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5 Effects of Habitat Size
on Species Richness and
Adult Body Sizes of Desert Fishes

G. R. SMITH
University of Michigan, Ann Arbor

ABSTRACT

A comparison of samples from deserts in the United
S?ates and ﬁhe Paraguayan Chaco shows that species
r1chness{ life history patterns, and evolution of
desert f1shes are strongly influenced by habitat size
and drainage directions with respect to habitat stabil-
ity. In the intermountain (United States) desert
streams head in relatively stable habitats and f]o&
onto deserts where conditions are frequently more vari-
ab1e|and habitat may disappear. Chaco streams origin-
ate in low, flat headwaters where wet-season precipita-
tion c01!ects in temporary swamps and drains to a Targe
stable river with a rich fauna. Species richness ranges
from O-to more than 40 species per sample in the Chaco
depending on habitat size. Annual extinction is higﬁ

125




126 FISHES IN DESERTS

locally, but recolonization rate is also high and long-
term extinction rates are probably low. This pattern
contrasts with that in the intermountain desert where
the annual cycles are part of a longer postpluvial
desiccation and extinction cycle. Here barriers to re-
colonization are imposed by basin and range topography
and species numbers range from O to 11 per sample.

The pluvial fluctuations in the Great Basin might
have cyclicly disrupted evolutionary trends before they
produced species-level adaptations to deserts or plu-
vial great Jlakes. Chaco aridity is not so old as in
the intermountain desert, but colonization from tropi-
cal, humid forest streams has introduced fishes with
diverse adaptations for air breathing and for surviving
dry seasons as aestivating adults. Selection has pro-
duced annual life-history adaptations that include sur-
vival of eggs in desiccated substrate.

Body size is also related to habitat size in most
nonbenthic freshwater fishes. Many intermountain min-
nows, suckers, and trouts are selected Tocally for
large size by increased adult survival and consequent
late reproduction in Targe habitats. Annual fluctua-
tions that reduce habitats seasonally, thus causing
heavy mortality, lead to persistence of phenotypes that
reproduce early at the expense of later growth. Fossil
evidence suggests that late Cenozoic species richness
and body size in intermountain fishes were generally
correlated with habitat size. Most desert fishes be-
long to widespread groups apparently adaptable to a
broad size range of habitats.

INTRODUCTION

Latitudinal variation in species richness has been
shown by Fischer (1960) to be strongly influenced by
iong- and short-term stahility of environment. Pianka
(1966) and Emery (1980) summarized the influence of
environmental stability as well as spatial heterogene-
ity, productivity, and aspects of community structure
on species richness. Barbour and Brown (1972) showed
that surface area and latitude account for 90 percent
of the variation in numbers of species of fishes in

lakes.
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The number of species of fishes at a freshwater
stream Tocality depends on the volume, temporal stabil-
ity, and spatial heterogeneity of habitats (Evans and
Noble 1979; Gorman and Karr 1978; Sheldon 1968). The
species richness in & drainage is 1influenced by the
same factors and also by the nature of habitat connec—
tions that allow colonization among localities and
drainages (Horwitz 1978; MacArthur and Wilson 1967).
Yolume and connectedness affect species richness in-
directly by their effect on habitat diversity and
colonization rate.

Desert fishes provide an opportunity to examine
the relative effects of these ecologic and biogeogra-
phic factors because fish habitats in arid lands are
subject to extreme reduction and fluctuation. The
deserts of western North America offer an additional
dimension for study: parts of the evolutionary and
ecological history can be inferred from paleontological
and geological evidence.

This study tests several propositions about the
interaction of habitat volume, climate, geography, and
time in the regulation of fish species richness, life
histories, and body size in arid Tands:

1. Habitat volume is a dominant determinant of
species richness in fluvial freshwater fishes. It is
controlied by interaction of precipitation, evapora-
tion, groundwater geology, and geographical relief.

2. Fluctuations in volume cause local extinc-
tions, but colonization enables species numbers to
approach equilibrium in proportion to the volume and
persistence of habitats that connect the Tocalities.
This is a form of the extinction-colonization hypo-
theses of MacArthur and Wilson (1967). It and the pre-
ceding postulate must be considered in the context of
the species-area relationship (Levins and Heatwole
1963; MacArthur and Wilson 1967).

3. Two contrasting Tlife-history responses to
fluctuating aquatic environments in arid regions are
reduction of adult body size because of increased early
investment in reproduction and increased adult body
size because of uncertain offspring survival relative
to adult survival.
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COMPARISONS

The fish fauna studied here is that of the cold
deserts of the US intermountain west. [The warm—desert
fishes are treated by R. R. Miller and M. L. Smith in
this volume.] For comparison, observations of fishes
and habitats of the Paraguayan Chaco are also pre-
sented. The Chaco of Paraguay is one-fourth the size
of the intermountain cold desert; each is a part of a
larger arid region. The Chaco js warm; the intermoun-
tain cold desert is defined to exclude its warmer ex-
tension to the south. The Chaco is flat and connected
to a great fluvial system; the intermountain cold
desert is traversed by rows of north-south trending
mountain ranges and shows corresponding isolation among
its basins. The dry seasons of the two regions are
similar in length and precipitation but the wet seasons
in the Chaco receive more rain. The species richness
in the two areas is similar in the dry but different in

the wettest sections.
The Intermountain Cold Desert

For the purposes of this study this region is de-
fined as those lowland areas of the Bdsin and Range
Province of the western United States in which the
annual rainfall is less than 40 cm, the mean January
temperature is Tless than 0°C, and the mean annual num-
ber of days with a minimum temperature as Tow as 0°C
ranges from 60 to about 210. Included are the Towlands
of California east of the Sierras and south to Death
valley, Nevada north of Las Vegas, northern Arizona,
northwest New Mexico, western Colorado, Utah, southwest
Wyoming, the Snake River Plain of Idaho, southeast
Oregon, and the strip of central Oregon and Washington
east of the Cascades (Figure 1). The elevation gener-
ally ranges from 600 to 2400 m, with extremes from -85
to 4000 m (but areas above 2400 m are excluded from
most of this analysis). Most of the area is between
35° and 45° N latitude.

From the Climatic Atlas of the United States (US
Department of Commerce 1968, pp. 1-23) we can charac-
terize the dominant climatic feature of the region as
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FIGURE 1. The intermountain cold desert (sampling area
marked with round symbols). Numerals indicate numbers
of native in each basin. '

its extreme gaily temprature fluctuation; the variation
is 10 to 20°C (usually 14 to 17°C) in the spring and
14 to 25°C (usually 17 to 22°C) in the summer. The
normal daily ranges are consistently the highest in the
United States. The mean annual lake evaporation ranges
from 86 cm on the Snake River Plain to 218 cm in Death
Yalley and usually between 100 and 150 cm over most of
the region. Summer precipitation is Tow, usually 0.5
to 1.5 cm/month {in contrast to the monsoonal deserts
to the southeast, which have about four times that
amount). The winter precipitation is slightly higher
but still usually less than 2.5 cm month—-1. The mean
annual runoff is generally less than 2.5 cm except in
the uplands (Langbein et al. 1949).
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The Paraguayan Chaco

The Chaco is the northwest portion of Paraguay, an
area of 246,925 kmZ west of the Paraguay River
(Figure 2). It lies between 19 and 25°S latitude and
merges to the south with the Chaco Austral of Argen~
tina. The flat topography ranges from 64 to 350 m in
elevation. Most of the fish occur in the east below
100 m. Topsoil is derived from sandy alluvium and the
vegetation is xerophytic.

Mean annual temperatures range from 24 to more
than 26°C; the extremes are -5 to 44°C (Sanchez 1973).
The warmest months are December to February. The mean
annual rainfall is 30 to 145 cm, graded from the dry
northwest to the moist Jowlands along the Paraguay
River. Drought occurs annually from May to September,
with a peak in August. Records show a range of 15 to
367 days per season with no recorded rainfall; zero
precipitation is shown for 38 percent of the August
entries and less than 2 cm precipitation is recorded
for 75 percent of the August entries (Gorham 1973).

Low dry-season precipitation (0.5 to 6.5 cm) and
high temperature fluctuations are aspects comparable to
the intermountain desert of the United States. Impor-
tant differences in the Chaco are the higher winter
temperatures, the greater summer precipitation, and the
summer connections of all habitats to the Paraguay sys-
tem because of the flat topography. The last distinc-
tion has the most important impact on fish distribution
and species richness.

GEOLOGIC AND CLIMATIC HISTORY

Intermountain Cold Desert

Two distinct geologic provinces make up this re-
gion: the Basin and Range (and associated Snake River
Plain), and the Colorado Plateau. These are partly
separated by the Wasatch Mountains in central Utah.
The Rocky Mountains form the eastern boundary, the
Idaho batholith a part of the northern boundary, and
the Sierras and Cascades make up the western boundary
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1956, 1968; Chaney 1944; Dorf 1930; Smiley 1963).
Western US fossil fish records from the same time indi-
cate broader distribution patterns than in any subse-
quent period (Smith and Miller in press).

Differentiation of the Colorado Plateau and Basin
and Range Provinces began with basin and range faulting
accompanied by uplift and (probably) increased precipi-
tation in western Colorado (Larson et al. 1975). Con-
nection of the upper Colorado drainage with the lower
Colorado drainage to the Gulf of California occurred at
least 3.3 million years ago {Lucchitta 1972). The time
and Tlocation of connections of upper Colorado River
waters to the TJower Colorado {above the Lake Meade
area) in the intervening period is problematical (Hunt
1969; Lucchitta 1972). Pliocene lakes, however, were
important features of the drainage in northern Arizona
(Uyeno and Miller 1965).

Subtropical climates were gradually replaced by
warm temperate climates during the late Miocene through
the Pliocene (Dorf 1959) as basin and range faulting
continued to increase the isolation and internal drain-
age of the Great Basin and parts of the Colorado Sys-
tem. The elements of intermountain desert vegetation
were assembled by response to aridity, at least in the
lowlands and on drier slopes, through the Miocene to
late Pliocene (Axelrod 1950, 1956).

Glaciers existed 3 million years ago in the Great
Basin headwaters of the Sierras (Curry 1966). Because
the paleobotanical evidence indicates warm temperatures
accompanied by dry climates, the contemporary existence
of widespread lake deposits and onset of montane glaci-
ation seem to require much lower Tlocal evaporation
rates; specifically, cool summers. Geological evidence
(Longwell 1928; Mannion 1962) also indicates dry
climates. Even during the subsequent Pleistocene
pluvial episodes the precipitation was less than twice
that of today {Snyder and Langbein 1962). Many studies
of pluvial cycles in relation to lower temperature and
higher precipitation are reviewed by Morrison (1965)
and refined by Brakenridge (1978). In general, it is
clear that lake waters were not derived from glaciers;
it seems Tikely that precipitation was modestly in-
creased and that low summer temperatures and lower

U
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evaporation were important factors. Northern occurr-
ences of cold-intolerant fossil reptiles also support
the conclusion that climates were more equable than
today until late in the Pleistocene (Hibbard 1960; Van
Deve?der and Spaulding 1979; Van Devender and Wiseman
1977}).

A climatic mechanism offered by Bryson and Wend-
Tand (1967) involves the excliusion of arctic air from
middle latitudes by continental ice sheets and local
adiabatic warming of drainage winds off the ice.
Morrison (1965), on the basis of evidence of weathering
profiles, erosion, and surficial deposits in relation
to pluvial and glacial evidence, suggests that the
typical cycie began with cool-dry conditions at the be-
ginning of an interpluvial-interglacial and progressed
through warm-dry, warm-wet, cold-wet (beginning of
pluvial-giacial), _cool-moist, then back to cool-dry.
Examination of 018 curves (Emiliani 1972) has sug-
gested that glacial episodes were several times as long
as interglacials. Paleolacustrine data assembled by
Morrison (1965) seem to suggest that pluvials were
often shorter than interpluvials. Certainly pluvials
were frequently interrupted by desiccation episodes and
stable lacustrine habitats were of relatively short
duration, possibly less than 20,000 years (Emiliani
1972). Pliocene lake deposits are more continuous than
Pleistocene, which indicates longer duration of stable
habitats, at Teast on the Snake River Plain (Glenns
Ferry Formation, Malde and Powers 1962) and in parts of
the western and northern Great Basin.

In summary, despite evidence of remarkable fresh-
water lakes, arid conditions have been at least as fre-
quent: for fishes the history has been marked by scores
of oscillations between pluvial- and aridity-dominated
habitats.

The main effects of this instability on intermoun-
tain fish distributions have been severe extinctions
and barriers to colonization (Smith 1978). Species
richness is unusually low in small drainages in rela-
tion to large drainages (i.e., the species:area curve
is steep) which indicates (1)} higher extinction of spe-
cies that were restricted to small populations during
interpluvials and (2) low colonization because of
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relief- and aridity-induced barriers to dispersal among
basins. Interpluvial extinctions were more severe in
the south than in the north. Northern and peripheral
drainages have more species than southern and central
basins and species distributions are much broader in
the northern parts of the region; this indicates freer
dispersal. These conditions hold despite the fact that
because of the relationship of temperature to elevation
and latitude mountain barriers were (effectively)
higher in the north and Towér in the south (Smith

1978).
The Chaco

The first unmistakable evidence of desert and
semidesert conditions in southern South America occurs
in the Pliocene {Solbrig 1976). At this time the final
uplift of the Bolivian Cordillera Central completed the
topographic relief that began in the Miocene (Harring-
ton 1962). Miocene climates represented continuing
trends toward Tower temperature and precipitation, but
the climate was more humid than today. Grasslands were
increasing, forests decreasing (Solbrig 1976). With
the establishment of the vast alluvial plain 1in the
rainshadow of the Andes by the end of the Pliocene the
present setting was nearly complete. At Tleast three
major montane glacial stages constituted Pleistocene
interruptions, but the effect on fishes in the Chaco
was probably minor because of the distance and differ-
ence in elevation. Examination of numerous exposures
along the southeastern trans-Chaco highway in August
1979 revealed no ltacustrine beds. In all probability
the present pattern of annual flood cycles that swell
the Paraguay tributaries in the wet season, then dry
them in the winter, also characterized the Pleistocene.
Long-term variations in temperature and habitat persis—
tence no doubt occurred but probably- did not cause
long-term isolation and extinction of fish species as
in the Great Basin. From the standpoint of the fishes
the most important aspects of the Chaco environment are
continuous connections to a central habitat system and
the seasonal existence of widespread, shallow, nutri-
ent-rich swamps.
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Fossil Fishes

About 25 Miocene, Pliocene, and Pleistocene fish
localities 1in the intermountain cold desert offer an
opportunity to compare past environments and diversity
with the present. High diversity evolved only in a few
intermountain lacustrine environments, the richest be-
ing the Miocene and Pliocene lakes on the Snake River
Plain (Kimmel 1975; Smith 1975). Historical data permit
the evaluation of long-term ecology and evolution of
species richness in the intermountain area.

CLIMATE, GEOGRAPHY, AND FISH SPECIES RICHNESS

Variables that influence fish species richness in
streams are temperature, oxygen concentration, salin-
ity, habitat volume, and heterogeneity, as well as
(indirectly) precipitation, evaporation, elevation,
stream order, and discharge. The extremes and predict-
ability are probably more significant than averages
(Fischer 1960). : -

Temperature

An unexpected result in the early stages of this
study was the failure to find a major correlation be-
tween temperature (or its variance) and species number.
The effect of elevation and temperature in the Basin
and Range Province is not reflected in patterns of spe-
cies richness. A major effect of temperature variation
on fish species richness is probably demonstrable along
a latitudinal gradient in the Mississippi basin but
does not appear in the intermountain deserts because .
the effect of topographic relief on temperature, pre-
cipitation, and evaporation causes a strong negative
correlation between temperature and habitat permanence
(discussed below). In the Chaco temperature is higher
in the north and species richness increases to the
east. Scanty data on temperature extremes suggest a
negative correlation between range of temperature and
species richness.
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There is no doubt that temperature is an important
factor that affects the growth, metabolism, and distri-
bution of fishes. Failure to find a positive tempera-
ture effect on species richness in the intermountain
desert might reflect the history of extinction by
desiccation in the south and substantial colonization
by coolwater forms from the north {(Smith 1978). The
major effect of temperature on species richness is the
local elimination of narrowly adapted species by ex~
treme variations in temperature. The evolutionary sig-
nificance of this phenomenon has been investigated by
Brown and Feldmeth (1971) and Hirshfield et al. {1980}.

Salinity

Salinity is important to desert fishes because of
the high evaporative accumulation of dissolved salt.
High salinity environments in both the Chaco and the
intermountain deserts show reduced faunas, which
usually consist mainly of cyprinodontids (e.g., Miller
1948). Extreme effects of salinity are seen in the
fishless waters of the Great Salt Lake (Utah) and the
middle Rio Pilcomayo of tne Chaco.

Cyprinedontids are the most salinity-tolerant
desert fishes {Renfro and Hill 1971). Their derivation
from estuarine sister groups suggests that they are
technically "preadapted" rather than "desert—-adapted"
to salinity (M. L. Smith, this volume).

Oxygen

One of the most discussed adaptations of arid-land
fishes is the use of accessory respiratory structures
to make use of atmospheric oxygen. Most of the species
in the arid part of the Chaco show such adaptations
(Carter and Beadle 1930, 1931). Examples include lung-
fish (Lepidosiren paradoxa), catfish (Hoplosternum,
Pterygoplichthys), and characins (Hoplias). Even the
CichTids when stressed readily lie at the surface to
bathe their gilis in oxygen-rich water. No similar
adaptations, except physiological tolerances {Hirsh-
Field et al. 1980) and behaviors for obtaining surface
oxygen occur in desert fishes of North America despite
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their equal or greater antiquity. Furthermore, temper-
atures are higher in the Chaco and warm, shallow waters
conducive to oxygen stress occur in all seasons: in the
organic-rich swamps during the summer wet season and
the drying pools of the (warm) winter. In the North
American deserts drying pools and (high temperature)
oxygen stress are generally restricted to the summer
and moving (oxygen-enriched) waters are more constant
in all seasons. In both regions, but especially in
North America, recolonization after Tocal extinction
comes from oxygen-rich environments.

A possible historical reason for the absence of
special desert adaptations in North American fishes, in
contrast to mammals, for example (Mares 1976), is that
their exposure to cool pluvial lakes at frequent geo-
logic intervals and long-term persistence of cool run-
ning-water habitats has precluded consistent selection
for such traits,

Habitat Size

The amount and persistence of fiuvial habitat de-
pends on the balance between precipitation and evapora-
tion as well as groundwater and topographic control of
discharge rate. Elevation is related to species rich-
ness only insofar as it is correlated with habitat
size, temperature, and gradient. Stream order s
equally indirect as a causal variable because its rela-
tion to species richness depends on its correlation
with habitat volume, stability, and dispersal connec-
tions (Evans and Noble 1979; Horwitz 1978).

A test of the hypothesis that habitat size is a
dominant determinant of species richness in streams
might be conducted with measurements for many locali-
ties over all seasons. Presently available data (C. L.
Hubbs seine collections from western United States,
1925-1945, and seine, electrofishing, and rotenone col-
lections by the author and colleagues in western United
States and Paraguay) allow examination of the effects
of habitat size (estimated by habitat width) and a
general index of regional water supply (precipitation
and evaporation data from weather station summaries,
the Climatic Atlas of the United States and Gorham
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1973). Stream width is consistently related to other
dimensional parameters (Leopold et al. 1964). Samples
were taken in the dry season in both areas and include
collections from streams, springs (US), and ponded sec-
tions of streams. Effects of springs and ponds on
variations in width do not differ between the two
areas. Introduced species are included in the totals
because the question is ecological rather than histori-
cal. They are limited to North American samples, where
except in trout streams their numbers are generally
correlated with native species (Smith 1978).

Species number is significantly correlated with
habitat width in both areas (Figures 3, 5). The number
of species increases steeply in larger habitats, espe-
cially in the Chaco. There is considerable scatter in
the data, especially in the Colorado drainage (Figure
3). The combined samples show a correlation of .58
(p < .01) between species number and stream width. The
correlation is .71 {p < .01) 1in the Great Basin and
Snake River drainage. On the other hand, the samples
associated with the Colorado River drainage have a cor-
relation coefficient of only .46 (p < .01). These
samples include small streams near their conf luence
with the main river, sometimes with an inflated species
number, as well as samples in the main channel of the
Green and Colorado rivers, where species number 1is
often limited by sand substrate and strong current.

Species number is not correlated (r = .1, p = .3}
with precipitation in the Great Basin {plus Snake River
Plain) and Colorado drainages (Figure 4). Nevertheless
the graph is instructive. A few relatively high spe-
cies numbers are found in the low-precipitation area of
the graph, in large streams that flow out into the most
arid sections of the region (upper left of Figure 4).
By contrast there are 50 samples from small headwater
streams in the moist upland watersheds (lower right
part of Figure 4}.

The role of evaporation in the interaction between
precipitation, habitat size, and species number was
tested by regression of species richness on a surface-
water index. The index was computed as annual precipi-
tation minus the square root of annual lake evaporation
because evaporation is 2 to 10 times larger than
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FIGURE 3. Number of species as a function of stream
width for 183 Tlocalities in the intermountain cold
desert. Great Basin and Snake River Tocalities are
solid circles, Colorado and adjacent localities are
triang]ei. The overall correlation coefficient is .58
(p < .01).

precipitation in this region. The index is conformable
with regional surface water but the relationship was
not signficant (r = -.07, p = .3).

In the Chaco the number of species is far greater
and the contrast between small, fishless ponds and
streams and large, species-rich habitats is more pro-
nounced (Figure 5). The correlation coefficient be-
tween species number and habitat width is .32 (p =
.04). The correlation is Tower in the flat Chaco re-
gion because drying streams and their remnant, isolated
ponds do not conform to the normal close relationship
among channel dimensions in flowing streams. Further-
more, the samples were taken during the period of
accelerated local extinction.

Precipitation is a more forceful factor in the
Chaco. The correlation coefficient between species
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FIGURE 4. Number of species as a function of mean
annual precipitation in the intermountain cold desert.
Solid symbols are Great Basin and Snake River Plain
localities; triangles represent “localities in the
Colorado and adjacent drainages.

number and precipitation is .77 {p < .01}. A compari-
son of Figures 5 and 6 reveals that the smallest habi-
tats, with few species, are in the driest areas
sampled., (The slope of both Chaco regressions should
probably be steeper; our samples underestimate the true
species numbers in the largest waters.) When the log
of habitat width is added to a stepwise multiple Tinear
regression model, the partial correlation between pre-
cipitation and species number drops from .76 to .68,
which indicates correlation of the independent vari-
sbles. The coefficient of causation (multiple RZ)
increases from .59 to .63. Species richness in the
Chaco was also studied in relation to precipitation in
the dry season, but the relationship was not signifi-
cant {r = .15, p = .36).
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FIGURE 5. Number of species as a function of habitat
width for 41 localities in the Paraguayan Chaco. The
correlation coefficient is .32 (p = .04).

In summary, there is a strong relationship between
habitat size and species number in both systems but the
explanation is incomplete. The role of habitat size
is complex in a way that involves dispersal and coloni-
zation.

Fluctuations 1in habitat size cause Tocal extinc-
tions, but recolonization occurs in proportion to the
size and persistence of connecting habitats. That spe-
cies richness in the intermountain region is Tow be-
cause of barriers to colonization is suggested by the
steep species:area curve {z = .59 in Smith 1978, Figure
8). A similar line of evidence is the relative absence
of rare species in truncated species-abundance curves
for desert communities {Smith, wunpublished data),
demonstrated by Hubbell (1979) in a study of dry-forest
trees.

The striking contrast in patterns of species rich-
ness between the Chaco and the intermountain samples is
refated to a simple but little recognized geographical
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FIGURE 6. Number of species as a function of mean
annual precipitation in the Paraguayan Chaco. The cor-
relation coefficient is .77 {(p < .01).

factor. In the intermountain deserts streams collect
their waters in mountains with high precipitation and
flow out onto low-precipitation alluvial plains and
playas. In such cases the lower reaches are often the
least stable and the least predictable with respect to
their habitats and inhabitants. Local extinctions can-
not be recolonized from a stable, main-trunk refuge be-
cause of the double isolation by desert and mountain
barriers.

In contrast, the tributaries of the Paraguay head
in flat, arid alluvial plains where the dry season re-
duces the apparent species number to zero. The streams
then flow through increasingly wetter regions into the
Paraguay River, a large stable habitat with potential
for recolonizing almost any local extinction.  Thus
direction of flow relative to the precipitation gradi-
ent interacts with the effect of habitat volume to pro-
duce an impoverished fauna where the flow direction is
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wet-to-dry and a rich fauna where the direction is dry-
to-wet.

Late Cenozoic Species Richness

The Late Cenozoic fossil record of fishes from the
intermountain cold desert permits the examination of
the effects of long-term and Tlarge-scale fluctuations
in habitat size on species richness. Most of the fossil
occurrences (Figure 7) are in Tlake deposits, whereas
the comparisons emphasized above involve streams, Be-
cause lakes and streams in the same basins share most
species, the comparison of species richness in and
among basins is generally valid.

The hypothesis is that large habitat size promotes
increased species richness by increased species packing
and Tower extinction rates., Instability of habitat
volume causes local extinctions, whereas restriction of
aquatic connections increases the likelihood of extinc-
tions and decreases colonization. On the other hand,
seasonality promotes selection for special life-history
adaptations and semiisolation promotes evolutionary
fixation of genetic traits. Therefore on the basis of
the known geologic and climatic history we might pre-
dict high extinction rates or evolution of special
adaptations and speciation, depending on the frequency
of the fluctuations in volume of aguatic habitat.
Seasonal fluctuations should have caused local extinc-
tions and strong selective pressures; long-term fluctu-
ations should have increased the breadth of the extinc-
tions and the rate of speciation.

Two patterns, one geographic and one temporal, are
shown in Figure 7 (and by comparison with Figure 1).
First, there is a strong latitudinal gradient in spe-
cies richness but its trend is opposite that of most
such gradients. Second, the pattern of high species
richness in the north (or at least in the Snake River
Basin) has been characteristic of the region for all
the Late Cenozoic. It has been shown that the present
species richness at localities is correlated with
volume. This conclusion is strengthened by the histor-
ical trends in Figure 7.
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FIGURE 7. Maximum extent of Pleistocene pluvial lakes
and some Pliocene lakes with estimates of species num-
bers in selected fossil lakes and stream systems. Data
from published sources and work in progress (Table 1}.

Numbers are underestimates, probably by two or more

species each, because small forms such as Rhinichthys

and Richardsonius are rarely collected, although they
were probably present.

Miocene localities in the Great Basin have one to
four species, including trouts, minnows, and a sunfish.
In the Snake River Plain we find 10 to 17 species
(additional trout, salmon, Esox, minnows, suckers, and
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sculpins). The Miocene Deer Butte and Chalk Hills for-
mations on the Snake River Plain (Kimmel 1979) are ex-
tensive, thick sections which indicate large, long-term
depositional environments and probably large, long-term
lacustrine and fluvial habitats. The Miocene deposits
in the Great Basin are less extensive and indicate
smaller, less persistent bodies of water (Table 1).
(An exception is a fauna, described by P. H. McClellan
from the Salt Lake Group, which is related to the Chalk
Hills fauna.) The rather limited depositional systems
are probably due in part to the low Miocene relief.

Pliocene localities in the Basin and Range Pro-
vince {5.5 to 1.7 million years ago) are also poor in
species compared with the fauna of the Snake River
Plain (Table 1). Glenns Ferry lacustrine sites (Smith
1975) have up to 27 species; fluvial sites have 10 to
13 species. Again, the Basin and Range sites represent
less extensive depositional systems. The Pliocene
faunas differ from the Miocene by the addition of
genera and species of whitefish, suckers, minnows, and
sculpins. Boreal forms, such as Prosopium, Myoxocepha-
lus, and other sculpins become conspicuous by their
relative abundance in some deposits on the Snake River
Plain, thus indicating cooler climates and aguatic con-
nections to the north (compare with Axelrod 1968). At
this time the number of species of fishes in the Glenns
Ferry Formation reached the maximum known for Late
Cenozoic western North America. Geological evidence
{(Kimmel 1979) reveals that the Glenns Ferry lacustrine
system persisted at least one million years.

The close of the Pliocene on the Snake River Plain
is marked by regression of lacusirine Glenns Ferry de-
position (Kimmel 1979} and depletion of fish species
richness (Smith 1975), perhaps as the Glenns Ferry lake
began draining into the Columbia River system {previous
drainage to the Pacific at least occasionally passed
through southern Oregon or California (Kimmel 1975;
Smith 1975; Taylor 1960; Wheeler and Cook 1954). What-
ever the cause, the decrease in aguatic volume and spe-
cies richness was roughly synchronous,

Pleistocene faunas (Table 1, Figure 7) are richer
in association with large waters. Pleistocene deposits
of the Bruneau Formation and the Glenns Ferry Formation
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State Location Formation Species  Authority
Pleistocene
California Afton Manix Lake 1 2
California China Lake ? 3 3
California Mono Lake ? 5 3
Idaho Grandview Bruneau and 10 1
Glenns Ferry
Idaho Swan Lake - 3 1
Idaho Lake Thatcher Main Canyon 4 4
Nevada Duck Valley - 2 3
Nevada Smith Creek Cave - 2 1
Nevada Pyramid Lake - 3 1,3
Oregon Fossil Lake Unnamed 4 3
Oregon Harney Lake ? 1 1
Utah Bonneville Bonneville? 8 6
Draper?
Pliocene
Arizona Bidahochi Bidahoch 5 7
California Crowder Flat Alturas 3 1
California Furnace Creek Titus Canyon 3 8
California Honey Lake Unnamed 4 9
California Mohave Desert Unnamed 1 8
California Secret Valley Unnamed 6 i
Oregon Fossil Lake Unnamed 4 3
Oregon Adrian Chalk Hills 14 10
[Deer Butte
Kimmel, 1975]
Idaho Fossil Creek Glenns Ferry 27 11
Idaho Castle Creek Glenns Ferry 24 11
Browns Creek
Birch Creek
Shoofly
Poison Creek
Horse Hill
Idaho Sand Point Glenns Ferry 20 11
Bennett Spring
Idaho Hagerman Glenns Ferry 13 11
Nevada Esmeralda Esmeralda 3 12
Nevada Jersey VYalley Unnamed 1 13
Nevada Logandale ? 1 1
Nevada Mopung Hills Upper Truckee 4 9




ite Cegozoic Fossil TABLE 1. ({Continued)
Jesert
State Location Formation Species  Authority
ion Species  Authority
Miocene
e
california Bear Valley Unnamed 4 1
Lake 1 2 Oregon Trout Creek Trout Creek 1 15
3 3 Dregon Sand Hollow Deer Butte 10 15
5 3 Oregon Adrian Chalk Hills 17 10
U and 10 1 - Idaho Browns Creek Poison Creek? 15 1
Ferry o Idaho Shoofly Chalk Hills 13 10
3 1 5 Idaho Horse Hill Chalk Hills 13 10
anyon 4 4 Nevada Esmeralda Esmeralda 2 1,16
2 3 Nevada HumboTdt Humbo1dt 2 1
2 1 Nevada Rabbithole ? 1 17
3 1,3 Nevada Stewart Spring ? 4 1
ol 4 3 Nevada Truckee Truckee 5 14
1 1 Utah Cache Valley Salt Lake 1 18
i1le? 8 6
Y4
8Sources: (1) unpublished data; ({2) Blackwelder and Ells—

, " worth (1936); (3) Miller and Smith (1981); (4) Bright (1967);
B (5) Meade and Van Devender collection; (6) Smith et al. {1968)

schi 5 7 and Madsen coliection; (7) Uyeno and Miller (1965); (8) Miller
1s 3 1 (1945); (9) Taylor and Smith (1981); (10) Kimmel (1975); {(11)
Canyon 3 8 Smith {1975}; (12) LaRivers (1962); (13) Lugaski (1979); (14)
ad 4 9 Bell {1974) and subsequent collection; (15) Smith and Miller (in
ad ] 8 press): {(16) LaRivers (1966); (17) LaRivers (1964); (18) Uyeno
ad 6 1 and Miller {1963).
ed 4 3
Hills 14 10
Butte
1, 1975]
s Ferry 27 11
s Ferry 24 1
is Ferry 20 11
is Ferry 13 11
-alda 3 12
ned 1 13
? ] 1
~ Truckee 4 9
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near Grandview on the Snake River Plain, although de-
pauperate, are the richest observed in the intermoun-
tain area. Pleistocene lakes in this area were not so
permanent as the earlier Takes. Lake Bonneville was
the largest and has the richest fauna outside the Snake
River Plain. Nevertheless it is depauperate for its
size, no doubt because of its lJong-term instability.
Lake episodes were usually too short to permit exten-
cive evolution and (or) interpluvials were arid enough
to cause severe extinction. The species richness asso-
ciated with other Pleistocene pluvial lakes indicates
the same restrictions.

The negative effect of isolation on species rich-
ness is seen in the low numbers at southern localities,
but not in historical trends. There is no evidence of
more species in southern Miocene samples, even though
distributions of Miocene species indicate fewer barri-
ers and the paleobotanical record indicates more pre-
cipitation and moisture. Southern localities are con-
sistently poor in species (Figure 7). The Miocene
vegetation of southeastern Nevada was an oak sclero-
phy1l woodland that implies a cool temperate climate
with perhaps 760 mm annual precipitation (Axelrod 1956,
1979). The elevation was possibly 760 to 915 m, with
Jow relief (Axelrod, 1956, 1979). The Tow fish species
richness in the Miccene suggests seasonal aridity and
perhaps isolation from the rich fauna of the Snake
River Plain.

By Pliocene time some aquatic connections had
occurred between the northwest and sputhwest Great
Basin with the establishment of Chasmistes as far south
as China Lake (Miller and Smith 1981; Taylor and Smith
1981). The biogeographic track from the southwest
Great Basin northward along the Sierras, eastward
across the Snake River Plain, and south into northern
Utah was described by Taylor (1960) on the basis of the
distribution of mollusks and Chasmistes. This pattern
requires at least brief absences of topographic barri-
ers, and therefore establishes the significance of eco-
logical barriers to southern dispersal of many northern
species that did not move south. The ecological barri-
ers probably involved low, unstable, warm-water habi-
tats. Large-scale fluctuations characterized the
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Pleistocene. The pluvial lakes were surely stable
habitats, optimal in almost every way. Their low spe-
cies richness can be explained only by barriers between
basins and failure of pluvial conditions to persist
long enough to permit much species evolution.
The Recent fauna includes some taxa that appar-
ently were evolved locally at some unknown time in the
late Cenozoic; for example, the Prosopium species flock
in Bear Lake; species differentiation in Gila, Ptycho-
cheilus, Richardsonius, Catostomus, and Chasmistes; the
endemic genera of minnows, Iotichthys, Eremichthys,
Relictus, Moapa, and the Plagopterinae; the cyprinodon-
tid genera, Empetrichthys and Crenichthys; and the spe-
cies diversity in Cottus and Cyprinodon. Of this
diversity three large groups contain some possible ex-
amples of Pleistocene isolation and speciation: the
Great Basin and related Catostomus (subgenus Catosto-
mus}), the species of Lepidomeda (Miller ~and Hubbs
1960), and the species of Cyprinodon (Miller 1948). 1In
each of these cases the spec1es are similar, allopa-
tric, and probably lacking in genetic isolating mechan-
isms. Data that indicate a basis for questioning the
level of species evolution in Cyprinodon were presented
by Turner (1974}, Turner and Liu (1977), Cokendolpher
{1980), and Stevenson (1981). The karyotypes of Lepi-
domeda were shown by Uyeno and Miller (1973) {0 be
similar. Many species pairs of Catostomus in and around
the Great Basin are not completely separable by known
characters even though intermittent geographic separa-
tion surely dates back into the Pliocene or early
Pleistocene (M. L. Smith, this volume). These observa-
tions do not detract from the importance of the differ-
entiation in Cyprinodon, Lepidomeda, and Catostomus.
If these genera provide examples of Pleistocene specia-
tion, it is critical that the amount of differentiation
be documented.

HABITAT VOLUME AND BODY SIZE IN INTERMOUNTAIN FISHES

It is a common observation that individuals of
many spec1es reach larger sizes in larger streams. Not
only is growth potentially faster when greater input
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from upstream provides more ration but individuals in
larger, more stable waters may live longer because they
are less subject to seasonal mortality. Some fishes
may also respond to restrictive living space by growing
less, regardless of ration. Although it is unclear how
much of the correlation between body size and habitat
size is due to faster growth and how much to longevity,
it is even less clear how much of the observed pattern
is heritable adaptive variation 1in age or size of
maturity and how much is opportunistic adaption to
local resources.

It may be assumed that the supply of ration in a
stream is proportional to the normal volume of habitat
upstream (minus food extraction by competitors). The
density of food and competitors s not precisely pro-
portional to volume because the seasonal fluctuations
in fish and invertebrate biomass are not coincident
with each other or volume. Two additional qualifica-
tions affect productivity in desert streams. First,
jnput of terrestrial leaf 1itter and insects is less
than in mesic climates. Second, streams in arid lands
carry more sand and consequently provide less favorable
substrate for bacteria, algae, diatoms and inverte-
brates. Extreme cases occur when discharge is suffi-
ciently high, in relation to channel dimensions, to
move bedload; thus eliminating habitat for periphyton
and benthos (e.g., in the Colorado River). The fishes
that occupy these streams are subject to Tow ration,
swift current (relatively unavoidable in the main
channels of the Green and Colorado), and large seasonal
fluctuations. Here, in contrast to most streams, gra-
dients in productivity and stability may be reversed:
density of benthic organisms is higher at higher eleva-
tions (and steeper gradients) because of more organic
input and more stable substrate and also because rain-
fall, evaporation, oxygen, and groundwater supply (and
jts effect on temperature) are usually more stable
nearer the mountains.

A consequence of the sieep ecological gradient is
sharp species segregation. Higher elevations require
adaptations to low temperatures, short growing season,
current, and Jow ratio of living volume to substrate.
By contrast, lower, seasonally larger habitats have
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more species, higher temperatures, and a longer growing
season but lower food density. Optimal habitat for
most species occurs in intermediate reaches in the zone
of transition of gradient, substrate, and temperature.

In light of these considerations, some influences
on body size may be explored: (a) ration and tempera-
ture are major determinants of growth rate (Brett et
al. 1969); (b} length of the growing season determines
yearly increments (Gerking T1966). The first year's
growth is especially important to survival and repro-
duction. Growth during the second and subsequent years
depends on the effects of survival probability on re-
productive investment (Hirshfield and Tinkle 1975;
Murphy 1968; Williams 1966).

1. High adult density is unfavorable for juvenile
survivorship, especially when both eat the same food
{e.g., microvores) or when cannibalism is common., When
these or other factors contribute to relatively low
juvenile survivorship selection favors later reproduc-
tion, iteroparity, and Tong-term investment in large
numbers of potential offspring.

2. low adult survivorship caused by seasonal re-
duction in habitual size favors individuals that repro-
duce early in life, s

3. Intermediate responses might be favored in in-
termediate environments or under irregular schedules of
seasonal fluctuation, but divergence from intermediacy
is caused by positive feedback effects within the two
alternatives: In (1) longevity leads to larger size,
which in turn increases Tongevity in the presence of
factors (such as predators) that disadvantage small in-
dividuals. In (2} Tow adult survival favors early re-
productive dinvestment, which subtracts from future
growth and Teads to small size and shorter 1life span
(Constantz 1979).

Body Size and Habitat Width

Maximum adult size was recorded for samples of
several stream species in the University of Michigan
Museum of Zoology. (Minimum adult size is more impor-
tant but harder to measure reliably in late summer
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samples; thus the amount of available data is reduced.
Average adult size is difficult to for the same reason,
Maximum adult size is less ambiguous and was not signi-
ficantly related to sample size in the examples given.)

¢. L. Smith (1980) presented evidence of interac-
tion between maximum size ({per species) and community
structure in fishes inhabiting patch reefs. This in-
teraction is not demonstrable in my data. Instead max-
imum adult size is usually correlated with habitat
dimensions (Table 2, Figure 8). The variation in body
size attributable to stream width (log transformed)
ranges from 8 to 5 percent (R2) in the significant
samples. In those species that display the correlation
the strength of the response 1is proportional to adult
body size: the smallest species (e.g., Rhinichthys)
remain relatively small in large streams {where they
are common); larger suckers (Catostomus) are larger at
maturity and show a proportionally larger response to
increase in habitat volume. Adults of the larger spe-
cies are rarely present in small {ributaries, although
young are usually found in the same streams as their
parents (often in shallower waters}.

The large species are absent from most small 1s0-
lated drainage units in the Great Basin., The fossil
record suggests that the species remaining 1in these
units are the survivors of postpluvial extinctions.
Thirteen single-species survivors in drainage basins
(Figure 1) are small fishes: six Gila bicolor, four
Relictus solitarius, and three Rhinichthys osculus,
This evidence indicates disproportionate extinction of
large-bodied species in small habitats and small
basins.

Recent samples demonstrate a plasticity that im-
plies selection against large individuals in small
habitats. Gila bicolor (including G. alvordensis) and
Gila atraria show nearly identical responses to habitat
size (Table 2, Figure 8). These species are ecologi-
cally and morphologically similar, but their lineages
have been separated since the late Miocene, which sug-
gests parallel environmental control of bedy size 1in
these forms. These species are capable of maturing at
small size in small creeks and springs (35 and 62 mm
SL; Table 2). In large rivers and lakes, however, they
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FIGURE 8. _Regressjon of maximum adult size {in each
sample} against habitat width. Solid Tines are signfi-
cant; dashed lines not significant (Table 2).

matur@ later, at lengths of more than 150 mm. Gila
atraria may live as Tong as 11 years and grow to more
than 400 mm in SL in one of its largest habitats, Bear
Lake, Utah and Idaho (Sigler and Miller 1963).

The smallest minnow in North America is a close
re]atwye of G{]a; it lives in shallow waters in the
Bonneville Basin. Iotichthys phlegethontis matures at
about 25 to 30 mm SL and rarely grows larger than 50
mm SL. I@ is not variable in size and not widespread.
Ptychocheilus, which includes the largest minnows in

North Ameriga, inhabits coastal streams from
central California tg British Columbia and the Columbia
and  Colorado drainages. Ptychocheilus  formerly
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5 SR
inhabited the Great Basin but not in Recent time. It
is excluded from small waters by ecological require-
ments related to size.
e Because of the correlation between temperature and
n oz elevation, northern fishes (trout, whitefish, and scul-
7 °J1s pins) are the primary inhabitants of mountain head-
oo waters in the cold desert. Trout and sculpins are small
macrovores in desert streams. Trout are active mid-
~ ~eo water swimmers; sculpins are negatively buoyant, ben-
Z §E§ thic predators. Trout show size modifications in dif-
g ~o9 : ferent habitat sizes (about 150 to 750 mm SL); sculpins
remain small, 1like Rhinichthys, which are also nega-
E tively buoyant benthic fishes. Whitefish (Prosopium)
N are medium-sized, neutrally buoyant predators on small
S invertebates. They appear to have a modest size
S 882 o response. Rhinichthys cataractae, 1like Prosopium.
C = williamsoni,  inhabits lower montane, high—gradient
2 streams. Rhinichthys cataractae is also a predator on
E small invertebrates; it 1is negatively buoyant and
= restricted in size. -
28 R38w = A cross comparison of Salmo, Prosopium, Cottus,
'Y T = and Rhinichthys cataractae reveals an important prin-
8 o @ ciple concerning body size in freshwater fishes (Table
> B & 3}). Benthic forms (Rhinichthys and Cottus) are smaller
5 and less opportunistic in growth than their less ben-
é thic ecological counterparts, probably because their
0 QW o reduced mobility reduces their ration and increases
T 7 their vulnerability to predation.
é Most mountain suckers (Catostomus, subgenus
o Pantosteus, Tables 2 and 3) occupy the middle reaches
6o NOW b of northern desert streams, where temperature, gradi-
o eos 5 ent, current, and substrate are intermediate; they are
© negatively buoyant benthic microvores. Most species
© are small and show little response to habitat size (see
4 » £ platyrhynchus, Table 2). Catostomus (Pantosteus)
o 2,8 - discobolus, and columbianus, however, inhabitants of
S| w85 = the Colorado and Snake rivers {and some nearby sys-
Bt = =T Sl = tems), show a definite size response (see discobolus,
ﬁw§§:§ g Table 2). Southern populations (C. plebeius, Mexico)}
12|E[ElBIEIR| | = are small-bodied inhabitants of higher ({cool) head-
22182885 | waters. Species of the subgenus Catostomus are large,
g§§'§§3§ benthic microvores with large swimbTadders and show
SIS SI8 only a suggested size response, but the sample sizes
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small mouth

RITJTL TGV Y &

Medium to ltarge; limited

variability

Semineutrally buoyant;

semibenthic

s

Microvore; benthic

Catostomus (ss)

Small to medium; Targe spp

variable

Negatively buoyant; benthic

Microvore; benthic

Pantosteus

aRenthic fishes tend to be smaller than their less benthic ecological counterparts and their less

benthic relatives.
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are finadequate. Other fishes of the intermountain
desert (except endemics of large lakes) are small.
They inhabit small waters or are benthic.

The fossil record offers an interesting compari-
son. Many of the above genera {Prosopium and other
salmonids, Ptychocheilus, Catostomus) grew much larger
in Pliocene Lake Idaho {Smith 1975} than anywhere in
North America today or in the Pleistocene. Benthic
species such as sculpins were only slightly Tlarger.
Pleistocene Lake Bonneville (Smith et al. 1968), though
large, does not appear to have had larger fishes than
modern 1intermountain lakes, but the reasons are not
known,

In summary there is a tendency for fish that
occupy large habitats to respond ecophenotypically with
extended growth and large size. Conversely, in small
habitats these species may mature early and fail to
reach large size. Benthic fishes, cyprinodontoids, and
some minnows are invariably small. The explanation of

this phenomenon requires consideration of reproductive
life history. ' '

Life history

It is significant that the tendency for large-
volume habitats to produce large fishes may be as pro-
nounced in the intermountain desert as it is in mesic
climates. This suggests that productivity and ration

‘do not govern the phencmenon but that life-history

adaptations to length of the growing season and mortal-
ity schedules may be the primary determinants. Speci-
fically, irrespective of ration and temperature, size
seems to be determined by the effect of mortality
schedules on early versus late breeding. Whether
ration is abundant or minimail, low adult mortality will
lead to selection for iteroparity and large size, as
illustrated by Gila, Ptychocheilus, and suckers in the

Colorado River. In habitats of all sizes selection
will favor reproduction by one-year-olds if seasonal
reduction in habitat repeatedly causes heavy mortality
after a season of substantial growth. This is i1lus-

trated by stream fishes in the desert portions of the
Great Basin.
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If adult mortality is variable because of unpre-
dictable variation in the severity of seasonal fluctua-
tions, individuals that invest in early reproduction
will leave more descendants after destructively dry
years; those that grow larger and produce more off-
spring later will leave more descendants in a series of
wet years. In a postpluvial transition period such as
the present both genotypes could be present. This is a
possible explanation of some of the growth and repro-
ductive plasticity among and perhaps within the popula-
tions discussed.

The extreme responses to annual fluctuation in
aquatic habitat, sestivation and annual reproduction
with dry-season survival as eggs only, has not evolved
in North American desert fishes, despite the antiguity

' of desert climates. In the Chaco lungfish and cyprino-
donts exhibit these responses to dry seasons, €ven
though desert climates may be less ancient in South
America. It is possible that the pluvial periods have
interrupted evolution of these adaptations in North
American deserts. Also, because of topographic relief
and its regulation of groundwater, headwaters and
springs are among the more stable habitats, whereas in
the Chaco headwaters are the least stable.

In limited examples adaptations to survive dry
seasons in the egg stage may release cyprinodonts from
the small size and early reproduction syndrome that
characterizes them elsewhere. Wherever the dry season
is highly predictable and the wet season favorable for
rapid growth, early reproduction (more than one genera-
tion per season) may not be so successful as will
larger numbers of eggs immediately before desiccation.
In such conditions cyprinodonts in the Chaco may reach
lengths of 75 mm SL, which is somewhat larger than they
become in habitats that favor earliest reproduction.

The other major adaptation to dry seasons is
migration. Avoiding desiccation by roundtrip alterna-
tion of habitats is a common adaptation of inhabitants
of large river systems with headwaters in arid lands
(Lowe-McConnell 1964). 1In intermountain desert fishes
migration is not well studied, but it seems to be

related to choice spawning sites rather than desicca-

tion avoidance. Because of the relationship between
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swimming performance and body size, migration is
1imited to large, nonbenthic species that 1ive in large
habitats.

Emigration is a special problem. In fiuctuating
environments survival value could accrue to genotypes
that show colonization behavior. This is the opposite
of migration in that success depends on the probability
of existence of an unoccupied environment more favor-
able for reproduction than the individual's birthplace.
This probability is not insignificant in environments
1ike the intermountain desert, where local extinctions
are periodic. It may be predicted that such genotypes
and behaviors will promote emigration of young fish and
be accompanied by behavioral responses to evidence of
relative permanence of habitat (e.g., aquatic plants)
and population density.

DISCUSSION AND SUMMARY

Habitat size is the most important general factor
in the control of survival, diversity, and 1ife histor-
ies of desert fishes. Quantity of aquatic habit, how-
ever, though intuitively simple, is not easily defined
or measured. A measure based on depth; though useful
in certain systems (Sheldon 1968), is not reliable for
many purposes because of the importance of substrate
and productivity to most fishes (consider deep springs
or the bathypelagic realm). Likewise, volume of water
can be negatively correlated with volume of suitable
habitat if the increased volume is moving through a
confined channel, as in torrential rivers. A third
unsatisfactory but simple measure, width of habitat,
is used here as a first approximation of habitat size
for desert stream fishes. Habitat width is regularly
related to other measures of habitat size in streams;
it fluctuates seasonally and allows comparison of sea-
sonal variability.

Two arid regions are compared: the North American
intermountain cold desert, where water originates on
mountain islands and flows into lakes or temporary
sinks, and the Paraguayan Chaco, where precipitation
occurs during a hot, wet season and drains through
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swamps and low-gradient streams, leaving fishes in a
severe desert climate for about three months each year.
The contrast allows elucidation of ecological and
selective effects of variation 1in habitat size on
colonization, extinction, and species richness.

The Chaco is subjected to severe annual extinction
and massive annual recolonization. A comparable North
American system was studied by Harrel et al. (1967).
The drainage direction is from unstable dry to stable
wet, and the colonization source is rich with species
adapted to the productivity of the annually flooded
arid lands. Species number is low where streams are
small {or low) and high in large aquatic habitats. An
average habitat has about 15 species, but variations of
0 to 40 occur geographically and annually.

In the intermountain desert severe extinctions
also occur because of fluctuations in habitat volume.
Recolonization is so restricted by barriers that many
small basins are now fishless. Few samples contain
more than seven species. Annual fluctuations are less
severe in the intermountain desert because topographic
relief ameliorates habitat volume somewhat by ground-
water regulation. Recolonization is measured in geo-
logical time because of the geological barriers between
drainage basins. Most of the colonization has been
restricted in and among these basins over the last
several million years. There 1is evidence of some
colonization from the north (Smith 1975) and from west
coastal lowlands (Bell 1974) in the P1iocene.

The Chaco and intermountain samples provide ex-
treme examples of short- and long-term instability.
The species richness at any locality in either place is
a product of both scales of history. The steepness of
the curves in Figures 3 and 5 reflects short-term fluc-
tuations and adaptations (e.g., migration) to them.
The striking difference in maximum species richness re-
flects the negative effect of Tlong-term fluctuations
and barriers to colonization 1in the intermountain
desert.

The geological and fossil record suggests that
the interaction of intermountain pluvial habitats and
isolation during the Pleistocene might have produced
considerable  evolutionary differentiation. Such
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differentiation exists and has been extensively docu-
mented (Hubbs and Miller 1948; Hubbs et al. 1974;
Miller 1948, 1959; Miller 1965 and references therein;
Smith 1966}. Quantification of the amount of differen-
tiation in relation to the duration of isolation will
prove interesting. Indirect evidence presented here
suggests insufficient long-term persistence of habitat
for full speciation despite apparently ideal isolating
conditions.

In summary, long- and short-term fluctuations in
aquatic habitat size have resulted in the Tow and vari-
able species richness that characterizes deserts,
Long-term fluctuations like those 1in the Great Basin
alternately increase and depress adaptations to desert
conditions and divergence of isolated populations.

Habitat size directly effects body size in fishes
by ecological effects on 1ife history. Small habitats
support small fishes, even among species that are cap-
able of larger size. Therefore it is surprising that
cyprinids and catostomids in the intermountain desert
are usually larger than their counterparts in the Mis-
sissippi Basin. It might be suggested that the western
forms are examples of ecological release; they fill the
niches occupied by large species in more diverse east-
ern faunas. It might also be argued that large western
forms exhibit residual adaptations to Pleistocene plu-
vial periods. These hypotheses may be rejected by com-
parison of data presented here. Ptychocheilus is
smaller in restricted waters; it was not smaller 1n the
presence of diverse large salmonid, centrarchid, and
ictalurid predators in the Pliocene. Gila shows signi-
ficant reduction of size at maturity in small waters of
the Great Basin but individuals may average four times
longer in large habitats. This suggests that potential
for large size is not a Pleistocene relict but is
selected by ecological consequences of local habitat
size.

Body size is measured as maximum adult size in
each sample, The results of this study are consistent
with the hypothesis that individual size 1is partly
heritable and strongly controlled by the effects of
relative juvenile and adult mortality on Tlate versus
early reproductive investment. When seasonal
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fluctuations in habitat size result in heavy mortality;
individuals that reproduce at small size leave more
descendants than those that risk another round of mor-
tality for another season of growth (Hirshfield and
Tinkle 1975).

Reinvestment of the genotype in many small units
increases the probability of survival, especially in
small habitats in which large individuals might be more
vulnerable to predation, oxygen depletion, or starva-
tion. When adult mortality is Tow individuals leave
more descendants by growing larger and producing more
young over several seasons. Fish in the harsh, low-
ration Colorado River {and productive, predator-rich
lakes) probably show much lower adult mortality in re-
lation to juvenile mortality. Ptychocheilus and trout
are the only large native predators in the intermoun-
tain desert. Therefore survival past a threshold in
the neighborhood of 200 mm in standard length places an
individual in a relatively predator-free environment.
A1l but benthic fishes in this environment are larger
than their relatives elsewhere.

Benthic fishes are not free to grow substantially
larger in larger habitats. The reason is probably a
consequence of the relationship between individual size
and home range, territory, or foraging area (Sale
1980). This phenomenon could be related to restriction
of ration as a result of lower mobility in benthic
species but greater vulnerability of adults to preda-
tors is as likely an explanation in streams and lakes.
Similar reasons probably account for the exclusively
small sizes of surface- and substrate-restricted
atheriniform fishes in deserts. The failure of these
benthic, surface, and edge species to grow much larger
in the presence of abundant food and space indicates
that, unlike many desert fishes, they are genetically
Timited in their pattern of growth and early reproduc-
tion. The opportunity to breed more than once a year
may increase selection toward early reproduction in
cyprinodonts, poeciliids, small characins, and small
cichlids by negative feedback of reproductive effort
on survivorship. The exceptional size of some large
annual cyprinodonts in the Chaco provides support for
this hypothesis; the long growing season and
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predictable on-set of drought favors relatively large
size and later reproduction.

The extremely small cyprinids in the intermountain
region, especially Iotichthys and Eremichthys, may be
the result of rarity of small competitors for micro-
crustaceans and aufwuchs. The existence of so few
parallels to Notropis is probably a function of sparse
terrestrial input to desert streams.

Despite the well-documented endemism in intermoun-
tain fishes, it 1is ecologically significant that the
fauna is largely populated by representatives of the
most widespread genera of freshwater fishes in North
America and the Northern Hemisphere. Catostomus, Cot-
tus, Rhinichthys, and Cyprinodon are the widest-ranging
genera on the continent. Cottus, Salmo, Prosopium, and
Catostomus, as well, have broad distributions in the
remainder of the holarctic region. All have the capa-
city to succeed in the widest range of habitat sizes.
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