muddy River and
should be shown as a solid black lina.
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