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Water-right applications No. 53987-53992 and 54003-54030 were filed by the Southern
Nevada Water Authority (SNWA) for ground water in Spring Valley hydrographic area.
Documents submitted by SNWA in support of these applications include Exhibit 507 titled
“FEMFLOW3D Version 2.0, A Finite-Element Program for the Simulation of Three-
Dimensional Groundwater Systems” and Exhibit 508 titled “Development and Use of a
Groundwater Model for the Spring Valley Area.”

Exhibit 508 Appendix A is a transient finite-element ground-water flow model of the
Spring Valley area developed for the Southern Nevada Water Authority (SNWA) by Mr.
Timothy Durbin using the computer program FEMFLOW3D, Version 2.0. FEMFLOW3D
Version 2.0 is an updated version of FEMFLOW3D Version 1.0 (Durbin and Bond, 1998), but is
not a public domain finite-element code developed by the U.S. Geological Survey (e.g., MODFE
(Torak, 1993)).

Exhibit 508 (Page 8-1) states “The purpose of the groundwater model of the Spring
Valley area is to provide a decision-making framework for managing and monitoring
groundwater development in Spring Valley.” The steady-state model calibration indicates good
agreement with pre-development (1960’s and earlier) ground-water level observations (Exhibit
508, Figure 8-3). The ground-water model simulates historic and proposed agricultural and
community consumptive use within the model domain from 1955 to 2090. The model’s transient
simulation, however, does not include the proposed ground-water withdrawals that are the
subject of the Spring Valley administrative hearing. A review of Exhibits 507 and 508 indicates
that the ground-water flow model developed by Mr. Durbin can be run at this time with the
proposed ground-water withdrawals to simulate stress upon the ground-water system and to
predict changes in hydraulic head. The attendant results, although preliminary, provide valuable
information for decision makers at this time.

The purpose of this report is to present the results of new transient simulations produced
by including SNWA'’s proposed ground-water withdrawals in the FEMFLOW3D Spring Valley
ground-water flow model. To simulate the effects of the proposed withdrawals, the
sv_model_ts.FLX input file (Exhibit 508 Appendix A) was modified to include the 19 proposed
basin-fill and carbonate wells (Figure 1). The same general method used by Mr. Durbin to
simulate ground-water pumping was followed to add the new wells: wells were represented
within the model domain as specified fluxes; three nodes nearest to each proposed point of
diversion were identified in the input file; and the pumping rate for each set of specified flux
nodes was assigned in a corresponding table in the input file. Pumping was divided evenly
among the three nodes representing each well. Basin-fill wells were assigned in the topmost
‘Upper Valley Fill’ layer in the model, and carbonate wells were assigned in the first ‘Lower
Carbonate Rocks’ layer in the model. Ground-water withdrawals at each of the proposed points
of diversion were started in year 2015 of each simulation. The new wells were pumped
continuously at the maximum proposed rate (i.e., 6 cfs for basin-fill wells and 10 cfs for
carbonate wells) until the end of the 135-year simulation. The only input file modified was the
FLX file. The model converged for all simulations without modification of time step size or
convergence criteria.
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The new transient simulations calculate change in head due to historical and proposed
ground-water withdrawals over the period 1955 to 2090. Figure 2 summarizes drawdown
observed under several pumping scenarios at six preexisting hydrograph sites within the model
domain. The location of the hydrograph sites are shown in Figure 1. The hydrograph at a
particular site is the weighted average head for the nodes associated with the site (Exhibit 507,
Page 3-15), and are assigned for this model in the sv_model _ss.HED input file (Exhibit 508
Appendix A).

Model results indicate that SNWA'’s proposed ground-water withdrawals produce
drawdown of up to 200 ft in the area of the pumping wells after 75 years of pumping. The cone
of depression produced by the proposed pumping grows beyond the hydrographic boundary of
Spring Valley despite the presence of fault-bounded structural compartments within the model
domain. Model results also show that elimination of the carbonate wells results in 30% to 50%
less drawdown at the Lehman Creek, Spring/Hamlin Valley Divide and Shoshone Ponds
hydrograph sites (Figure 2).

The 2-D fault mesh incorporated within the numerical model compartmentalizes flow.
This structure produces high hydraulic gradients near several compartment boundaries and
significant head differences across these compartment boundaries under steady-state conditions
(Exhibit 508, Figure 8-10). When the system is stressed due to the proposed ground-water
withdrawals, significant offsets in drawdown occur at these same locations. In contrast,
hydraulic head and drawdown contours are more or less continuous within the domains of the
finite-difference MODFLOW models described in Exhibits 2001 and 3001.

Regardless of the different conceptual models upon which each finite-element and finite-
difference model is based, the results of the new FEMFLOWS3D transient simulations indicate
that drawdown due to pumping calculated by all three numerical models appears to be of the
same order of magnitude (Figure 2) (Exhibit 2001; Exhibit 3001). As noted by SNWA in
Exhibit 502, the lack of available data on aquifer properties creates prediction uncertainty in
regard to the results of numerical models. It should be further emphasized that the fact that a
model has been calibrated does not mean that the model is “correct” (e.g., Bredehoeft, 2003).
Further analysis is needed to determine which model is best supported by observational data.

The results of the FEMFLOW3D Spring Valley ground-water model, as well as the
results of the MODFLOW models submitted for the purpose of this hearing, provide first-order
approximations of drawdown that may occur due to the proposed ground-water withdrawals.
While all of the numerical models would benefit from continued development and calibration as
new data are acquired, their results provide valuable information that should be considered by
the interested parties and decision-makers. In time, one of the models may provide a more
acceptable fit to observed data, but until that data is acquired and the necessary analyses
performed to make such a determination, all of the calibrated models can be considered plausible
approximations of the real ground-system (e.g., Poeter & Anderson, 2005). In using this
approach, alternative conceptual models can be simultaneously evaluated to gain insight into
potential changes in aquifer storage, discharge and/or recharge due to pumping.
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Figure 1. Map showing the location of select model hydrograph sites (asterisks) which represent an
area within the model domain over which the change in head due to pumping was observed for each
simulation. SNWA'’s proposed points of diversion, and Great Basin National Park, hydrographic area
and model compartment boundaries are also shown for reference.
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Figure 2a. Drawdown over time at hydrograph sites shown in Figure 1 for five pumping scenarios.
Note that the scale of the vertical axis varies for each chart. The Historical simulation is the original
simulation run by Mr. Durbin and includes historic and existing consumptive use, but does not include
SNWA'’s proposed ground-water withdrawals. The remaining simulations include from 4 to 19 of
SNWA'’s proposed points of diversion.
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Figure 2b. Drawdown over time at hydrograph sites shown in Figure 1 for five pumping scenarios.

Note that the scale of the vertical axis varies for each chart.

The Historical simulation is the original

simulation run by Mr. Durbin and includes historic and existing consumptive use, but does not include
SNWA'’s proposed ground-water withdrawals. The remaining simulations include from 4 to 19 of
SNWA'’s proposed points of diversion.
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Figure 2c. Drawdown over time at hydrograph sites shown in Figure 1 for five pumping scenarios.
Note that the scale of the vertical axis varies for each chart. The Historical simulation is the original
simulation run by Mr. Durbin and includes historic and existing consumptive use, but does not include
SNWA'’s proposed ground-water withdrawals. The remaining simulations include from 4 to 19 of
SNWA'’s proposed points of diversion.
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Issue Paper/

From Models to Performance Assessment:
The Conceptualization Problem

by John D. Bredehoeft’

Abstract

Today, models are ubiquitous tools for ground water analyses. The intent of this paper is to explore philosophi-
cally the role of the conceptual model in analysis. Selection of the appropriate conceptual model is an a priori deci-
sion by the analyst. Calibration is an integral part of the modeling process. Unfortunately a wrong or incomplete
conceptual model can often be adequately calibrated; good calibration of a model does not ensure a correct concep-
tual model. Petroleum engineers have another term for calibration; they refer to it as history matching. A caveat to
the idea of history matching is that we can make a prediction with some confidence equal to the period of the history
match. In other words, if we have matched a 10-year history, we can predict for 10 years with reasonable confidence;
beyond 10 years the confidence in the prediction diminishes rapidly. The same rule of thumb applies to ground water
model analyses. Nuclear waste disposal poses a difficult problem because the time horizon, 1000 years or longer, is
well beyond the possibility of the history match (or period of calibration) in the traditional analysis. Nonetheless,
numerical models appear to be the tool of choice for analyzing the safety of waste facilities. Models have a well-
recognized inherent uncertainty. Performance assessment, the technique for assessing the safety of nuclear waste
facilities, involves an ensemble of cascading models. Performance assessment with its ensemble of models multiplies
the inherent uncertainty of the single model. The closer we can approach the idea of a long history with which to
match the models, even models of nuclear waste facilities, the more confidence we will have in the analysis (and the
models, including performance assessment). This thesis argues for prolonged periods of observation (perhaps as long

as 300 to 1000 years) before a nuclear waste facility is finally closed.

Introduction—Models

Models play a key role in the analysis of many, if not
most, ground water problems. They are especially impor-
tant in predicting the behavior of nuclear waste facilities far
into the future. The Waste Isolation Pilot Plant (WIPP, a
geologic repository for transuranic wastes in New Mexico)
was recently opened and is receiving nuclear weapons
waste. Yucca Mountain (the proposed high-level nuclear
waste repository in Nevada) is near the licensing stage.
Hydrogeological models play a key role in assessing the
safety of these facilities.

The purpose of this paper is to discuss philosophically
the use of models in making predictions. Many of these
ideas have been expressed elsewhere, yet they seem worth
restating. In particular, T want to examine the role that the

"The Hydrodynamics Group, 127 Toyon Lane, Sausalito, CA
94965; jdbrede@aol.com

conceptual model plays in analysis. [ take a historical per-
spective in developing these ideas.

In the 19th century, various laws that describe the
movement of heat, electricity, and ground water through a
continuum were derived. Of special concern to those of us
that investigate ground water is Darcy’s law. By applying
the principle of conservation of mass and incorporating
Darcy’s law as a constitutive relationship, we can derive a
partial differential equation that describes the hydraulic
head throughout a porous medium. Once the head is deter-
mined, we can apply Darcy’s law to derive the ground water
flow vectors throughout the system. These principles form
the basis for all ground water flow and transport models.

For many ground water problems with simple geome-
try, simple parameter distributions, and simple boundary
conditions analytical solutions to the mathematical problem
can be derived. Because there is an analogy between the
flow of ground water and the flow of both electricity and
heat, we often can find the mathematical solution for the
appropriate boundary value problem in the literature on
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heat flow and/or electrical flow. The analogy between heat
flow and ground water flow was enriched in the 1930s and
1940s when Theis (1935) suggested that transient ground
water flow was analogous to unsteady heat flow, and Jacob
(1940) derived the transient ground water flow equation
from first principles. Ground water in the 1940s and 1950s
went through a period when various boundary value prob-
lems were solved for pumping wells; numerous pumping
test procedures were developed. Many of the pumping test
solutions could be found in the classical literature on heat
flow. Carslaw and Jaeger (1959) was on the shelf of most
serious ground water hydrologists. Many of the classical
solutions involved numerical integration of mathematical
functions; the digital computer enhanced the capability to
numerically integrate these functions.

The Conceptualization Problem

The various pumping test solutions involve different
conceptual models of the well and its geologic environ-
ment. For example, the response of a well pumping at a
constant rate from an extensive confined aquifer can be
analyzed as if (1) the overlying and underlying beds are
impermeable (the Theis solution), (2) the overlying and
underlying beds are leaky without storage (the leaky
aquifer solution), or (3) the overlying and underlying beds
are leaky with storage (the modified leaky aquifer solution,
Hantush 1964). A pumping test in the Dakota Sandstone at
Wall, South Dakota, illustrates the point (Bredehoeft et al.
1983). Different investigators fit the Wall data to both the
Theis solution and the modified leaky aquifer solution; the
data fit either solution equally well. We obtain a different
answer depending on the conceptual model chosen; the pre-
dictions of long-term future well performance will be dif-
ferent depending on which model is selected.

Usually the conceptual model chosen for analysis is an
a priori decision of the analyst. Sometimes the fit of the
data to the analytical solution will suggest that the concep-
tual model is inappropriate, but more often than not the data
will fit more than one conceptual model equally well, as
was the case at Wall, South Dakota. My point is that we can
choose the wrong conceptual model, fit the data, and get a
wrong answer. In the 1940s and 1950s, hydrogeologists did
not call these solutions to pumping test model analyses, but
we might today.

We cannot overemphasize the role of the choice of the
conceptual model in any analysis of a ground water system.
A wrong conceptual model invariably leads to poor predic-
tions, no matter how well the model is fit to the data. Time
and again, the errors in prediction revolve around a poor
choice of the conceptual model (Konikow and Bredehoeft
1992; Oreskes and Belitz 2001). Modeling invariably
involves simplifying the real system into a conceptual
model that can be analyzed; that conceptual model must
capture the essence of the problem. Choosing the appropri-
ate conceptual model is usually a matter of professional
judgment. It is how we conceptualize the problem that sep-
arates good analysts from poor ones, especially today when
anyone can run codes such as MODFLOW.,

We tend to regard our conceptual model as immutable.
Yet I remember one of my mentors as a young geologist,
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N.W. Bass, said to me: “A geologic report is always a
progress report.” T continue to reflect on this remark. What
we choose as a conceptual model is a function of the status
of knowledge in science. For example, plate tectonics
changed geology and changed our conceptual model of tec-
tonics. Theis (1935) and Jacob (1940) changed ground
water hydrology by introducing the transient theory of
ground water flow. Finding chlorine-36 at depth in Yucca
Mountain has caused the community to rethink transport
through a fractured unsaturated zone. As yet, there is no
consensus on the appropriate conceptual model for trans-
port within Yucca Mountain (National Research Council
2001). The point is that our conceptual model changes with
advances in the science; concepts are by no means static.

Models

At the time well tests were the standard tool for analy-
sis for hydrogeologists, it was apparent to some individuals
that it would be of great value to find a procedure to solve
the more global problem of flow through a porous medium
with varying parameter distributions and complex boundary
conditions. In other words, to treat flow in an entire aquifer.
A group at the U.S. Geological Survey, led by Herb Skibit-
ski, developed the resistor-capacitor electrical network as an
analog model for ground water flow. This introduced into
ground water the idea of a model of an aquifer system.

A parallel effort was under way in the petroleum
industry where reservoir engineers simulated flow in real-
istic hydrocarbon reservoirs. A petroleum reservoir is often
more complex than saturated ground water systems
because of the presence of multiphases—oil, gas, and
water. The petroleum engineering effort to model a reser-
voir used the digital computer. Some of the best applied
mathematicians of the 1950s and 1960s worked on devel-
oping numerical methods to solve the equations of flow in
porous media. The petroleum industry referred to both the
computer codes and the models of specific fields as reser-
voir simulators. The term used to describe the analyses was
reservoir simulation rather than modeling.

As digital computers grew in power, the analog meth-
ods of the 1950s and 1960s used in ground water were
replaced by digital computer methods in the 1970s. As dig-
ital computers became more powerful and less costly, mod-
eling became widely used. With the power of today’s PCs,
models of ground water systems are now commonplace.

The digital computer codes had the added benefit that
solute transport also could be modeled. In a general way,
sets of partial differential equations could be solved simul-
taneously. The analog models dealt only with the solution
of the ground water flow equation. The digital computer
added new dimensions to modeling. A whole industry has
grown up that produces models of ground water flow and
transport that are easily implemented. There are a number
of pre- and post-processors for MODFLOW and MT3D,
the most common of the ground water flow and transport
codes. The pre- and post-processors make modeling rela-
tively easy, and enable very large problems, involving big
grids, to be modeled. Without the pre- and post-processors,
large grids are exceedingly difficult to implement—;for all
practical purposes, they become intractable.



Calibration

An integral part of the modeling procedure is calibra-
tion. Calibration involves fitting the model output to a set
of observations. Hopefully, at some point in the process,
the model parameters are adjusted so that an adequate fit to
the observations is achieved. Originally, calibration was a
trial-and-error procedure. In recent years, the process of
adjusting the parameters to achieve an adequate fit has been
automated.

Numerical measures of the goodness-of-fit between the
observations and the model predictions have been devised.
The numerical measures provide the appearance that judg-
ing the adequacy of fit during calibration is no longer sub-
jective. However, in the end, what constitutes an adequate
fit is a subjective decision. Statistical measures of the good-
ness-of-fit can be calculated, but the question of whether a
model is calibrated is a decision left to the analyst.

There are problems in the calibration procedure. As
suggested by the previous discussion of pumping test
analysis, the calibration commonly does not test our con-
ceptual model. In other words, a model involving a wrong
or incomplete conceptual model can be adequately cali-
brated. 1t is generally conceded that a model, even if it is
well calibrated, is nonunique; another parameter set might
result in an equally good calibration (Bethke 1992).

Post Audits

Since models have now been around for several
decades, it is possible in certain limited instances to evalu-
ate their performance. Predictions were made that can now
be compared to what happened to a particular system.
Many audits do not really test the adequacy of the model
because what took place with the real system was not a sce-
nario that was analyzed initially. Typically, pumping fol-
lowed a different pattern than anticipated.

There are a limited number of post audits of model pre-
dictions; they are not reassuring. Many models did not pro-
vide good predictions (Anderson and Woessner 1992;
Konikow and Bredehoeft 1992). Many models suffered
from a conceptual omission: an important process was
overlooked. In other cases, the range of parameters was
much larger than was included in the model analysis. Mod-
els are known to have provided poor predictions, even
models that were thought to have been well calibrated.

Validation

Validation is a term promoted by the nuclear waste
community. Different people variously define validation;
there is no consensus on what it means. Furthermore, in
most cases, the goal of calibration and validation are the
same: In both cases, we seek to create the best possible rep-
resentation of the system. We as a community have formu-
lated restrictive, and rather special, definitions of what it
means to validate a code.

Recognizing that the traditional history match was
impossible, the nuclear waste community set out to test dif-
ferent codes in situations where shorter histories of perfor-
mance were available. They called this test of the models
validation. This is only one of many specialized definitions

of validation. This test of the codes was no different than
the calibration procedure models normally undergo. If the
model of a specified system could be adequately calibrated,
the code was deemed validated. In many instances, we can
substitute the words well calibrated for validated without
changing significantly the author’s meaning.

There are both pragmatic and philosophical grounds to
avoid the idea of validation. The idea of validation (or
invalidation) is deeply rooted in the philosophy of science.
On philosophical grounds, Popper (1968) argued that sci-
entific theory can be invalidated—not validated. Of course,
Popper is not the only philosopher of science. Others,
notably the pragmatists, of which John Dewey is perhaps
the best known, argued that we learn from experience,
observations, and mistakes (Menand 2001). The pragma-
tists argued we never find real truth, but we do get closer to
understanding. Kuhn (1970} suggested that scientists try to
make existing theory work until finally the evidence indi-
cates that it does not; then they embrace a new theory. None
of these philosophers argued that one could validate.

It is unfortunate that we have allowed the term valida-
tion to become a part of the model lexicon. Oreskes and
Belitz (2001) summarize the status of validation:

“The inherent uncertaintics of models have been widely
recognized, and it is commonly acknowledged that the term
‘validation’ is an unfortunate one, because its root—valid—
implies a legitimacy that we are not justified in asserting. . . .
But old habits die hard and the term persists. In formal docu-
ments of major national and international agencies that spon-
sor modeling efforts, and in the work of many modelers,
‘validation’ is still widely used in ways that assert or imply
assurance that the model accurately reflects the underlying
natural processes, and therefore provides a reliable basis for
decision-making. This usage is misleading and should be
changed. Models cannot be validated. The reasons why have
been outlined in detail elsewherc (Konikow and Bredehoeft
1992; Oreskes et al. 1994).”

Reservoir Engineering: A Pragmatic Approach

The ground water community could take a lesson from
petroleum reservoir engineering. The usual practice is to
history match the reservoir simulator output to some tem-
poral history of production. This is calibration in the
ground water lexicon. Based on the match, a prediction of
future performance is made, but one is cautious in extend-
ing that prediction much beyond a period equal to the pro-
duction history. In other words, the rule of thumb is that, if
we make a 10-year history match, we might be reasonably
confident in predicting the next 10 years of performance;
however, beyond 10 years, the confidence in a prediction
greatly diminishes.

The reservoir engineering community makes no claims
about the validity of the model. They simply imply: (1) we
have a model that we think incorporates the appropriate
physics and chemistry, including the appropriate parameter
set, that matches an observed temporal history of reservoir
performance; and (2) we will use that model to predict future
reservoir performance. Furthermore, continued monitoring
of the system is used to refine and improve the model.

Reservoir simulation is impottant in the petroleum
industry. A small improvement in the fraction of petroleum
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recovered from a reservoir can amount to many millions of
dollars. It is worth looking to reservoir engineering practice
as a guide to modeling ground water systems, especially
systems involving high risk to society, such as nuclear
waste repositories,

Many of the same techniques are used with most nor-
mal ground water models. In many water supply models,
we have a history of the response of a ground water system
to stress. One makes a model that reproduces the history (is
calibrated), and then makes predictions of future perfor-
mance. A well-known caveat is that if the system reaches a
new state, the past history may be a poor analog for future
performance. Perhaps an example is worth mentioning.

Ground water is being mined from the Denver Basin
aquifers in the area just to the south of Metropolitan Den-
ver. Water levels over much of the Denver Basin are
declining at rates of 20 to 30 feet per year. So far, the
aquifers are still artesian over much of the basin. The ques-
tion arises as to what will happen as the artesian head is
removed and the system becomes water table. Theory sug-
gests that the rate of water level decline will slow as the
aquifers pass to water table conditions. However, there are
a number of complicating factors. The aquifers are com-
posed of multiple lenticular sand bodies that are not contin-
uous either vertically or across the basin. The layered
nature of the sand bodies that make up the permeable por-
tion of the aquifer restrict its drainage; a highly layered
aquifer may drain quite differently than a massive thick
sand. In addition, there are extreme drawdowns during
summer pumping periods that cause the sand bodies to
become unsaturated during the summer and then saturate
again during the winter; this cyclic drawdown tends to trap
air in the sands. There is a debate raging among concerned
professionals over what the impact of the complications
will be on the water table drainage of the Denver Basin
aquifers. We can only speculate until there is some history
of how the system responds under water table conditions.

Modeling as an lterative Process

Good modeling is an iterative process. As new data are
acquired, the model is revisited and adjusted (or recalibrated)
so that the model predictions are consistent with all the data,
including the new data. The model becomes a living tool for
analysis. With this paradigm, the modeling strategy changes;
it requires continued monitoring and model updating.

We see this strategy at work in many ground water prob-
lems. Many problems, especially where there is major con-
cern over the water supply, have been modeled numerous
times. I was recently in the Tampa Bay area where there have
been three models of seawater intrusion built during the last
decade; as digital computers increased in power, each model
was more complex. The models progressed from two-dimen-
sional cross sections to fully three-dimensional representa-
tions of the system. Each improved the representation of the
system, A new flow model is also under construction for the
area. The modeling continues because it provides new
insights and increased confidence in understanding.

The iterative process is important in addressing the
adequacy of the conceptual model. A mismatch between
the model prediction and the observed data should raise the
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issue of conceptualization: [s the mismatch a result of para-
meter misadjustments or does it suggest that we rethink the
conceptual model?

Nuclear Waste

That brings me to the licensing of nuclear waste facil-
ities. The time horizons for these facilities are long—1000
to 10,000 years or longer. The usual model practice of
matching a temporal history of system performance and
then predicting for a more or less equal period is out of the
guestion. The models are used to predict system perfor-
mance well beyond an observable history. As modelers, we
have to hope that we have (1) included all of the relevant
processes in our conceptual model of the system, (2)
described the appropriate boundary conditions that are
operable through the time horizon of our prediction, and (3)
captured the parameters, and their uncertainty, in our repre-
sentation of the system. This is a tall order.

Performance Assessment

A nuclear waste facility is judged safe if the predicted
exposure to radioactivity to an individual located near the
boundary of the facility is below a set standard. To make
the dose calculation, transport of radioactive components of
the wastes is investigated along various exposure pathways.
Transport of radioactive isotopes of concern, often by mov-
ing subsurface fluids, is predicted within various compo-
nents of the repository system along the pathways of
concern. Various models of the transport processes are
linked to perform a performance assessment. The perfor-
mance assessment is run stochastically so that a probabilis-
tic prediction of the radioactive dose to the hypothetical
individual of concern is computed. Ewing et al. (1999)
review the use of performance assessment.

Performance assessment sounds obscure in the abstract;
perhaps an example will illustrate the procedure. The Waste
Isolation Pilot Plant (WIPP) is a salt mine, 2200 feet deep,
in the Permian Basin of New Mexico, near Carlsbad, where
nuclear waste created by the U.S. weapons programs is
being buried. The original concept was that the Salado Salt
in which the mine is built would deform plastically and
encapsulate the buried nuclear waste within a period of sev-
eral decades. There are problems with this concept. Once an
exploratory mine was constructed, the salt was found to con-
tain 1% to 3% interstitial brine—Dbrine between the salt crys-
tals. This brine migrates into the mine. During mining, the
mine ventilation removes the moisture; however, once the
mine is closed, the brine accumulates in the closed rooms.
Under humid or partially wet conditions, steel drums con-
taining much of the waste will react with the brine produc-
ing hydrogen gas, and cellulose in the waste will
biodegrade, producing additional gas. Under these condi-
tions, the repository becomes a pressurized, sealed mine in
which the pore fluids (brine and gas) resist the plastic col-
lapse of the salt. Finding 1% to 3% brine within the salt
required a revised conceptual model for WIPP.

Further complicating WIPP are commercial grade
potash deposits that overlie the mine, and oil and gas fields
in the surrounding area. The oil and gas fields are believed



to extend beneath the repository. In evaluating the safety of
the repository, the U.S. Environmental Protection Agency
(EPA) insisted that the scenario of drilling into the reposi-
tory be assessed. EPA directed that, for the assessment, the
current rate of drilling in the area, using the current drilling
technology, be extended throughout the 10,000-year time
horizon of analysis. The attorney general of New Mexico
challenged in court EPA’s idea of extending current tech-
nology and current drilling frequency into the future. The
U.S. Court of Appeals agreed with EPA that it was reason-
able to use the current technology and frequency over the
entire time horizon as a surrogate measure of the risk from
an unknown future in which both drilling frequency and
technology will undoubtedly change.

Most investigators thought that the Achilles’ heel of
WIPP was the human intrusion scenario. Extending the cur-
rent drilling rate for the 10,000-year planning horizon
means statistically that WIPP will be drilled into several
times with a probability of 1.0. Using EPA’s imposed con-
ditions, there will be drilling hits into the repository.

Performance Assessment: A Cascade of Models

A number of models of the mine and its environment
were linked into a single system: the performance assess-
ment model. At the base of the pyramid of performance
assessment models was a model of the near field; the actual
mine, and the reservoir formed by the fluid-filled nuclear
wastes. The basic fluid model of the mine describes the
multiphase pressure environment within the mine (1) once
the mine is sealed, (2) the salt deforms around the waste,
and (3) the moist waste and steel drums produce gases. A
submodel predicts the temporal concentration of radioac-
tive chemical species of concern in the fluids contained
within the waste. An additional submodel predicts the rock
mechanics of the salt deformation in response to the fluid
pressure in the repository.

The near-field model was embedded in a far-field
model that represents the geologic setting that contains the
mine. As explained previously, human intrusion through
subsequent drilling into the facility is a major concern.
Additional submodels of the performance assessment
ensemble describe the exhumation of nuclear waste by sub-
sequent drilling. There are models of how drilling through
the repository waste brings waste to the surface.

The performance assessment model is operated in a
stochastic mode so that a probabilistic prediction is gener-
ated. Performance assessment recognizes that the parame-
ters of the models are incompletely known. Using a Latin
Hypercube sampling procedure, the parameters of the vari-
ous submodels are sampled from their expected distribu-
tion, although in many instances the assumed parameter
distributions are highly uncertain. The idea is that, by run-
ning the performance assessment model with repeated sam-
pling of the parameters, we can calculate a statistical
distribution of the probable radioactive dose to the hypo-
thetical individual of concern. It is possible through sensi-
tivity analysis to identify the parameters that most control
the predicted dose of radioactivity. It is, however, difficult
to determine how errors are propagated through the suite of
interconnected models (Konikow and Ewing 1999).

WIPP was judged safe largely on the basis of perfor-
mance assessment. The WIPP performance assessment will
form the template for future safety analyses of nuclear
waste repositories in the United States.

Bredehoeft (1997, 1998) argued in the case of WIPP
that certain human intrusion scenarios were inadequately
examined. One of these scenarios was drilling with air.
Drilling with air makes penetrating a highly pressurized
repository much more hazardous. The weight of the drilling
mud compensates for part or all of the high pressure in the
repository; when drilling with air, there is no mud column
to compensate for the pressure in the repository. Given high
pressure in the repository, drilling with air exhumes more
waste. A second scenario of concern was a leak in a rein-
jection brine well that created an extended hydraulic frac-
ture. Such hydraulic fractures had occurred, associated with
water flooding for oil recovery within the New Mexico por-
tion of the Delaware Basin. A hydraulic fracture into the
repository could create a fluid short circuit and potentially
move large volumes of brine through the repository, leach-
ing and transporting hazardous radionuclides. The U.S.
Department of Energy and EPA viewed these scenarios as
low probability events.

Many of the individuals concerned with the safety of
WIPP believed that the human intrusion scenario dictated
by EPA was unlikely. Because human intrusion is the most
probable foreseeable failure scenario, these individuals felt
the repository was inherently safe.

Linking a cascade of models compounds the calibra-
tion problems associated with each component model.
Many of the models used for performance assessment at
WIPP were theoretical and poorly calibrated. Extending
the time horizon to 10,000 years further compounds the
difficulties. The hope is that the statistical sampling of the
important parameters in the performance assessment
model will provide a probabilistic range of future out-
comes. If 95% or 99% of these outcomes are within
acceptable limits, the repository is judged to be safe. This
approach does not address the problem that we may have
overlooked something important in our conceptual model
of the system. Repeated sampling of a large parameter set
may compensate for the uncertainty in the parameter val-
ues for the models used in performance assessment, but it
does not compensate for wrong or incomplete conceptual
models. '

Probabilistic performance assessment raises the issue
of precision versus accuracy. The probabilistic approach
may give the illusion that the modeler has quantified the
error associated with the model. However, if darts are
thrown at the wrong target, the spread of darts does not pro-
vide an assessment of whether the right target was chosen.

History Matching in Nuclear Waste Facilities

As indicated previously, the time horizon for formally
predicting doses from nuclear waste facilities is 1000 to
10,000 years, or longer. Some of the longer lasting radioac-
tive isotopes will persist well beyond 10,000 years. Given that
the time horizon of the predictions is 10,000 years or longer,
there is no opportunity for the traditional history match fol-
lowed by a more or less equal period of prediction. Given the
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current strategy, there is, at best, a set of experiments of lim-
ited duration to which the models can be calibrated.

Yucca Mountain

One of the principal tools for evaluating the suitability
of Yucca Mountain as a repository will be performance
assessment—performance assessment similar to that used
at WIPP. There are additional complications at Yucca
Mountain. The waste to be emplaced at Yucca Mountain
will generate heat. At issue is whether the loading will be
relatively dense, producing high temperatures within the
host rock, temperatures above the boiling point of water, or
whether the spent nuclear fuel will be distributed more
widely, keeping the host rock temperatures below the boil-
ing point of water. Many investigators have concluded that
the higher temperatures greatly increase the uncertainty of
how the ground water system within the mountain will
respond, and are to be avoided.

At both WIPP and Yucca Mountain, there were sur-
prises once mining allowed scientists/engineers to actually
visit the underground. At WIPP, the salt observed in the
underground contained 1% to 3% interstitial brine. The
original concept was that the only brine in the salt was in
vesicles contained within the salt crystals—about 0.5%.
Finding interstitial brine meant that the facility would be
moist, a fact that was not included in the original concep-
tual model. The brine at WIPP did not preclude using the
facility as a repository; it greatly complicated the analysis
of the safety of the facility. It increased the uncertainty of
the prediction of performance. In the end, WIPP was still
judged to be safe by EPA, as well as by much of the scien-
tific community (National Research Council 1996).

At Yucca Mountain, water containing chlorine-36 that
was derived from atmospheric testing of nuclear weapons
was found in the underground drift. The chlorine-36 indi-
cates a fast-path for moisture movement in the mountain, a
path that is unpredicted by the conventional theory of trans-
port in the unsaturated zone, even a fractured unsaturated
zone. The task at Yucca Mountain is to predict transport in
a fractured, unsaturated media, subjected to a heat load for
a prolonged period—10,000 years.

Performance assessment is dependent on having a cor-
rect conceptual model of transport within the mountain. At
Yucca Mountain, the appropriate conceptual model for simu-
lating unsaturated transport in the fractured tuffs at the site is
unclear. A recent study by the National Research Council
(2001) concluded that there is no consensus within the hydro-
geologic community of what the appropriate conceptual
model is to describe transport in a fractured, unsaturated zone.
The generally accepted theory does not predict the chlo-
rine-36 movement. This lack of a clear conceptual model
greatly increases the uncertainty associated with performance
assessment at Yucca Mountain. Without a consensus on the
appropriate conceptual model, predictions of future system
performance become highly questionable, at best.

Where Are We as a Community of Modelers?

Models are useful in integrating and synthesizing our
knowledge about hydrogeologic systems in a way that
allows us to make predictions about the future performance
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of the system. Most of us regard models as our best tools
for the task. However, anyone engaged in this processes
recognizes its inherent uncertainty. Modelers also recog-
nize a pervasive element of professional judgment in creat-
ing models and judging their effectiveness. To some extent,
these ideas are embedded in what we generally refer to as
model calibration. Unfortunately, model calibration may or
may not adequately test our conceptual model. Too often,
an incomplete conceptual model can pass the test of being
calibrated. Too often, the models have proven to be incom-
plete or wrong. As hydrogeologists, we make mistakes.

Oreskes et al. (1994) summarize the uncertainty in
modeling; they state, “ . . . the establishment that a model
accurately represents the ‘actual processes occurring in a
real system’ is not even a theoretical possibility.”

Probabilistic performance assessment does not over-
come the inherent uncertainty in modeling. Performance
assessment is conducted in a probabilistic mode to com-
pensate for the uncertainties in the parameters (and perhaps
the boundary conditions). As suggested previously, uncer-
tainties in what are the appropriate conceptual models are
not compensated for by probabilistic sampling of the
parameter sets of wrong or incomplete conceptual models.

Oreskes and Belitz (2001) regard the conceptual model
as the most difficult problem in modeling; they state:

“Conceptualization is probably the most thorny issue in
modeling. It is the foundation of any model, and everyone
knows that a faulty foundation will produce a faulty struc-
ture. . . . Yet what to do about it remains a problem. Much
attention in model assessment has focused on quantification
of error, but how do we quantify the error in a mistaken idea?
... It is uncertainty rooted in the foundations of our knowl-
edge, a function of our limited access to and understanding of
the natural world. Almost by definition, conceptual error can-
not be quantitied. We don’t know what we don’t know, and
we can’t measure errors that we don’t know we’ve made.”

Iterative modeling in which we continue to monitor
and revise the models to fit new data provides the best
opportunity to avoid errors, including errors of conceptual-
ization. However, iterative modeling, while it improves our
odds for success, is not foolproof; modeis still have an
inherent uncertainty.

Given the inherent uncertainty associated with models,
Oreskes and Belitz (2001) ask the relevant question: Are
predictions necessary for policy decisions? Uncertainty
associated with model predictions may make alternative
strategies or complementary courses of action more rea-
sonable for society. We should examine the alternatives.

A Return to History Matching

The closer we can approach the idea embedded in the
reservoir engineering concept of history matching, the
more confidence we have in predictions. We would like the
period of the history match to approach as nearly as possi-
ble the length of the prediction—our rule of thumb for con-
fidence in prediction discussed previously.

Yucca Mountain could be a case in point. At Yucca
Mountain, it seems that nuclear wastes could be emplaced
in a retrievable mode within the repository for a long
period. Our uncertainty in the models of the basic processes



at Yucca Mountain argues strongly for a long period of
observation.

The concept of Yucca Mountain could be changed to
one of monitored retrievable storage for an indefinite
period, perhaps 300 to 1000 years. A long period of moni-
toring of the facility could provide a history of performance
to which the models could be repeatedly matched and
improved. At the time that the models are demonstrated to
reproduce the performance of the repository for a greatly
extended period, society will be in a much stronger position
to judge the suitability of the site as a permanent repository.
I would urge that we rethink the nuclear repository at
Yucca Mountain with the idea of keeping the repository
open for observation for a prolonged and, for now, indefi-
nite period.

The arguments for early closure of Yucca Mountain do
not seem scientific, but rather political. Political considera-
tions can often be changed by persuasive scientific argu-
ments. Uncertainty associated with the predictions of the
system behavior is a good reason not to be in a hurry to
close the repository. Early closing of the repository may
well be premature.
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Multimodel Ranking and Inference

in Ground Water Modeling

by Eileen Poeter" and David Anderson?

Abstract

Uncertainty of hydrogeologic conditions makes it important to consider alternative plausible models in an
effort to evaluate the character of a ground water system, maintain parsimony, and make predictions with reason-
able definition of their uncertainty. When multiple models are considered, data collection and analysis focus on
evaluation of which model(s) is(are) most supported by the data. Generally, more than one model provides a simi-
lar acceptable fit to the observations; thus, inference should be made from multiple models. Kullback-Leibler
(K-L) information provides a rigorous foundation for model inference that is simple to compute, is easy to inter-
pret, selects parsimonious models, and provides a more realistic measure of precision than evaluation of any one
model or evaluation based on other commonly referenced model selection criteria. These alternative criteria strive
to identify the true (or quasi-true) model, assume it is represented by one of the models in the set, and given their
preference for parsimony regardless of the available number of observations the selected model may be underfit.
This is in sharp contrast to the K-L information approach, where models are considered to be approximations to
reality, and it is expected that more details of the system will be revealed when more data are available. We pro-
vide a simple, computer-generated example to illustrate the procedure for multimodel inference based on K-L
information and present arguments, based on statistical underpinnings that have been overlooked with time, that

its theoretical basis renders it preferable to other approaches.

Introduction

Sparse subsurface data cause us to be uncertain of the
exact nature of ground water system structure and compo-
nents. Consequently, it is a best, although not always cus-
tomary, practice to evaluate multiple models of a ground
water system before making predictions of system behav-
ior. Alternative models include variations in the structure
of hydrogeologic units, boundary conditions, and parame-
ter fields. Each alternative model must be calibrated (i.e.,
parameter values adjusted to obtain the best fit to the
observed data, e.g., using nonlinear least squares) before
models can be compared (Poeter and Hill 1997). The
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advent of high-speed computing and robust inversion
algorithms makes calibration of multiple models feasible.

We often find that prediction uncertainty is larger
across the range of potential models than that which
arises from the misfit and insensitivity of any one opti-
mized model, even to the extent that confidence intervals
on predictions from some of the models may not include
the values predicted by others. This raises the question of
whether to select the best model and use those predictions
and confidence intervals for decision and design or to
weight all the models and calculate model-averaged pre-
dictions and intervals. If one model is clearly superior to
the rest, it is reasonable to use that model for prediction,
but its uncertainty should be evaluated using the entire
set of candidate models. If one model is not clearly supe-
rior, then it is reasonable to weight all predictions. If the
alternative models yield substantially different results for
the prediction of interest such that a reasonable decision
is untenable, then additional data should be collected to
develop better models.

A more representative model of ground water system
behavior (1) exhibits no consistent spatial or temporal
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pattern in the weighted residuals; (2) results in reasonable
estimated parameter values (e.g., hydraulic conductivity
of gravel is higher than that of silt and falls within the
range of values that might be expected for gravels); and
(3) has better fit statistics for the same data while main-
taining parsimony (i.e., balancing the bias vs. variance
trade-off or the trade-off between underfitting and overfit-
ting). There is a general agreement that considerable men-
tal effort, training, and experience are required to define
a set of reasonable models (Bredehoeft 2003; Neuman
and Wierenga 2003). However, the profession has not
agreed upon a procedure for ranking or weighting models
(Carrera and Neuman 1986; Neuman and Wierenga 2003;
Ye et al. 2004).

We have several objectives. First, we call attention to
the famous geologist Chamberlin’s (1890) call for “multi-
ple working hypotheses” as a strategy for rapid advances
in understanding applied and theoretical problems. Each
hypothesis or conceptualization is represented by a mathe-
matical model, which gives rigor to the procedure, then
data collection and analysis focus on which model is the
best, that is, most supported by the data. Second, we intro-
duce a simple and effective approach for the selection of
a best model: one that balances underfitting and overfitting
(i.e., maintains parsimony). Third, we provide an effective
method for making formal multimodel inference, includ-
ing prediction, from all models in a candidate set. Finally,
we present a computer-generated example to illustrate the
method, and we comment on alternative approaches.

Model Ranking and Inference from the
Best Model

Multiple Working Hypotheses

Ideally, understanding in science comes from strict
experimentation. Here, causation can be identified and
interactions can be explored. In most cases, an array
of practical considerations prevent experimentation in
ground water studies. At the opposite extreme are studies
that are merely descriptive. Here, progress in understand-
ing is slow and risky. Lack of causation, and other issues,
makes this a relatively poor approach. Between these ex-
tremes lie studies that can be termed “observational,”
where inference is model based. One attempts to extract
the information in the data using a model. Many ground
water problems are in this observational category, and in-
ferences are inherently model based, thus the need for
multimodel inference in ground water modeling.

Given a well-defined ground water problem, with
extensive thoughtful consideration a hydrologist can con-
ceptualize R hypotheses concerning the system and the
questions to be asked. R might range from two to three to
perhaps a few dozen or even 100s in cases where statisti-
cal techniques are used to generate realizations. Given
a good set of data, hypotheses, and models, an investiga-
tor can ask, “which hypothesis is most supported by the
data?” This is the model selection problem and the heart
of Chamberlin’s strategic approach. Model selection is
a fundamental part of the data analysis. Approaches to
optimal inference for one model and data set are known

(e.g., least squares or maximum likelihood methods). The
central issue is “which model to use?”

Model Selection

A large effort has been spent on a coherent theory of
model selection over the past 30 years. We will not re-
view this material in detail as it is covered in a number of
books (e.g., Linhart and Zucchini 1986; McQuarrie and
Tsai 1998; Burnham and Anderson 2002), research mon-
ographs (e.g., Sakamoto et al. 1986), and hundreds of
journal papers (e.g., deLeeuw 1992). Instead, we briefly
outline the approach we recommend.

The starting point for effective model selection theory
is Kullback-Leibler (K-L) information, I(f,g) (Kullback
and Leibler 1951). This is interpreted as the information,
1, lost when full truth, f, is approximated by a model, g.
Given a set of candidate models g;, one might compute
K-L information for each of the R models and select the
one that minimizes information loss—that is, minimize
I(f,g) across models. This is a compelling approach. How-
ever, for ground water models, K-L information cannot
be computed because the truth and the optimal effective
parameters (e.g., hydraulic conductivities, boundary heads,
and fluxes) are not known (Anderson 2003).

Akaike (1973, 1974) provided a simple way to esti-
mate expected K-L information, based on a bias-
corrected, maximized log-likelihood value. This was a
major breakthrough (Parzen et al. 1998). Soon thereafter,
better approximations to the bias were derived (Sugiura
1978; Hurvich and Tsai 1989, 1994) and the result, of rel-
evance here, is an estimator Akaike Information Criterion
(AICc) of twice the expected K-L information loss

AICc = n log (6?) + 2k + (ikfkl:r_ll)) (1)

where ¢2 is the estimated residual variance, n is the
number of observations, and k is the number of estimated
parameters for the model. Here, the estimator of ¢% =
WSSR/n, where WSSR is the weighted sum of squared
residuals. The second term accounts for first-order bias,
and the third term accounts for second-order bias result-
ing from a small number of observations. This is a precise
mathematical derivation, with the third term depending
on the assumed distribution of residuals, in this case, nor-
mally distributed error. Accounting for second-order bias
is important when n/k < 40, which is typical of ground
water models. The aforementioned expression applies to
analyses undertaken by a least squares approach; similar
expressions are available for those using maximum likeli-
hood procedures (Akaike 1973). AICc is computed for
each of the models; the model with the lowest AICc value
is the best model, and the remaining models are ranked
from best to worst, with increasing AICc values.

As parameters are added to a model, accuracy and
variance increase (fit improves, while uncertainty in-
creases). Use of AICc selects models with a balance
between accuracy and variance; this is the principle of
parsimony. Prediction can be further improved by basing
inference on all the models in the set (multimodel infer-
ence, as discussed later).
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Delta Values

Calculation of the AICc values can be posed so as to
retain or omit values that are constant across models
(e.g., multinomial coefficients) and are affected by the
number of observations; thus, it is essential to compute
and use simple differences

Al' = AICC,‘ - AICCmin (2)

for each model, i, in the set of R models, where AICc,;,
is the minimum AICc value of all the models in the set.
These values are on an information scale (—log[prob-
ability]), free from constants and sample size issues. A A;
represents the information loss of model i relative to the
best model. As discussed by Burnham and Anderson
(2002, p. 70-72 and particularly 78), models with A; <
2 are very good models, while models with 4 < A; <
7 have less empirical support. In most cases, models
with A; greater than ~10 can be dismissed from further
consideration.

Model Probabilities

Simple transformation yields model probabilities
or Akaike weights (also referred to as posterior model
probabilities)

exp —0.54;

3)

w; =
R

exp 0.5A;
=1

J

where w; is the weight of evidence in favor of model i
being the best model in the sense of minimum K-L infor-
mation loss. These weights are also useful in multimodel
inference as discussed later.

Evidence Ratios

It is convenient to take ratios of the model probabili-
ties for models i and j as w;/w; and call these evidence
ratios. These are most useful when i is the best model and
Jj is another model of interest because they can be used
to make statements such as “there is ‘w;/w;’ times more
evidence supporting the best model.”

Example Problem

Our goal is to illustrate model evaluation first by cal-
ibrating a set of simple (coarse versions of the “truth”)
ground water models of a synthetic (known) system (as
defined by a generating model), then making multimodel
inference of predictions. The alternative models used for
the example are simplistic relative to models of field sites
using only zonation variations generated by a geostatis-
tical simulator. We do not offer this as a desired approach
to model development, only as a method for generating
models to demonstrate the procedure. Each coarse model
is calibrated by weighted least squares nonlinear regres-
sion under the initial pumping condition using 20 head
observations and 1 base flow observation. Then, we rank
and determine weights for the models. In the predictive
stage, additional pumping is simulated at another location
and head is predicted at 20 locations (offset from the

calibration data locations), while two flows are also pre-
dicted. In a subsequent section, we illustrate multimodel
inference of the predicted heads and flow rates and
compare them to the known predictions simulated by the
generating model.

Synthetic Model

A two-dimensional, unconfined steady-state system is
synthesized with a model domain 5000 m in the east-west
direction and 3000 m north-south direction (Figure 1).
The aquifer is assigned boundary conditions as follows:

e A no-flow boundary is defined on the northern, western,
and southern borders, and the aquifer base at —10 m.

o A 10-m-wide river, in the center of the watershed, ranges
in stage from 20 to 5 m and is underlain by 5-m-thick sedi-
ments with their base at an elevation of 5 m. Rivers are
represented as a head-dependent flux boundaries using the
MODFLOW-2000 (Harbaugh et al. 2000) river package.

o A 10-m-wide river also bounds the east edge with a stage
of 5 m, and 5 m of sediments with their base at 0 m.

e A recharge of 8 X 10~* m/d is applied uniformly to the
top of the model, constituting all the inflow to the system.

e A well pumps 2000 m3/d at x = 2050 and y = 550.

True heads and flows are generated using a synthetic
heterogeneous model with five zones of hydraulic con-
ductivity (K), and a grid of 250 X 150 cells, each 20 X 20
m (Figure 1). The model grid used for calibration and
prediction consists of 50 X 30 cells, each 100 X 100 m
(Figure 2). The “true” hydraulic conductivity distribution
(Figure 1) includes five zones, with values ranging from
1 to 25 m/d. Vertical hydraulic conductivity of the east-
west—oriented riverbed is 0.2 m/d, while that of the north-
south riverbed is 0.1m/d.

Alternative Models

In practice, alternative models should be developed
based on careful consideration of the uncertainties associ-
ated with understanding of the site hydrology and their
representation by the simulation software. For the pur-
pose of illustrating the model evaluation procedure, we
generate alternative models by varying the number and

Figure 1. True heterogeneity and head distribution for the
synthetic model under hydraulic conditions used to generate
calibration data.
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Figure 2. Coarse grid showing rivers (bold lines), observa-
tion locations (heads: dots, flux: bracket), and pumping well
location.

distribution of hydraulic conductivity zones. Ten sequen-
tial indicator simulations (A through J) are generated on
the fine grid using GeoStatistical LIBrary (GSLIB)
(Deutsch and Journel 1992), the indicator variograms of
the synthetic hydrogeologic units, and honoring 144
points of known lithologic type taken from the generating
model on a regular grid. Each realization was partitioned
into 2 two-zone (e.g., 2A-2] and 2AL-2JL: L indicates
that bias is toward low-K material because zone 3 is
included with zones 1 and 2 rather than zones 4 and 5), 1
three-zone (3A-3J), 2 four-zone (4A-4J and 4AL-4]JL; for
L models, zone 3 is included with zone 2 rather than zone
4), and 1 five-zone model (5A-5J); in addition, a homoge-
neous model was evaluated, resulting in a total of 61
models. In field application the diversity of models will
be much greater, including variations of boundary con-
ditions, geologic structure and unit thicknesses, as well as
the use of alternative code features to represent features
of the ground water system (e.g., in MODFLOW using
constant head cells vs. drains, rivers, or streams to simu-
late communication with surface water).

Calibration data include 20 head observations on
a regular grid from the generating model with a hypothe-
sized standard deviation of 0.02-m measurement error
and a base flow observation to the central tributary of
6188 m3/d with a standard deviation of 58 m?3/d. These
standard deviations needed to be increased by a factor of
38 to account for model error and obtain a calculated
error variance of 1.0. MODFLOW (Harbaugh et al. 2000;
Hill et al. 2000) is used to simulate heads and flows for
each model and to estimate a value for K of each zone and
the uniform recharge rate; using weights calculated as the
inverse of the measurement variance resulted in a dimen-
sionless weighted sum of squared residuals (WSSR).
The calibrations require a few seconds on a 3-GHz
Pentium 4 PC.

Predictions of flow to both the central tributary and
the eastern river and heads at 20 locations, each 200 m up-
gradient of the calibration data locations, are made while
simulating additional pumping of 3000 m3/d at x = 3250 m
and y = 2150 m. Head distribution in the generating model
for the predictive conditions is illustrated in Figure 3.

Figure 3. Head distribution in the synthetic model under
hydraulic conditions for prediction.

Evaluation Software

J_MMRI is used to evaluate example models. ]_MMRI
is an early-stage application of the JUPITER (Joint Univer-
sal Parameter IdenTification and Evaluation of Reliability)
application programming interface (API), which is cur-
rently under development through cooperation of the
USGS and U.S. EPA (Poeter et al. 2003). The API pro-
vides researchers with open-source program modules and
utilities that undertake universal basic tasks required for
evaluating sensitivity, assessing data needs, estimating
parameters, and evaluating uncertainty, so researchers can
focus on developing methods without “reinventing the
wheel,” while providing practitioners with public domain
software to facilitate the use of the new techniques.
J_MMRI collects soft information about each model in-
cluding (1) model structure: dimensionality, complexity
of processes, method of parameter generation/degree of
regularization, model representation of features, number/
size of model cells/elements, and length/mass/time units;
(2) residual distribution: spatial, temporal, and randomness;
(3) feasibility of optimal parameter values: absolute and rel-
ative; (4) objective function: weighted sum of squares and
log likelihood; (5) model selection statistics (e.g., AlCc,
Bayesian information criterion [BIC], Hannan and Quinn’s
criterion [HQ], and Kashyap’s information criterion [KIC]);
(6) residual quality: Gaussian character, degree of spatial
bias, and similarity to data error; and (7) parameter correla-
tion/certainty. This information is analyzed and organized
to facilitate subjective evaluation of the models and provide
quantitative model ranking and weighting measures.

Model Ranks

Models were discarded from consideration if the
regression did not converge in 20 iterations (two models),
or K of a lower-zone number (finer grained material) ex-
ceeded the K of a higher-zone number (13 models), leav-
ing 46 of the 61 models for ranking and weighting. It is
preferable to include a defensible number of plausible
models; however, some models yield unreasonable rela-
tive values or cannot be used because they do not con-
verge; thus, the results are not valid for use in further
computation. Examinations show that these situations
typically occur when the connectivity of hydraulic
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conductivity units differ significantly from the true con-
ditions (Poeter and McKenna 1995). For example, if a dis-
continuous high-K field unit is represented in a model by
a continuous unit, then a low-K value may be estimated
for the high-K unit in order to compensate for too much
continuity. Model selection statistics are given for the best
18 models in Table 1. The number of parameters varied
from only three (K for one zone, recharge rate, and ¢2) to
seven (K for five zones, recharge rate, and ¢2). ¢2 is coun-
ted as a parameter because formally, the likelihood func-
tion in the case of normal errors reads as L(B, ¢2|X,g) and
means “the likelihood of the (unknown) vector of B, and,
o2, given the data (X) and the model (g).” From the AICc
scores, the A; values, and weights, model 4F is the best
model, 2J ranks second, and models 5J, 4FL, and 3F have
less support, while a number of models have weights of
a few percent. The remaining models have relatively little
empirical support. Most of the 10 five-zone (seven-parame-
ter) models, are not retained based on unreasonable relative
parameter values. Although there are only 21 observations,
the more complex models receive high ranks, likely due to
the fact that all the geostatistical simulations were well
conditioned so the complex models capture the zones well.
With less conditioning, simpler models may do a better job
of capturing the gross connectivity.

Alternative Model Selection Criteria

We recommend approaches based on K-L informa-
tion (e.g., AICc) for both model selection and multimodel
inference. These methods are based on the concept that
models are approximations (i.e., there are no true models
of field systems) and select models with more parameters
(structure) as the number of observations increase. That

Table 1
Statistics for the 18 Best Models! (rz = 21 in all)

ID* WSSR o2 k AlCc Ai w;
4F 9.40 0.45 5 1.1 0.0 0.2585
2] 13.67 0.65 3 1.5 0.4 0.2155
5J 8.03 0.38 6 24 1.3 0.1356
4FL 10.41 0.50 5 33 2.1 0.0884
3F 12.82 0.61 4 3.6 2.5 0.0734
3D 13.67 0.65 4 5.0 39 0.0374
2H 16.53 0.79 3 5.5 4.3 0.0294
2F 16.68 0.79 3 5.7 4.5 0.0267
SF 9.38 0.45 6 5.7 4.6 0.0262
2A 17.75 0.85 3 7.0 5.8 0.0139
3G 15.25 0.73 4 7.3 6.2 0.0119
2GL 18.11 0.86 3 7.4 6.3 0.0112
2E 18.14 0.86 3 7.4 6.3 0.0111
2C 18.61 0.89 3 8.0 6.8 0.0085
2B 18.71 0.89 3 8.1 6.9 0.0080
4GL 13.17 0.63 5 8.2 7.1 0.0075
2FL 19.17 0.91 3 8.6 7.5 0.0062
4D 13.52 0.64 5 8.8 7.6 0.0057
* The remaining 28 models had essentially zero weight (<5x10-93) and are not
shown.

** See Alternative Conceptual Models Section for description of model IDs.

is, in complex systems, smaller effects are identified as
the number of observations increase.

There are many other criteria for model selection
(McQuarrie and Tsai 1998), and we offer brief comments
on some of the alternatives. The BIC (Schwarz 1978), HQ
(Hannan and Quinn’s 1979) criterion, and KIC (Kashyap
1982) have been suggested for selection of ground water
models (Carrera and Neuman 1986; Neuman 2003;
Neuman and Weirenga 2003; Ye et al. 2004). These crite-
ria are similar in form to AICc and are as follows

BIC = n log (¢%) + k log (n) 4)

HQ = n log (6°) + ck log (log (n)) where, ¢>2 (5)

KIC = nlog (¢%) + k log (%) + log [XTwX]| (6)

where, |XTwX | is the determinant of the Fisher informa-
tion matrix, X is the sensitivity matrix, X T is its transpose,
and o is weight matrix.

We do not recommend these procedures as they
assume that the true (or quasi-true) model exists in the
set of candidate models (Burnham and Anderson 2004),
and their goal is to identify this model (as n approaches
infinity, probability converges to 1.0 for the true model).
These criteria strive for consistent complexity (constant k)
regardless of the number of observations. In practice,
these criteria can perform similarly to AICc; however,
their theoretical underpinnings are philosophically weak.
McQuarrie and Tsai (1998) give a readable account of
this issue, as do Burnham and Anderson (2002, sections
6.3 and 6.4). Deeper insights are provided in Burnham
and Anderson (2004).

Recall that as the number of estimated parameters in-
creases, bias decreases but variance increases (i.e., preci-
sion decreases, error bars are larger). The alternative
criteria approach the “true model” asymptotically (i.e., as
the number of observations increase). However, in most
ground water models, the number of observations is small
relative to the number of parameters estimated, and these
criteria tend to select models that are too simple (i.e.,
underfitted). Thus, they tend to select for less bias and
greater certainty, which threatens to capture a precise but
inaccurate answer. We argue that it is preferable to select
the model that provides the best approximation to reality
for the number of observations available.

A final comment is that AICc and BIC can be
derived under either a Bayesian or a frequentist frame-
work. Thus, an argument for or against a criterion should
not be based on its Bayesian or frequentist lineage.
Rather, one must ask if the true (or quasi-true) model can
be expected to be in the set of candidate models in a par-
ticular discipline. If so, then criteria such as BIC, HQ,
and KIC should be used. In cases where models are
merely approximations to complex reality, AICc is pref-
erable (Burnham and Anderson 2002). In addition, AICc
has a cross-validation property that is important and
stems from its derivation (Stone 1977).

Ranks and model probabilities (weights) for the best
18 models based on AICc are presented in Table 2. BIC

E. Poeter, D. Anderson GROUND WATER 43, no. 4: 597-605 601


epoeter
Note
Note: The k value in this table is the number of hydrologic parameters estimated in the model.  In order to get the AICc value k must be increased by 1 as described above.


Table 2

Weights in Rank Order!
Model> BIC  Model? HQ  Model> KIC
5J 0.3034 5] 0.4280 5] 0.4549
4F 0.2638 4F 0.2473 4F 0.1884
2] 0.1086 4FL 0.0845 SF 0.0795
4FL 0.0902 SF 0.0828 4FL 0.0717
SF 0.0587 2] 0.0449 2] 0.0695
3F 0.0464 3F 0.0289 3F 0.0276
3D 0.0237 3D 0.0147 3D 0.0165
2H 0.0148 4GL 0.0072 5G 0.0116
2F 0.0134 2H 0.0061 4GL 0.0103
4GL 0.0077 2F 0.0056 2H 0.0074
3G 0.0075 4D 0.0055 2F 0.0067
2A 0.0070 4N 0.0049 5A 0.0066
4D 0.0058 3G 0.0047 3G 0.0065
2GL 0.0057 5B 0.0044 5B 0.0052
2E 0.0056 5G 0.0043 4D 0.0051
4N 0.0052 SA 0.0034 4N 0.0045
2C 0.0043 2A 0.0029 2A 0.0036
2B 0.0040 2GL 0.0023 5D 0.0035
! Top 18 ranked models, remaining models had very low weights.
2 See “Alternative Conceptual Models” section for description of model la-
bels

and HQ produce results similar to AICc for this particular
example, where n = 21 and k ranges from only three to
seven parameters. The same model is ranked highest by all
three measures. The same seven models occupy the top
seven ranks (constituting 89%, 93%, and 91% of the weight
for BIC, HQ, and AICc, respectively) although in slightly
different order. At lower ranks, there is more variation.

Multimodel Inference

The traditional approach to data analysis has been to
find the best model, based on some criteria or test result,
and make inferences, including predictions and estimates
of precision, conditional on this model (as if no other
models had been considered). In hindsight, this strategy
is poor for a number of reasons. Often, the best model is
not overwhelmingly best; perhaps, the weight for the best
model is only 0.25 as in Table 1. Thus, there is nonnegli-
gible support for other models. In this case, confidence
intervals estimated using the best model are too narrow,
and multimodel inference is desirable.

Model Averaging

Model averaging allows estimation of optimal
parameter values and predictions from multiple models.
Both are calculated in a similar manner; however, we dis-
cuss model averaging of predictions first because it is
straightforward due to the fact that the same items are
predicted using each model, whereas each model may not
have the same parameters.

In the example, the best model, 4F, has an AICc
weight of only 0.26. This value reflects substantial model
uncertainty. If a predicted value differs markedly across
the models (i.e., the y differs across the models i = 1,

2,..., R), then it is risky to base prediction only on the
selected model. An obvious possibility is to compute an
estimate of the predicted value, weighting the predictions
by the model weights (w;). This can be done under either
a frequentist or Bayesian paradigm. Here, we take the fre-
quentist approach, using K-L information because it is
easy to compute and effective in application. If no single
model is clearly superior, one should compute model-
averaged predictions as

R
§ = ZWOA’I‘ (7)
i=1

where y; is the predicted value for each model i, and §
denotes the model-averaged estimate. A

For the estimated regrg:ssion parameter, f§;, we aver-
age over all models where f3; appears

) R X
B = Z wipji (8)
i=1

Thus, the model weights must be recalculated to sum to 1
for the subset of models, R’, that include f3;. When possi-
ble, one should use inference based on the subset
of models that include Bj via model averaging because
this approach has both practical and philosophical advan-
tages. Where a model-averaged estimator can be used,
it appears to improve accuracy and estimates of uncer-
tainty, compared to using ,[3 ; from the selected best model
(Burnham and Anderson 2002, section 7.7.5). Parameter
averaging is rarely useful for ground water modeling
because use of an average parameter value in a particular
model construct is not appropriate. However, model-
averaged parameter values could provide a range of
values for a material type given its multiple representa-
tions in alternative models.

Unconditional Variance

Unconditional variance is calculated from multiple
models for either parameter values or predictions as
shown here for predictions

o R 50572
var(5) = [Z w; | ar (3| model,) + (5; = 5) | ] ©)
i=1
This expression allows for model selection uncertainty to
be part of precision because the first term represents the
variance, given one calibrated model, and the second
term represents the among-model variance, given the set
of models. This variance should be used whether the pre-
diction is model averaged or not. The standard deviation
is merely the square root of the unconditional variance.
Thus, approximate 95% confidence intervals can be
expressed using the usual procedure

95% confidence intervals on y =y + 24/var(y) (10)

If a ﬂ] is to be averaged across models where it ap-
pears, the number of models (R) and the recalculated
model weights (w';) must be used in expressions
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equivalent to Equations 9 and 10, with P replacing ﬁ, and
p; replacing y;.

Extended Example

None of the models considered for the example prob-
lem is clearly “the best” as indicated by the AICc weight
of 0.26 for the model with the highest rank. The evidence
ratio for the best and second best models indicates that the
best model is only 1.2 times more likely than the second
model, given the evidence, indicating a lack of strong sup-
port for the best model. A model needs to have a weight
greater than ~0.95 before considering it as the best model
and bypassing the multimodel averaging process.

Predictive Quality of the Best Model and the
Multimodel Average

Desirable predictive models are those with small
weighted mean square error (WMSE) between their pre-
dictions and those of the generating model. The prediction
locations are 200 m upgradient (left) of the calibration
locations, which are shown in Figure 2. Weighting by the
inverse of measurement variance, using the same weights
for heads and flows as used in the calibration to account
for differences in magnitude and units of measurements,
predictive WMSE is calculated. WMSE is the sum of the
mean weighted squared differences between the 20 heads
and 2 flows predicted by the alternative models and the
true heads and flows simulated by the generating model
with the additional pumping. The correlation between
AICc and KIC model ranks and that WMSE for the 46
retained models illustrates the best fit to calibration data
does not assure the most accurate predictions at all loca-
tions in the model (Figure 4). This is also illustrated by
the relationship of the WSSR for the calibration and the
WMSE for predictions (Figure 4). It has been noted that
ground water models with the best fit to calibration data
will not necessarily produce the most accurate predictions
(Yeh and Yoon 1981; Rushton et al. 1982).
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Figure 4. Relationship between AICc, WSSR, and KIC
ranks and predictive WMSE.

Rigorous experimental comparison of the alternative
model ranking criteria requires evaluation of many differ-
ent systems and numerous realizations of observation sets
that is beyond the scope of this paper. Such an exercise
would only reveal empirical value of the alternative
methods because their theoretical underpinning is not
well founded, as we know it is impossible to include the
true model of a ground water system in the set of models.

Predictions at most locations are fairly accurate and
readily captured by the linear confidence intervals of
most of the alternative models. Model-averaged head pre-
dictions and their Scheffe confidence intervals are pre-

ed in Figure 5 for each individual model at locations

E%,—md—l—@ (located 200 m upgradient of the calibration
points with the same ID in Figure 2). At location 7, nearly
all models underestimate head, and confidence intervals
of the top four models do not capture the truth. Model
averaging (Equations 9 and 10) increases the confidence
intervals and captures the truth (i.e., the value predicted
by the generating model) (Figure 5a). Although large
numbers of simulations would be needed to make a rigor-
ous statistical evaluation, the practical similarity of the
approaches is illustrated by noting the following: of the 22

Y
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Figure 5. Predictions for location numbers [;E_,lnd 8 (see Figure 2 for locations) are examples of locations where the models
tend to (a) underestimate, (b) overestimate, and (c) inaccurately estimate the head, respectively, under the new pumping con-
ditions. The predicted value and linear individual confidence intervals (CI) are shown for each model, as are model-averaged

confidence intervals based on AICc and KIC.
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predictions made for this example, 21 were captured by
the model-averaged intervals. The predicted head at loca-
tion 1 (Figure 5b) tends to be overestimated, and some of
the best ranked models barely capture the truth in the con-
fidence intervals based on individual model variance, but
model averaging clearly captures the truth. Head at loca-
tion 8 (Figure 5c) is not predicted successfully by any of
the models and this is so consistent that it is not captured
by model averaging. Although large numbers of simu-
lations would be needed to make a rigorous statistical
evaluations, the practical similarity of the approaches is
illustrated by noting the following: of the 22 predictions
made for this example, 12 were captured by the model-
averaged intervals.

In this example, predictions generated by the alterna-
tive models vary considerably in some locations and not
in others. This is illustrated in Figure 6 where the differ-
ence between the high and low head of all 46 models
is displayed as a function of location. It is also indicated
by noting that model averaging increases the confidence
intervals indicated by the best model on 1 of the 22
predictions by less than 25% and another by 166%, with
an average increase of 72% and a median of 64%. This
variability serves to increase model-averaged variance
through the second term of Equation 9, which is carried
forward to confidence intervals in Equation 10. Field ap-
plications are likely to exhibit more striking variation in
models including differences in geometry and boundary
conditions, hence more significant shift of prediction and
broadening of confidence intervals as a result of model
averaging.

Summary and Conclusions

Given our uncertainty of site conditions, hydrolo-
gists should routinely consider several, well-thought-out
models to maintain an open mind about the system.
Generally, inferences should stem from multiple plausible
models (multimodel inference) because it yields more
robust predictions and a more “honest,” realistic measure
of precision. Modelers should be keenly aware of the fact
that even multimodel inference, which provides greater
consideration for uncertainty, is vulnerable to yielding
poor predictions if fundamentally important processes are
not included in the model, predictive locations and/or
conditions differ substantially from those of the calibra-
tion, or the prediction horizon is large relative to the cali-
bration time frame as discussed by Bredehoeft (2003).

Multimodel ranking and inference approaches based
on K-L information, such as the AICc measure presented
here, are simple to compute, easy to interpret, and pro-
vide a rigorous foundation for model-based inference.
Approaches based on K-L information view models as
approximations of the truth, and assume (1) a true model
does not exist and cannot be expected to be in the set of
models and (2) as the number of observations increases,
one can uncover more details of the system; thus, AICc
will select more complex models when more observations
are available. Alternative model selection criteria (e.g.,
BIC, HQ, and KIC) seek to identify the true (or quasi-
true) model with consistent complexity as the number of

+1.5 +42  +24 +1.7
+1.5 2.4 4X8 +3.0
+1.4 1.7 +038 +2.0
+2.0 1.3 +1.0 +1.3
+2.5 +11  +038 +1.2

Figure 6. Total head drop across the model is 35 m, while
the difference between the highest and lowest predicted head
of the 46 models at a given location ranges from 0.8 to 4.2 m.

observations goes to infinity. These alternatives are based
on the assumption that reality can be nearly expressed as
a model and that this quasi-true model is in the set.
Although these measures may perform similarly in appli-
cation, it is unreasonable to assume that one would ever
include the true or quasi-true model in the set of alterna-
tive ground water models; thus, approaches based on K-L
information such as AICc are the preferable model rank-
ing and inference criterion.
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Preface

The series of manuals on techniques describes procedures for planning and executing specialized work in
water-resources investigations. The material is grouped under major subject headings called "Books" and
further subdivided into sections and chapters. Section A of Book 6 is on ground-water modeling. The unit
of publication, the chapter, is limited to a narrow field of subject matters. This format allows flexibility in
revision and publication as the need arises.

Chapters 6A3, 6A4, and 6A5 are on the use of a particular transient finite-element numerical method for
two-dimensional, ground-water-flow problems. These Chapters (6A3, 6A4, and 6A5) correspond to reports
prepared on the finite-element model given the acronym MODFE and designated as parts 1, 2, and 3,
respectively. Part 1 is on "model description and user's manual," part 2 is on "derivation of finite-element
equations and comparisons with analytical solutions," and part 3 is on "design philosophy and
programming details."

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.
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Attachment 4

Data files are available upon request.
Please Contact: Paula Cutillo
National Park Service

Water Resources Division

1201 Oakridge Drive

Fort Collins, CO 80525

Phone: 970-225-3537

Email: Paula_Cutillo@nps.gov





