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Surficial and basin-fill deposits (Holocene to upper Miocene)—Unconsolidated to
moderately consolidated, locally tuffaceous beds of sand, gravel, silt, and minor
limestone deposited mostly by streams and small playa lakes. Generally thin but,
where unit fills basin-range-fault-bounded basins, may be 0-5000 feet thick and forms
the upper valley-fill aquifer. Some basin-fill deposits bear local names, including the
Muddy Creek Formation (southern part of Plate 2), Panaca Formation (southern part
of Plate 1), Horse Camp Formation (northwestern part of Plate 1), and Salt Lake
Formation (northeastern part of Plate 1).

Basalt lava flows (Holocene to lower Miocene)—Resistant, thin, basalt lava flows and
cinder cones. The mafic end of the bimodal volcanic sequence that is synchronous
with basin-range extensional faulting.

Sedimentary rocks, unit 4 (Miocene)—Moderately to well consolidated, mostly fluvial
sandstone, conglomerate, and minor lacustrine limestone. Primarily the Horse Spring
Formation (11 to 20 Ma), a basal basin-fill sedimentary unit that is locally thick
(3000+ feet) in the southern part of Plate 2.

Sedimentary rocks, unit 3 (Miocene and Oligocene)—Moderately to well consolidated,
thin, mostly fluvial, tuffaceous sandstone and bedded airfall tuff

Sedimentary rocks, unit 2 (Oligocene)—Moderately to well consolidated, thin, mostly
fluvial, tuffaceous sandstone and conglomerate. Includes the Gilmore Gulch
Formation, with an age of about 30 Ma, in the northwestern part of Plate 1.

Sedimentary rocks, unit 1 (Oligocene to Upper Cretaceous?)—Moderately to well
consolidated, mostly fluvial sandstone, conglomerate, and minor lacustrine limestone.
Primarily the Sheep Pass Formation, but in the central part of Plate 1, includes the
Paleocene and Upper Cretaceous(?) Grapevine Wash Formation and the Eocene and
Paleocene Claron Formation. Includes the Fowkes Formation and White Sage
Formation in the northeastern part of Plate 1. Unit in most places underlies all
volcanic rocks.

Volcanic rocks (Miocene to Eocene)—Unit shown only in Plates 4, 5, 6, 7, 8, and 9,
where it is referred to as the volcanic aquifer. May be several thousand feet thick in
many places, and in calderas and near other source vents, may be many thousands of
feet thick. On Plates 1 and 2, unit is separated into several rock types based on age,
following the mapping strategy of Ekren et al, (1977).

Ash-flow tuff and interbedded airfall tuff, unit 4 (Miocene)—Poorly to densely welded,
bimodal high-silica rhyolite and locally peralkaline ash-flow tuff and related airfall
tuffs. Includes the tuff of Honeycomb Rock (12.0 Ma), Ox Valley Tuff (14.0 Ma),
tuff of Etna (14.0 Ma), tuff of Rainbow Canyon (15.6 Ma), tuff of Acklin Canyon
(17.1 Ma), and tuff of Dow Mountain (17.4 Ma), derived from the Caliente caldera
complex. Includes the Kane Wash Tuff (14.4 to 14.7 Ma), the tuff of Boulder Canyon
(15.1 Ma), and the tuff of Narrow Canyon (15.8 Ma), derived from the Kane Springs
Wash caldera complex.

Ash-flow tuff and interbedded airfall tuff, unit 3 (Miocene and Oligocene)—Poorly to
densely welded, calc-alkaline, low-silica rhyolite to dacite ash-flow tuff and related
airfall tuffs. Includes the tuff of Teepee Rocks (17.8 Ma), Hiko Tuff (18.3 Ma), Racer
Canyon Tuff (18.7 Ma), and both Bauers Tuff Member (22.8 Ma) and Swett Tuff
Member (23.7 Ma) of the Condor Canyon Formation, all derived from the Caliente
caldera complex. Also includes the Harmony Hills Tuff (22.0 Ma), probably derived
from the eastern Bull Valley Mountains; the Leach Canyon Formation (23.8 Ma),
probably derived from the Caliente caldera complex; the Bates Mountain Tuff (22.8
Ma), derived from Lander County, Nevada; and the tuff of Saulsbury Wash (21.6
Ma), the Pahranagat Formation (22.6 Ma), the tuff of White Blotch Spring (24 to 25
Ma), the tuff of Kiln Canyon (24.1 to 25.1 Ma), the tuff of Lunar Cuesta (24.6 Ma),
the tuff of the Quinn Canyon Range, and the Shingle Pass Tuff (26.4), all derived
from the central Nevada caldera complex; and the tuff of Bald Mountain (about 25
Ma), derived from the Bald Mountain caldera in the Groom Range.
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Ash-flow tuff and interbedded airfall tuff, unit 2 (Oligocene)—Poorly to densely welded,
calc-alkaline, low-silica rhyolite to dacite and trachydacite ash-flow tuff and related
airfall tuffs. Includes the Isom Formation (about 27 Ma), probably derived from the
Indian Peak caldera complex; the outflow Monotony Tuff (27.3 Ma), the intracaldera
tuff of Goblin Knobs (27.3 Ma), and the tuff of Hot Creek Canyon (30.0 Ma), all
derived from the central Nevada caldera complex; the outflow Windous Butte
Formation (31.4 Ma) and intracaldera tuff of Williams Ridge and Morey Peak (31.3
Ma), derived from the Williams Ridge caldera of the central Nevada caldera complex;
and the Needles Range Group (29 to 32 Ma), derived from the Indian Peak caldera
complex.

Ash-flow tuff and interbedded airfall tuff, unit 1 (Oligocene and Eocene)—Poorly to
densely welded, calc-alkaline, low-silica rhyolite to dacite and trachydacite ash-flow
tuff and related airfall tuffs. Deposited in the northern part of Plate 1. Includes the
Pancake Summit Tuff (33.7 Ma), derived from the Broken Back caldera west of
Eureka; the Stone Cabin Formation (35.4 Ma), derived from an unknown caldera in or
near northern Railroad Valley; and the Kalamazoo Tuff (35 Ma), derived from an
unknown source probably in the northern Schell Creek Range or beneath adjacent
northern Spring Valley. In Utah, includes the Tunnel Spring Tuff (35.4 Ma).

Rhyolite lava flows, unit 4 (Miocene)—High-silica rhyolite lava flows and volcanic
domes, mostly in and near the Caliente and Kane Springs Wash caldera complexes.

Rhyolite lava flows, unit 3 (Miocene and Oligocene)—Low-silica rhyolite lava flows and
volcanic domes, mostly in and near the Indian Peak, Caliente, and central Nevada
caldera complexes.

Rhyolite lava flows, unit 2 (Oligocene)—Low-silica rhyolite lava flows and volcanic
domes, mostly in and near the central Nevada and Indian Peak caldera complexes.

Rhyolite lava flows, unit 1 (Oligocene and Eocene)—Low-silica rhyolite lava flows and
volcanic domes, exposed in the northern part of Plate 1.

Intermediate-composition lava flows, unit 4 (Miocene)—Andesitic and locally dacitic
lava flows, flow breccia, and mudflow breccia. Includes andesite of the Hamblin-
Cleopatra volcano (11.5 to 14.2 Ma) in the Lake Mead area.

Intermediate-composition lava flows, unit 3 (Miocene and Oligocene)—Andesitic and
locally dacitic lava flows, flow breccia, and mudflow breccia. Includes andesite
between the Racer Canyon Tuff and Condor Canyon Formation in the southeastern
part of Plate 2, between the Caliente and Kane Springs Wash caldera complexes, and
in and near the Indian Peak and central Nevada caldera complexes.

Intermediate-composition lava flows, unit 2 (Oligocene)—Andesitic and locally dacitic
lava flows, flow breccia, and mudflow breccia. Includes andesite in and near the
Indian Peak caldera complex and in the southern Egan Range.

Intermediate-composition lava flows, unit 1 (Oligocene and Eocene)—Andesitic and
locally dacitic lava flows, flow breccia, and mudflow breccia. Exposed in the
northern part of Plate 1. In the northeastern part of Plate 1 includes thin ash-flow
tuffs, notably the Kalamazoo tuff. In Utah, includes the Horn Silver Andesite.

Megabreccia (Miocene and Oligocene)—Masses of mostly Paleozoic sedimentary rocks
and intertongued volcanic breccia deposited within calderas from landsliding of the
oversteepened caldera margins following caldera subsidence as a result of rapid
eruptions of ash-flow tuff. Includes rocks in the Indian Peak caldera complex,
Caliente caldera complex and central Nevada caldera complex. Includes gravity
slides west of the Sheep Range and Beaver Dam Mountains.

Intrusive rocks (Miocene to Paleocene)—Mostly silicic, calc-alkaline plutons.
Intrusive rocks (Miocene to Cretaceous)—Mostly silicic, calc-alkaline plutons.

Intrusive rocks (Upper Cretaceous)—Mostly silicic, calc-alkaline plutons that
accompanied Sevier deformation.

Sedimentary rocks, undivided (Upper and Lower Cretaceous)—Sevier-age, mostly thin,
fluvial synorogenic clastic deposits, including the Baseline Sandstone (Upper and
Lower Cretaceous) and Willow Tank Formation (Upper Cretaceous) in the southern
part of Plate 2, and the Iron Springs Formation (Upper Cretaceous), Cedar Mountain
Formation (Upper Cretaceous), and Dakota Sandstone (Upper Cretaceous) in the
southeastern part of Plate 2; and the Newark Canyon Formation (Paleocene? to Lower
Cretaceous?) in the northern part of Plate 1.

Intrusive rocks (Jurassic)—Mostly silicic, calc-alkaline plutons that accompanied Sevier
deformation.

Sedimentary rocks, undivided (Jurassic)—Includes, in the southeastern part of Plate 2,
the mostly marine Carmel and underlying Temple Cap formations (Middle Jurassic).
Also in the southeastern part of Plate 2, includes the eolian Navajo Sandstone and
mostly fluvial Kayenta and Moenave formations, all Lower Jurassic. Mostly clastic
units. In the southern part of Plate 2, the Aztec Sandstone is the equivalent of the
Navajo. Includes the Dunlop Formation (Lower Jurassic) in the northwestern part of
Plate 1.

Sedimentary rocks, undivided (Triassic)—Includes, in the southeastern part of Plate 2,
the mostly fluvial Chinle Formation (Upper Triassic) and mostly fluvial Moenkopi
Formation (Middle? and Lower Triassic). Includes the Luning Formation (Upper
Triassic) in the northwestern part of Plate 1. In the northeastern part of Plate 1,
includes the Thaynes Formation (Lower Triassic). The majority of these rocks are
clastic.

Paleozoic sedimentary rocks, undivided—Shown on Plates 4, 5, 8, and 9, where rocks in
the hanging wall of the Snake Range decollement are buried by younger rocks.

Park City Group, undivided (Upper and Lower Permian)—From top to base, consists of
the Gerster Limestone (Upper Permian), Plympton Formation (Upper and Lower
Permian), Kaibab Limestone (Lower Permian), and Toroweap Formation (Lower
Permian). These make up the top of the upper carbonate aquifer.

Arcturus Formation and Rib Hill Sandstone, undivided (Lower Permian)—Included
within the upper carbonate aquifer. Includes the Pequop Formation in Elko County, a
redbed unit in the southern part of Plate 2, and the Queantoweap Sandstone in the
southeastern part of Plate 2.

Arcturus Formation (Lower Permian)—Predominantly carbonate rocks in the northern
part of Plate 1, thickening eastward.

Rib Hill Sandstone (Lower Permian)—Only in the northwestern part of Plate 1.

PLATE 3. EXPLANATION OF GEOLOGIC UNITS FOR THE MAPS AND CROSS SECTIONS OF PLATES 1, 2, 4, AND 5.
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Riepe Spring Limestone and Ely Limestone, undivided (Lower Permian and
Pennsylvanian)— Mapped only in the northern part of Plate 1. The Riepe Spring
Limestone (Lower Permian) is exposed in the northwestern part of Plate 1. Includes
the Brock Canyon Formation (Permian and/or Pennsylvanian) in the northwestern part
of Plate 1; the Oquirrh Group (Lower Permian and Pennsylvanian) in the northeastern
part of Plate 1; and the Bird Spring Formation (Lower Permian to Upper
Mississippian) in Clark County, Nevada and the Pakoon Formation (Lower Permian)
in Utah.

Ely Limestone (Pennsylvanian)—May include Missippian rocks at its base. Mapped
mostly in the central and northern part of Plate 1, thickening eastward. Includes the
Wildcat Peak Formation in the northwestern part of Plate 1 and the Callville
Limestone in the southern and eastern part of Plate 2.

Diamond Peak Formation, Chainman Shale, Joana Limestone, and Pilot Shale, undivided
(Upper Mississippian to Upper Devonian)

Diamond Peak Formation (Upper Mississippian)—Only in the northwestern part of Plate
1. This is a clastic unit derived from erosion of the Antler highland, including the
Roberts Mountain thrust formed during the Antler deformational event. Includes the
Scotty Wash Quartzite in the southwestern part of Plate 2.

Chainman Shale (Upper Mississippian)—A clastic confining unit that has a similar origin
to the Diamond Peak Formation. The two make up the upper aquitard in the northern
half of Plate 1. Thus for this part of the map area, it separates the upper from the
lower carbonate aquifer; in the area of Plate 2, the Chainman is thin and does not
constitute a significant regional aquitard.

Joana Limestone and Pilot Shale, undivided (Lower Mississippian to Upper Devonian)—
The Joana Limestone (Lower Mississippian) and Pilot Shale (Lower Mississippian
and Upper Devonian) make up the top of the lower carbonate aquifer in the northern
half of Plate 1. Includes local Lower Mississippian units Mercury Limestone and
Bristol Pass Limestone. Includes the Rogers Spring Limestone (Lower Mississippian)
and Monte Cristo Limestone (Upper and Lower Mississippian) in the southern part of
Plate 2; the Eleana Formation (Mississippian and Upper Devonian) in the western part
of Plate 2; the Webb Formation (Lower Mississippian) in Elko County ; the Ochre
Mountain Limestone and underlying Woodman Formation (Lower Mississippian) in
the eastern part of Plate 1; and the West Range Limestone (Upper Devonian) in
northern Lincoln County. May include, at the top, thin deposits of the Chainman
Shale.

Devonian to Upper Cambrian carbonate and clastic rocks, undivided.

Devonian and Silurian sedimentary rocks, undivided—Only shown on some cross
sections (Plates 4, 5, 8, and 9).

Devonian carbonate sedimentary rocks, undivided—Includes the Woodruff Formation
(Upper and Middle Devonian) in Elko County; and the Muddy Peak Limestone
(Upper and Middle? Devonian) in the southern part of Plate 2.

Devils Gate Formation (Upper and Middle Devonian)—The western equivalent of the
Guilmette Formation.

Guilmette Formation (Upper and Middle Devonian)—Mapped throughout, except in the
western part of Plate 1. Includes the Sultan Limestone in Clark County.

Nevada Formation (Middle and Lower Devonian)—The western equivalent of the
Simonson and Sevy Dolomites. Includes the Cockalorum Wash Formation, also in
the western part of Plate 1.

Simonson Dolomite (Middle and Lower Devonian) and Sevy Dolomite, undivided
(Lower Devonian)—Mapped in all but the western part of Plate 1.

Silurian and Ordovician sedimentary rocks, undivided—Shown on some cross sections
(Plates 4, 5, 8, and 9).

Upper part (Silurian and Upper Ordovician)--Includes the Laketown Dolomite (Silurian),
Fish Haven Dolomite (Upper Ordovician), Ely Springs Dolomite (Upper Ordovician),
and Hanson Creek Formation (Upper Ordovician). Includes the Roberts Mountains
Formation and the Lone Mountain Dolomite in the northwestern part of Plate 1.

Lower part (Middle and Lower Ordovician)—Mostly the Eureka Quartzite (Middle
Ordovician) and the Pogonip Group (Middle and Lower Ordovician). Includes the
Vinini Formation and Valmy Formation in the northwestern part of Plate 1. Includes
the Ely Springs Dolomite where it is thin in Clark County. In Utah, includes the
Crystal Peak, Watson Ranch, and Fillmore formations and the House Limestone.

Cambrian carbonate sedimentary rocks, undivided—Shown only on some cross sections
(Plates 4, 5, 8, and 9).

Upper part (Lower Ordovician? and Upper Cambrian)—Includes the Notch Peak
Limestone, Orr Formation, Windfall Formation, Nopah Limestone, Dunderberg Shale,
and Corset Spring Shale. In the extreme southwestern part of Plate 2, includes the
Emigrant Formation (Upper and Middle Cambrian).

Middle part (Upper and Middle Cambrian)—Mostly the Highland Peak Formation and its
southwestern equivalent, the Bonanza King Formation. In Nevada, includes local
units known as the Pole Canyon Limestone, Lincoln Peak Formation, Patterson Pass
Shale, Hamburg Formation, Secret Canyon Shale, Geddes Limestone, and Eldorado
Formation. Includes the Muav Limestone in eastern Clark County. In Utah, includes
the Wah Wah Summit, Trippe, Pierson Cove, Eye of Needle, Swasey, Whirlwind,
Dome, Chisholm, and Howell formations. This unit is a thick limestone sequence that
marks the base of the lower carbonate aquifer.

Lower part (Middle Cambrian to Late Proterozoic)—Chisholm Shale (Middle Cambrian),
Lyndon Limestone (Middle Cambrian), Pioche Shale (Middle and Lower Cambrian),
Carrara Formation (Middle and Lower Cambrian), Stella Lake Quartzite (Lower
Cambrian), Prospect Mountain Quartzite (Lower Cambrian and Late Proterozoic), and
Johnnie Formation (Late Proterozoic). The Prospect Mountain, in turn, has been
subdivided into the Zabriskie Quartzite (Lower Cambrian), Wood Canyon Formation
(Lower Cambrian), and Sterling Quartzite (Lower Cambrian and Late Proterozoic).
Locally includes the Reed Dolomite (Lower Cambrian) and underlying Wyman
Formation (Lower Cambrian?) in the southwestern part of Plate 2.

Metamorphosed and crystalline Precambrian basement rocks (Late to Early
Proterozoic)—Throughout most of Plates 1 and 2, consists of metamorphosed
quartzite of Late Proterozoic age, namely the McCoy Creek Group and, in Utah, also
the underlying Trout Creek Group. Locally, in the southern part of Plate 2, includes
crystalline basement rocks.

Open Water
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Explanation of Hydrogeologic Units
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western Utah: Utah Geological Association Publication 38, CD, p. 251-269 + Plate 1 (scale 1;250,000).

This study and Dixon, GL, Rowley, PD., Burns, A.G, Watrus, J.M., and Donovan, D.J., Ekren, E.B., 2007, Geology of White
Pine and Lincoln Counties and adjacent areas, Nevada and Utah—The geologic framework of regional groundwater flow
systems:  Southern Nevada Water Authority, Las Vegas, Nevada, Doc. No. HAM-ED-0001, variously paginated, scale
1:250,000.

Figure 3-1
Previous Large-Scale Mapping Used to Evaluate Geology and to Create the
Geologic and Hydrogeologic Maps of Plates 1 and 2
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1:250,000 Geology Map of Delamar Valley and Vicinity (Rowley et al. 2011; Plate 1)

7l y, . QK ; \

1:500,000 Geology Map of Delamar Valley and Vicinity
(Stewart, J.H., and Carlson, J.E., 1978)

Delamar
Mountains

Shown above are examples of the same area of Nevada that were geologically mapped at two different scales (1:250,000 and 1:500,000). The
Rowley et al. 2011 geology map was completed at a 1:250,000 scale and shows greater detail to the geologic structures and units. The 1:250,000 map
illustrates interbasin structures (faults within the valley floor) and types of faults (i.e. black normal, brown quaternary, green lateral faults, and
caldera boundaries), whereas the 1:500,000 map of Stewart, J.H., and Carlson, J.E., 1978 display fewer structures and does not distinguish the type of
structure. The reason that the maps were completed at different scales is the 1:500,000 mapped the entire state of Nevada (which requires less detail),
while the 1:250,000 scale map focused on the SNWA project area and provide greater detail to the geologic structures and units.
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Isostatic Residual Gravity Field Showing Maxspots

Figure 5-12
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Figure 5-1
Geologic Cross Section of a Normal Fault Interpreted from a Gravity Profile
across It (Black Dots), Showing Upward-Continued Maxspots Projected onto a Map
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Figure 5-15
Map and 2D Model of Area of POD 54011
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Surficial and basin-fill deposits (Holocene to upper Miocene)—Unconsolidated to
moderately consolidated, locally tuffaceous beds of sand, gravel, silt, and minor
limestone deposited mostly by streams and small playa lakes. Generally thin but,
where unit fills basin-range-fault-bounded basins, may be 0-5000 feet thick and forms
the upper valley-fill aquifer. Some basin-fill deposits bear local names, including the
Muddy Creek Formation (southern part of Plate 2), Panaca Formation (southern part
of Plate 1), Horse Camp Formation (northwestern part of Plate 1), and Salt Lake
Formation (northeastern part of Plate 1).

Basalt lava flows (Holocene to lower Miocene)—Resistant, thin, basalt lava flows and
cinder cones. The mafic end of the bimodal volcanic sequence that is synchronous
with basin-range extensional faulting.

Sedimentary rocks, unit 4 (Miocene)—Moderately to well consolidated, mostly fluvial
sandstone, conglomerate, and minor lacustrine limestone. Primarily the Horse Spring
Formation (11 to 20 Ma), a basal basin-fill sedimentary unit that is locally thick
(3000+ feet) in the southern part of Plate 2.

Sedimentary rocks, unit 3 (Miocene and Oligocene)—Moderately to well consolidated,
thin, mostly fluvial, tuffaceous sandstone and bedded airfall tuff

Sedimentary rocks, unit 2 (Oligocene)—Moderately to well consolidated, thin, mostly
fluvial, tuffaceous sandstone and conglomerate. Includes the Gilmore Gulch
Formation, with an age of about 30 Ma, in the northwestern part of Plate 1.

Sedimentary rocks, unit 1 (Oligocene to Upper Cretaceous?)—Moderately to well
consolidated, mostly fluvial sandstone, conglomerate, and minor lacustrine limestone.
Primarily the Sheep Pass Formation, but in the central part of Plate 1, includes the
Paleocene and Upper Cretaceous(?) Grapevine Wash Formation and the Eocene and
Paleocene Claron Formation. Includes the Fowkes Formation and White Sage
Formation in the northeastern part of Plate 1. Unit in most places underlies all
volcanic rocks.

Volcanic rocks (Miocene to Eocene)—Unit shown only in Plates 4, 5, 6, 7, 8, and 9,
where it is referred to as the volcanic aquifer. May be several thousand feet thick in
many places, and in calderas and near other source vents, may be many thousands of
feet thick. On Plates 1 and 2, unit is separated into several rock types based on age,
following the mapping strategy of Ekren et al, (1977).

Ash-flow tuff and interbedded airfall tuff, unit 4 (Miocene)—Poorly to densely welded,
bimodal high-silica rhyolite and locally peralkaline ash-flow tuff and related airfall
tuffs. Includes the tuff of Honeycomb Rock (12.0 Ma), Ox Valley Tuff (14.0 Ma),
tuff of Etna (14.0 Ma), tuff of Rainbow Canyon (15.6 Ma), tuff of Acklin Canyon
(17.1 Ma), and tuff of Dow Mountain (17.4 Ma), derived from the Caliente caldera
complex. Includes the Kane Wash Tuff (14.4 to 14.7 Ma), the tuff of Boulder Canyon
(15.1 Ma), and the tuff of Narrow Canyon (15.8 Ma), derived from the Kane Springs
Wash caldera complex.

Ash-flow tuff and interbedded airfall tuff, unit 3 (Miocene and Oligocene)—Poorly to
densely welded, calc-alkaline, low-silica rhyolite to dacite ash-flow tuff and related
airfall tuffs. Includes the tuff of Teepee Rocks (17.8 Ma), Hiko Tuff (18.3 Ma), Racer
Canyon Tuff (18.7 Ma), and both Bauers Tuff Member (22.8 Ma) and Swett Tuff
Member (23.7 Ma) of the Condor Canyon Formation, all derived from the Caliente
caldera complex. Also includes the Harmony Hills Tuff (22.0 Ma), probably derived
from the eastern Bull Valley Mountains; the Leach Canyon Formation (23.8 Ma),
probably derived from the Caliente caldera complex; the Bates Mountain Tuff (22.8
Ma), derived from Lander County, Nevada; and the tuff of Saulsbury Wash (21.6
Ma), the Pahranagat Formation (22.6 Ma), the tuff of White Blotch Spring (24 to 25
Ma), the tuff of Kiln Canyon (24.1 to 25.1 Ma), the tuff of Lunar Cuesta (24.6 Ma),
the tuff of the Quinn Canyon Range, and the Shingle Pass Tuff (26.4), all derived
from the central Nevada caldera complex; and the tuff of Bald Mountain (about 25
Ma), derived from the Bald Mountain caldera in the Groom Range.
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Ash-flow tuff and interbedded airfall tuff, unit 2 (Oligocene)—Poorly to densely welded,
calc-alkaline, low-silica rhyolite to dacite and trachydacite ash-flow tuff and related
airfall tuffs. Includes the Isom Formation (about 27 Ma), probably derived from the
Indian Peak caldera complex; the outflow Monotony Tuff (27.3 Ma), the intracaldera
tuff of Goblin Knobs (27.3 Ma), and the tuff of Hot Creek Canyon (30.0 Ma), all
derived from the central Nevada caldera complex; the outflow Windous Butte
Formation (31.4 Ma) and intracaldera tuff of Williams Ridge and Morey Peak (31.3
Ma), derived from the Williams Ridge caldera of the central Nevada caldera complex;
and the Needles Range Group (29 to 32 Ma), derived from the Indian Peak caldera
complex.

Ash-flow tuff and interbedded airfall tuff, unit 1 (Oligocene and Eocene)—Poorly to
densely welded, calc-alkaline, low-silica rhyolite to dacite and trachydacite ash-flow
tuff and related airfall tuffs. Deposited in the northern part of Plate 1. Includes the
Pancake Summit Tuff (33.7 Ma), derived from the Broken Back caldera west of
Eureka; the Stone Cabin Formation (35.4 Ma), derived from an unknown caldera in or
near northern Railroad Valley; and the Kalamazoo Tuff (35 Ma), derived from an
unknown source probably in the northern Schell Creek Range or beneath adjacent
northern Spring Valley. In Utah, includes the Tunnel Spring Tuff (35.4 Ma).

Rhyolite lava flows, unit 4 (Miocene)—High-silica rhyolite lava flows and volcanic
domes, mostly in and near the Caliente and Kane Springs Wash caldera complexes.

Rhyolite lava flows, unit 3 (Miocene and Oligocene)—Low-silica rhyolite lava flows and
volcanic domes, mostly in and near the Indian Peak, Caliente, and central Nevada
caldera complexes.

Rhyolite lava flows, unit 2 (Oligocene)—Low-silica rhyolite lava flows and volcanic
domes, mostly in and near the central Nevada and Indian Peak caldera complexes.

Rhyolite lava flows, unit 1 (Oligocene and Eocene)—Low-silica rhyolite lava flows and
volcanic domes, exposed in the northern part of Plate 1.

Intermediate-composition lava flows, unit 4 (Miocene)—Andesitic and locally dacitic
lava flows, flow breccia, and mudflow breccia. Includes andesite of the Hamblin-
Cleopatra volcano (11.5 to 14.2 Ma) in the Lake Mead area.

Intermediate-composition lava flows, unit 3 (Miocene and Oligocene)—Andesitic and
locally dacitic lava flows, flow breccia, and mudflow breccia. Includes andesite
between the Racer Canyon Tuff and Condor Canyon Formation in the southeastern
part of Plate 2, between the Caliente and Kane Springs Wash caldera complexes, and
in and near the Indian Peak and central Nevada caldera complexes.

Intermediate-composition lava flows, unit 2 (Oligocene)—Andesitic and locally dacitic
lava flows, flow breccia, and mudflow breccia. Includes andesite in and near the
Indian Peak caldera complex and in the southern Egan Range.

Intermediate-composition lava flows, unit 1 (Oligocene and Eocene)—Andesitic and
locally dacitic lava flows, flow breccia, and mudflow breccia. Exposed in the
northern part of Plate 1. In the northeastern part of Plate 1 includes thin ash-flow
tuffs, notably the Kalamazoo tuff. In Utah, includes the Horn Silver Andesite.

Megabreccia (Miocene and Oligocene)—Masses of mostly Paleozoic sedimentary rocks
and intertongued volcanic breccia deposited within calderas from landsliding of the
oversteepened caldera margins following caldera subsidence as a result of rapid
eruptions of ash-flow tuff. Includes rocks in the Indian Peak caldera complex,
Caliente caldera complex and central Nevada caldera complex. Includes gravity
slides west of the Sheep Range and Beaver Dam Mountains.

Intrusive rocks (Miocene to Paleocene)—Mostly silicic, calc-alkaline plutons.
Intrusive rocks (Miocene to Cretaceous)—Mostly silicic, calc-alkaline plutons.

Intrusive rocks (Upper Cretaceous)—Mostly silicic, calc-alkaline plutons that
accompanied Sevier deformation.

Sedimentary rocks, undivided (Upper and Lower Cretaceous)—Sevier-age, mostly thin,
fluvial synorogenic clastic deposits, including the Baseline Sandstone (Upper and
Lower Cretaceous) and Willow Tank Formation (Upper Cretaceous) in the southern
part of Plate 2, and the Iron Springs Formation (Upper Cretaceous), Cedar Mountain
Formation (Upper Cretaceous), and Dakota Sandstone (Upper Cretaceous) in the
southeastern part of Plate 2; and the Newark Canyon Formation (Paleocene? to Lower
Cretaceous?) in the northern part of Plate 1.

Intrusive rocks (Jurassic)—Mostly silicic, calc-alkaline plutons that accompanied Sevier
deformation.

Sedimentary rocks, undivided (Jurassic)—Includes, in the southeastern part of Plate 2,
the mostly marine Carmel and underlying Temple Cap formations (Middle Jurassic).
Also in the southeastern part of Plate 2, includes the eolian Navajo Sandstone and
mostly fluvial Kayenta and Moenave formations, all Lower Jurassic. Mostly clastic
units. In the southern part of Plate 2, the Aztec Sandstone is the equivalent of the
Navajo. Includes the Dunlop Formation (Lower Jurassic) in the northwestern part of
Plate 1.

Sedimentary rocks, undivided (Triassic)—Includes, in the southeastern part of Plate 2,
the mostly fluvial Chinle Formation (Upper Triassic) and mostly fluvial Moenkopi
Formation (Middle? and Lower Triassic). Includes the Luning Formation (Upper
Triassic) in the northwestern part of Plate 1. In the northeastern part of Plate 1,
includes the Thaynes Formation (Lower Triassic). The majority of these rocks are
clastic.

Paleozoic sedimentary rocks, undivided—Shown on Plates 4, 5, 8, and 9, where rocks in
the hanging wall of the Snake Range decollement are buried by younger rocks.

Park City Group, undivided (Upper and Lower Permian)—From top to base, consists of
the Gerster Limestone (Upper Permian), Plympton Formation (Upper and Lower
Permian), Kaibab Limestone (Lower Permian), and Toroweap Formation (Lower
Permian). These make up the top of the upper carbonate aquifer.

Arcturus Formation and Rib Hill Sandstone, undivided (Lower Permian)—Included
within the upper carbonate aquifer. Includes the Pequop Formation in Elko County, a
redbed unit in the southern part of Plate 2, and the Queantoweap Sandstone in the
southeastern part of Plate 2.

Arcturus Formation (Lower Permian)—Predominantly carbonate rocks in the northern
part of Plate 1, thickening eastward.

Rib Hill Sandstone (Lower Permian)—Only in the northwestern part of Plate 1.

PLATE 3. EXPLANATION OF GEOLOGIC UNITS FOR THE MAPS AND CROSS SECTIONS OF PLATES 1, 2, 4, AND 5.
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Riepe Spring Limestone and Ely Limestone, undivided (Lower Permian and
Pennsylvanian)— Mapped only in the northern part of Plate 1. The Riepe Spring
Limestone (Lower Permian) is exposed in the northwestern part of Plate 1. Includes
the Brock Canyon Formation (Permian and/or Pennsylvanian) in the northwestern part
of Plate 1; the Oquirrh Group (Lower Permian and Pennsylvanian) in the northeastern
part of Plate 1; and the Bird Spring Formation (Lower Permian to Upper
Mississippian) in Clark County, Nevada and the Pakoon Formation (Lower Permian)
in Utah.

Ely Limestone (Pennsylvanian)—May include Missippian rocks at its base. Mapped
mostly in the central and northern part of Plate 1, thickening eastward. Includes the
Wildcat Peak Formation in the northwestern part of Plate 1 and the Callville
Limestone in the southern and eastern part of Plate 2.

Diamond Peak Formation, Chainman Shale, Joana Limestone, and Pilot Shale, undivided
(Upper Mississippian to Upper Devonian)

Diamond Peak Formation (Upper Mississippian)—Only in the northwestern part of Plate
1. This is a clastic unit derived from erosion of the Antler highland, including the
Roberts Mountain thrust formed during the Antler deformational event. Includes the
Scotty Wash Quartzite in the southwestern part of Plate 2.

Chainman Shale (Upper Mississippian)—A clastic confining unit that has a similar origin
to the Diamond Peak Formation. The two make up the upper aquitard in the northern
half of Plate 1. Thus for this part of the map area, it separates the upper from the
lower carbonate aquifer; in the area of Plate 2, the Chainman is thin and does not
constitute a significant regional aquitard.

Joana Limestone and Pilot Shale, undivided (Lower Mississippian to Upper Devonian)—
The Joana Limestone (Lower Mississippian) and Pilot Shale (Lower Mississippian
and Upper Devonian) make up the top of the lower carbonate aquifer in the northern
half of Plate 1. Includes local Lower Mississippian units Mercury Limestone and
Bristol Pass Limestone. Includes the Rogers Spring Limestone (Lower Mississippian)
and Monte Cristo Limestone (Upper and Lower Mississippian) in the southern part of
Plate 2; the Eleana Formation (Mississippian and Upper Devonian) in the western part
of Plate 2; the Webb Formation (Lower Mississippian) in Elko County ; the Ochre
Mountain Limestone and underlying Woodman Formation (Lower Mississippian) in
the eastern part of Plate 1; and the West Range Limestone (Upper Devonian) in
northern Lincoln County. May include, at the top, thin deposits of the Chainman
Shale.

Devonian to Upper Cambrian carbonate and clastic rocks, undivided.

Devonian and Silurian sedimentary rocks, undivided—Only shown on some cross
sections (Plates 4, 5, 8, and 9).

Devonian carbonate sedimentary rocks, undivided—Includes the Woodruff Formation
(Upper and Middle Devonian) in Elko County; and the Muddy Peak Limestone
(Upper and Middle? Devonian) in the southern part of Plate 2.

Devils Gate Formation (Upper and Middle Devonian)—The western equivalent of the
Guilmette Formation.

Guilmette Formation (Upper and Middle Devonian)—Mapped throughout, except in the
western part of Plate 1. Includes the Sultan Limestone in Clark County.

Nevada Formation (Middle and Lower Devonian)—The western equivalent of the
Simonson and Sevy Dolomites. Includes the Cockalorum Wash Formation, also in
the western part of Plate 1.

Simonson Dolomite (Middle and Lower Devonian) and Sevy Dolomite, undivided
(Lower Devonian)—Mapped in all but the western part of Plate 1.

Silurian and Ordovician sedimentary rocks, undivided—Shown on some cross sections
(Plates 4, 5, 8, and 9).

Upper part (Silurian and Upper Ordovician)--Includes the Laketown Dolomite (Silurian),
Fish Haven Dolomite (Upper Ordovician), Ely Springs Dolomite (Upper Ordovician),
and Hanson Creek Formation (Upper Ordovician). Includes the Roberts Mountains
Formation and the Lone Mountain Dolomite in the northwestern part of Plate 1.

Lower part (Middle and Lower Ordovician)—Mostly the Eureka Quartzite (Middle
Ordovician) and the Pogonip Group (Middle and Lower Ordovician). Includes the
Vinini Formation and Valmy Formation in the northwestern part of Plate 1. Includes
the Ely Springs Dolomite where it is thin in Clark County. In Utah, includes the
Crystal Peak, Watson Ranch, and Fillmore formations and the House Limestone.

Cambrian carbonate sedimentary rocks, undivided—Shown only on some cross sections
(Plates 4, 5, 8, and 9).

Upper part (Lower Ordovician? and Upper Cambrian)—Includes the Notch Peak
Limestone, Orr Formation, Windfall Formation, Nopah Limestone, Dunderberg Shale,
and Corset Spring Shale. In the extreme southwestern part of Plate 2, includes the
Emigrant Formation (Upper and Middle Cambrian).

Middle part (Upper and Middle Cambrian)—Mostly the Highland Peak Formation and its
southwestern equivalent, the Bonanza King Formation. In Nevada, includes local
units known as the Pole Canyon Limestone, Lincoln Peak Formation, Patterson Pass
Shale, Hamburg Formation, Secret Canyon Shale, Geddes Limestone, and Eldorado
Formation. Includes the Muav Limestone in eastern Clark County. In Utah, includes
the Wah Wah Summit, Trippe, Pierson Cove, Eye of Needle, Swasey, Whirlwind,
Dome, Chisholm, and Howell formations. This unit is a thick limestone sequence that
marks the base of the lower carbonate aquifer.

Lower part (Middle Cambrian to Late Proterozoic)—Chisholm Shale (Middle Cambrian),
Lyndon Limestone (Middle Cambrian), Pioche Shale (Middle and Lower Cambrian),
Carrara Formation (Middle and Lower Cambrian), Stella Lake Quartzite (Lower
Cambrian), Prospect Mountain Quartzite (Lower Cambrian and Late Proterozoic), and
Johnnie Formation (Late Proterozoic). The Prospect Mountain, in turn, has been
subdivided into the Zabriskie Quartzite (Lower Cambrian), Wood Canyon Formation
(Lower Cambrian), and Sterling Quartzite (Lower Cambrian and Late Proterozoic).
Locally includes the Reed Dolomite (Lower Cambrian) and underlying Wyman
Formation (Lower Cambrian?) in the southwestern part of Plate 2.

Metamorphosed and crystalline Precambrian basement rocks (Late to Early
Proterozoic)—Throughout most of Plates 1 and 2, consists of metamorphosed
quartzite of Late Proterozoic age, namely the McCoy Creek Group and, in Utah, also
the underlying Trout Creek Group. Locally, in the southern part of Plate 2, includes
crystalline basement rocks.
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Geologic Structure

—==—.. Normal Fault

Solid where known; Dashed where inferred; dotted where concealed.
Arrows show direction of movement.

==~ .. Strike-slip Fault

Solid where known; Dashed where inferred; dotted where concealed.
Arrows show direction of movement. T= Towards, A = Away.

——=~- .. Thrust Fault

Solid where known; Dashed where inferred; dotted where concealed.
Arrows show direction of movement.

- =+« Detachment Fault

Solid where known; Dashed where inferred; dotted where concealed.

===~ -- Quaternary Fault

Solid where known; Dashed where inferred; dotted where concealed.
Arrows show direction of movement.
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PLATE 9. CROSS SECTIONS SHOWING HYDROGEOLOGY OF SOUTHERN LINCOLN AND NORTHERN CLARK COUNTIES, NEVADA
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Source: Modified from Heath (1983)
Figure 2-3
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From Caine et al. (1996)
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Source: Modified from Caine et al. (2010)
Figure 2-4

Conceptualization of Fault Components and Factors

Controlling Permeability and Groundwater Flow
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Fault zone architecture and permeability structure

Jonathan Saul Caine Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112
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ABSTRACT

Fault zone architecture and related permeability structures form primary controls on
fluid flow in upper-crustal, brittle fault zones. We develop qualitative and quantitative
schemes for evaluating fault-related permeability structures by using results of field in-
vestigations, laboratory permeability measurements, and numerical models of flow within
and near fault zones. The qualitative scheme compares the percentage of the total fault zone
width composed of fault core materials (e.g., anastomosing slip surfaces, clay-rich gouge,
cataclasite, and fault breccias) to the percentage of subsidiary damage zone structures (e.g.,
kinematically related fracture sets, small faults, and veins). A more quantitative scheme is
developed to define a set of indices that characterize fault zone architecture and spatial
variability. The fault core and damage zone are distinct structural and hydrogeologic units
that reflect the material properties and deformation conditions within a fault zone.
Whether a fault zone will act as a conduit, barrier, or combined conduit-barrier system is
controlled by the relative percentage of fault core and damage zone structures and the
inherent variability in grain scale and fracture permeability. This paper outlines a frame-
work for understanding, comparing, and correlating the fluid flow properties of fault zones

in various geologic settings.

INTRODUCTION

Brittle fault zones are lithologically het-
erogeneous and structurally anisotropic dis-
continuities in the upper crust. They may act
as conduits, barriers, or combined conduit-
barrier systems that enhance or impede fluid
flow (Randolph and Johnson, 1989; Smith et
al., 1990; Scholz, 1990; Caine et al., 1993;
Forster et al., 1994; Antonellini and Aydin,
1994; Newman and Mitra, 1994; Goddard
and Evans, 1995). Fault zones are composed
of distinct components: a fault core where
most of the displacement is accommodated
and an associated damage zone that is me-
chanically related to the growth of the fault
zone (Sibson, 1977; Chester and Logan,
1986; Davison and Wang, 1988; Forster and
Evans, 1991; Byerlee, 1993; Scholz and
Anders, 1994). The amount and distribution
of each component control fluid flow within
and near the fault zone.

Insufficient data, particularly field-based
data, are available to adequately character-
ize and compare architecture, permeability
structure, fluid flow, and mechanical prop-
erties of fault zones found in different geo-
logic environments. Current demands to
prove the long-term integrity of waste-dis-
posal facilities, produce hydrocarbons from
reservoirs compartmentalized by fault
zones, extract mineral deposits, and esti-
mate earthquake risk require incorporating
detailed, field-based representations of the
physical properties of fault zones in predic-
tive fluid flow simulators. Development of
valid flow models is hindered by our inability

to measure in situ fault zone properties in a
way that adequately characterizes the spatial
and temporal variations in permeability, po-
rosity, and storativity.

In this paper, we compile data, terminol-
ogy, and conceptual models in order to con-
solidate our knowledge of fault-related per-
meability structures. We outline a fault zone
model and a set of indices that serve as a
guide in evaluating the physical properties
of fault zones. This model can be used as a
framework for determining spatial variabil-
ity in fault zone architecture from field data
and for incorporating physically based geo-
logic information in mathematical models of
fluid flow in faulted rocks. We first define
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Earth Sciences and Resources Institute, Department of Civil and Environmental Engineering,

the major components of a fault zone and
then set forth both qualitative and quanti-
tative schemes for fault-related permeability
structures. The schemes are based on a syn-
opsis of our research and the work of other
authors (Sibson, 1981; Oliver, 1986; Chester
and Logan, 1986; Parry and Bruhn, 1986;
Scholz, 1987; Scholz and Anders, 1994;
Parry et al., 1988; Bruhn et al., 1990; Smith
et al., 1990; Forster and Evans, 1991; Moore
and Vrolijk, 1992; Caine et al., 1993; New-
man and Mitra, 1994; Goddard and Evans,
1995).

FAULT ZONE DEFINITION

The primary components of upper-crustal
fault zones are fault core, damage zone, and
protolith (shown in the conceptual model of
Fig. 1). No scalar relationship is implied be-
tween the components, nor must all of the
components be present in any given fault
zone. Note that the fluid flow properties of
a fault zone may change, thus the diagram
represents only a single point in time. For
example, the core may act as a conduit dur-
ing deformation and as a barrier when open
pore space is filled by mineral precipitation
following deformation. Thus, it is important
to specify the stage of fault evolution when
forming a conceptual model for a particular
fault zone.

We define a fault core as the structural,
lithologic, and morphologic portion of a
fault zone where most of the displacement is

FACTORS
CONTROLLING &
Lithology
Fault scale
Fault type
Deformation style & history
Fluid chemistry
P-T history
Componcnl pereentage
Component k

e Component anisornpy

(magnitude & dircction

of kpax & &min)

Kemax

kmin

Figure 1. Conceptual model of fault zone with protolith removed (after Chester and Logan, 1986;
Smith et al.,, 1990). Ellipse represents relative magnitude and orientation of the bulk two-
dimensional permeability (k) tensor that might be associated with each distinct architectural
component of fault zone.

Data Repository item 9659 contains additional material related to this article.
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ABSTRACT

Fault zone architecture and related permeability structures form primary controls on
fluid flow in upper-crustal, brittle fault zones. We develop qualitative and quantitative
schemes for evaluating fault-related permeability structures by using results of field in-
vestigations, laboratory permeability measurements, and numerical models of flow within
and near fault zones. The qualitative scheme compares the percentage of the total fault zone
width composed of fault core materials (e.g., anastomosing slip surfaces, clay-rich gouge,
cataclasite, and fault breccias) to the percentage of subsidiary damage zone structures (e.g.,
kinematically related fracture sets, small faults, and veins). A more quantitative scheme is
developed to define a set of indices that characterize fault zone architecture and spatial
variability. The fault core and damage zone are distinct structural and hydrogeologic units
that reflect the material properties and deformation conditions within a fault zone.
Whether a fault zone will act as a conduit, barrier, or combined conduit-barrier system is
controlled by the relative percentage of fault core and damage zone structures and the
inherent variability in grain scale and fracture permeability. This paper outlines a frame-
work for understanding, comparing, and correlating the fluid flow properties of fault zones

in various geologic settings.

INTRODUCTION

Brittle fault zones are lithologically het-
erogeneous and structurally anisotropic dis-
continuities in the upper crust. They may act
as conduits, barriers, or combined conduit-
barrier systems that enhance or impede fluid
flow (Randolph and Johnson, 1989; Smith et
al., 1990; Scholz, 1990; Caine et al., 1993;
Forster et al., 1994; Antonellini and Aydin,
1994; Newman and Mitra, 1994; Goddard
and Evans, 1995). Fault zones are composed
of distinct components: a fault core where
most of the displacement is accommodated
and an associated damage zone that is me-
chanically related to the growth of the fault
zone (Sibson, 1977; Chester and Logan,
1986; Davison and Wang, 1988; Forster and
Evans, 1991; Byerlee, 1993; Scholz and
Anders, 1994). The amount and distribution
of each component control fluid flow within
and near the fault zone.

Insufficient data, particularly field-based
data, are available to adequately character-
ize and compare architecture, permeability
structure, fluid flow, and mechanical prop-
erties of fault zones found in different geo-
logic environments. Current demands to
prove the long-term integrity of waste-dis-
posal facilities, produce hydrocarbons from
reservoirs compartmentalized by fault
zones, extract mineral deposits, and esti-
mate earthquake risk require incorporating
detailed, field-based representations of the
physical properties of fault zones in predic-
tive fluid flow simulators. Development of
valid flow models is hindered by our inability

to measure in situ fault zone properties in a
way that adequately characterizes the spatial
and temporal variations in permeability, po-
rosity, and storativity.

In this paper, we compile data, terminol-
ogy, and conceptual models in order to con-
solidate our knowledge of fault-related per-
meability structures. We outline a fault zone
model and a set of indices that serve as a
guide in evaluating the physical properties
of fault zones. This model can be used as a
framework for determining spatial variabil-
ity in fault zone architecture from field data
and for incorporating physically based geo-
logic information in mathematical models of
fluid flow in faulted rocks. We first define
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the major components of a fault zone and
then set forth both qualitative and quanti-
tative schemes for fault-related permeability
structures. The schemes are based on a syn-
opsis of our research and the work of other
authors (Sibson, 1981; Oliver, 1986; Chester
and Logan, 1986; Parry and Bruhn, 1986;
Scholz, 1987; Scholz and Anders, 1994;
Parry et al., 1988; Bruhn et al., 1990; Smith
et al., 1990; Forster and Evans, 1991; Moore
and Vrolijk, 1992; Caine et al., 1993; New-
man and Mitra, 1994; Goddard and Evans,
1995).

FAULT ZONE DEFINITION

The primary components of upper-crustal
fault zones are fault core, damage zone, and
protolith (shown in the conceptual model of
Fig. 1). No scalar relationship is implied be-
tween the components, nor must all of the
components be present in any given fault
zone. Note that the fluid flow properties of
a fault zone may change, thus the diagram
represents only a single point in time. For
example, the core may act as a conduit dur-
ing deformation and as a barrier when open
pore space is filled by mineral precipitation
following deformation. Thus, it is important
to specify the stage of fault evolution when
forming a conceptual model for a particular
fault zone.

We define a fault core as the structural,
lithologic, and morphologic portion of a
fault zone where most of the displacement is
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Figure 1. Conceptual model of fault zone with protolith removed (after Chester and Logan, 1986;
Smith et al.,, 1990). Ellipse represents relative magnitude and orientation of the bulk two-
dimensional permeability (k) tensor that might be associated with each distinct architectural
component of fault zone.
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Conceptualization of Fault Components and Factors

Controlling Permeability and Groundwater Flow

SNWAEXhIbit


ballashd
Typewritten Text
SNWA Exhibit 58


component of the fault zone from which
samples and related data are collected.

Field observations of unfractured fault
core materials suggest that they are domi-
nated by grain-scale permeability. Labora-
tory-determined permeabilities for natural
fault core materials show a range of varia-
tion of approximately 10 orders of magni-
tude (10~ "2 to 10722 m? from Smith et al.,
1990). These data suggest that the perme-
ability of fault core materials depends, in
part, on lithology and the degree to which
that lithology has been chemically altered.
Rocks with the lowest phyllosilicate content
tend to have the highest permeability. If
there is a direct correlation between proto-
lith rock type and the types of fault core
materials that develop in a given deforma-
tion environment, then a predictive link may
be made with the resulting conduit-barrier
systematics.

Although fault zone core materials often
have low matrix permeability, they may not
always act as a barrier to flow, particularly
during deformation. For example, work on
the Dixie Valley fault zone shows that the
fault core acted as a short-lived, syndefor-
mational, fluid flow conduit that then rap-
idly sealed to form a barrier to flow. This
history is also indicated from work on fault
6, Traill @, East Greenland. In contrast,
damage zones tend to be conduits compared
with both the fault core and the often lower
or “background” permeability of the protolith.

In spite of the dearth of laboratory-deter-
mined grain-scale permeability values from
samples of damage zone materials, our field
observations suggest that damage zone per-
meability is fracture dominated. The juxta-
position of highly fractured damage zone
materials with undeformed protolith and
generally unfractured fault core materials
forms major permeability contrasts within a
tault zone. Preliminary estimates of damage
zone fracture permeability, using the frac-
ture-permeability estimation methods of
Oda et al. (1987) and Bruhn (1993), in both
the Dixie Valley fault zone and fault 6, are
two to three orders of magnitude greater
than the permeability of fractured protolith
and four to six orders of magnitude greater
than the fault core grain-scale permeabili-
ties. The magnitude and spatial variability of
this permeability contrast may be the pri-
mary control on fault zone barrier-conduit
systematics.

Additional controls on fault zone archi-
tecture and permeability structure may in-
clude deformation conditions and the chem-
istry of fault zone fluids. Understanding the
combined impact of mechanical and chem-
ical changes in each of the three fault zone
components on overall architecture and per-
meability structure is crucial to a better un-

1028

derstanding of heterogeneity and anisotropy
in fault zones. Field-based fault zone archi-
tectural data can then be evaluated in the
context of permeability structure and for-
mative deformation processes by using the
quantitative scheme and architectural indices.

CONCLUSIONS

Fluid flow in upper-crustal, brittle fault
zones depends on fault zone architecture
and permeability structure. We represent
these aspects of fault zone structure and hy-
drogeology in the qualitative and quantita-
tive schemes presented in this paper. The
schemes are based on a three-component
fault zone model that includes a fault core,
damage zone, and protolith. This concep-
tual model is used to delineate the distinct
structural and hydrogeologic regimes of a
fault zone. A conceptual scheme with four
end members is used to identify the range of
possible and observed configurations of the
three fault zone components. A second,
more quantitative scheme, represents vari-
ations in fault zone structure by using archi-
tectural indices. Adopting these schemes
provides a consistent framework for evalu-
ating how the permeability structure of fault
zones controls fluid flow in diverse struc-
tural regimes.

There is a clear need to continue field-
based characterization and sample collec-
tion to determine the factors that control
fluid flow in fault zones. This work should be
done in each fault zone component, on a
variety of fault zone types developed within
different lithologies over a broad range of
scales. Once refined quantitative data are
added to the scheme, new axes may be
added. These might include time or lithol-
ogy axes that would make the schemes more
comprehensive and possibly provide a pre-
dictive tool for better understanding fault
zone architecture and permeability struc-
ture. The role of fluids in faulting processes,
as well as the growing concerns of fault-
related utilization of ground-water, hydro-
carbon, mineral, and geothermal resources,
makes understanding and characterizing
fault zone architecture and permeability
structure critical at various times through-
out the evolution of a fault zone.
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component of the fault zone from which
samples and related data are collected.

Field observations of unfractured fault
core materials suggest that they are domi-
nated by grain-scale permeability. Labora-
tory-determined permeabilities for natural
fault core materials show a range of varia-
tion of approximately 10 orders of magni-
tude (10~ "2 to 10722 m? from Smith et al.,
1990). These data suggest that the perme-
ability of fault core materials depends, in
part, on lithology and the degree to which
that lithology has been chemically altered.
Rocks with the lowest phyllosilicate content
tend to have the highest permeability. If
there is a direct correlation between proto-
lith rock type and the types of fault core
materials that develop in a given deforma-
tion environment, then a predictive link may
be made with the resulting conduit-barrier
systematics.

Although fault zone core materials often
have low matrix permeability, they may not
always act as a barrier to flow, particularly
during deformation. For example, work on
the Dixie Valley fault zone shows that the
fault core acted as a short-lived, syndefor-
mational, fluid flow conduit that then rap-
idly sealed to form a barrier to flow. This
history is also indicated from work on fault
6, Traill @, East Greenland. In contrast,
damage zones tend to be conduits compared
with both the fault core and the often lower
or “background” permeability of the protolith.

In spite of the dearth of laboratory-deter-
mined grain-scale permeability values from
samples of damage zone materials, our field
observations suggest that damage zone per-
meability is fracture dominated. The juxta-
position of highly fractured damage zone
materials with undeformed protolith and
generally unfractured fault core materials
forms major permeability contrasts within a
tault zone. Preliminary estimates of damage
zone fracture permeability, using the frac-
ture-permeability estimation methods of
Oda et al. (1987) and Bruhn (1993), in both
the Dixie Valley fault zone and fault 6, are
two to three orders of magnitude greater
than the permeability of fractured protolith
and four to six orders of magnitude greater
than the fault core grain-scale permeabili-
ties. The magnitude and spatial variability of
this permeability contrast may be the pri-
mary control on fault zone barrier-conduit
systematics.

Additional controls on fault zone archi-
tecture and permeability structure may in-
clude deformation conditions and the chem-
istry of fault zone fluids. Understanding the
combined impact of mechanical and chem-
ical changes in each of the three fault zone
components on overall architecture and per-
meability structure is crucial to a better un-

1028

derstanding of heterogeneity and anisotropy
in fault zones. Field-based fault zone archi-
tectural data can then be evaluated in the
context of permeability structure and for-
mative deformation processes by using the
quantitative scheme and architectural indices.

CONCLUSIONS

Fluid flow in upper-crustal, brittle fault
zones depends on fault zone architecture
and permeability structure. We represent
these aspects of fault zone structure and hy-
drogeology in the qualitative and quantita-
tive schemes presented in this paper. The
schemes are based on a three-component
fault zone model that includes a fault core,
damage zone, and protolith. This concep-
tual model is used to delineate the distinct
structural and hydrogeologic regimes of a
fault zone. A conceptual scheme with four
end members is used to identify the range of
possible and observed configurations of the
three fault zone components. A second,
more quantitative scheme, represents vari-
ations in fault zone structure by using archi-
tectural indices. Adopting these schemes
provides a consistent framework for evalu-
ating how the permeability structure of fault
zones controls fluid flow in diverse struc-
tural regimes.

There is a clear need to continue field-
based characterization and sample collec-
tion to determine the factors that control
fluid flow in fault zones. This work should be
done in each fault zone component, on a
variety of fault zone types developed within
different lithologies over a broad range of
scales. Once refined quantitative data are
added to the scheme, new axes may be
added. These might include time or lithol-
ogy axes that would make the schemes more
comprehensive and possibly provide a pre-
dictive tool for better understanding fault
zone architecture and permeability struc-
ture. The role of fluids in faulting processes,
as well as the growing concerns of fault-
related utilization of ground-water, hydro-
carbon, mineral, and geothermal resources,
makes understanding and characterizing
fault zone architecture and permeability
structure critical at various times through-
out the evolution of a fault zone.
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component of the fault zone from which
samples and related data are collected.

Field observations of unfractured fault
core materials suggest that they are domi-
nated by grain-scale permeability. Labora-
tory-determined permeabilities for natural
fault core materials show a range of varia-
tion of approximately 10 orders of magni-
tude (10~ "2 to 10722 m? from Smith et al.,
1990). These data suggest that the perme-
ability of fault core materials depends, in
part, on lithology and the degree to which
that lithology has been chemically altered.
Rocks with the lowest phyllosilicate content
tend to have the highest permeability. If
there is a direct correlation between proto-
lith rock type and the types of fault core
materials that develop in a given deforma-
tion environment, then a predictive link may
be made with the resulting conduit-barrier
systematics.

Although fault zone core materials often
have low matrix permeability, they may not
always act as a barrier to flow, particularly
during deformation. For example, work on
the Dixie Valley fault zone shows that the
fault core acted as a short-lived, syndefor-
mational, fluid flow conduit that then rap-
idly sealed to form a barrier to flow. This
history is also indicated from work on fault
6, Traill @, East Greenland. In contrast,
damage zones tend to be conduits compared
with both the fault core and the often lower
or “background” permeability of the protolith.

In spite of the dearth of laboratory-deter-
mined grain-scale permeability values from
samples of damage zone materials, our field
observations suggest that damage zone per-
meability is fracture dominated. The juxta-
position of highly fractured damage zone
materials with undeformed protolith and
generally unfractured fault core materials
forms major permeability contrasts within a
tault zone. Preliminary estimates of damage
zone fracture permeability, using the frac-
ture-permeability estimation methods of
Oda et al. (1987) and Bruhn (1993), in both
the Dixie Valley fault zone and fault 6, are
two to three orders of magnitude greater
than the permeability of fractured protolith
and four to six orders of magnitude greater
than the fault core grain-scale permeabili-
ties. The magnitude and spatial variability of
this permeability contrast may be the pri-
mary control on fault zone barrier-conduit
systematics.

Additional controls on fault zone archi-
tecture and permeability structure may in-
clude deformation conditions and the chem-
istry of fault zone fluids. Understanding the
combined impact of mechanical and chem-
ical changes in each of the three fault zone
components on overall architecture and per-
meability structure is crucial to a better un-

1028

derstanding of heterogeneity and anisotropy
in fault zones. Field-based fault zone archi-
tectural data can then be evaluated in the
context of permeability structure and for-
mative deformation processes by using the
quantitative scheme and architectural indices.

CONCLUSIONS

Fluid flow in upper-crustal, brittle fault
zones depends on fault zone architecture
and permeability structure. We represent
these aspects of fault zone structure and hy-
drogeology in the qualitative and quantita-
tive schemes presented in this paper. The
schemes are based on a three-component
fault zone model that includes a fault core,
damage zone, and protolith. This concep-
tual model is used to delineate the distinct
structural and hydrogeologic regimes of a
fault zone. A conceptual scheme with four
end members is used to identify the range of
possible and observed configurations of the
three fault zone components. A second,
more quantitative scheme, represents vari-
ations in fault zone structure by using archi-
tectural indices. Adopting these schemes
provides a consistent framework for evalu-
ating how the permeability structure of fault
zones controls fluid flow in diverse struc-
tural regimes.

There is a clear need to continue field-
based characterization and sample collec-
tion to determine the factors that control
fluid flow in fault zones. This work should be
done in each fault zone component, on a
variety of fault zone types developed within
different lithologies over a broad range of
scales. Once refined quantitative data are
added to the scheme, new axes may be
added. These might include time or lithol-
ogy axes that would make the schemes more
comprehensive and possibly provide a pre-
dictive tool for better understanding fault
zone architecture and permeability struc-
ture. The role of fluids in faulting processes,
as well as the growing concerns of fault-
related utilization of ground-water, hydro-
carbon, mineral, and geothermal resources,
makes understanding and characterizing
fault zone architecture and permeability
structure critical at various times through-
out the evolution of a fault zone.
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Figure 4-9

Potential for Interbasin Groundwater Flow within the Geologic Study Area
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Figure 4-9

Potential for Interbasin Groundwater Flow within the Geologic Study Area
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Hydrogeologic Map and Cross Section of Northeastern Spring Valley
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Hydrogeologic Map and Cross Section of Northeastern Spring Valley
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Hydrogeologic Map and Basin Boundaries of
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Figure 5-28
Map and 2D Model of DELA1
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Hydrogeologic Map and Cross Section of Area between Butte Valley and Jakes Valley
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Figure 5-8
Isostatic Residual Gravity Field in Butte and Jakes Valleys and Vicinity, Nevada
SNWAEXhIbit

58


ballashd
Typewritten Text

ballashd
Typewritten Text
SNWA Exhibit 58


688,000
1

710,000 732,000 Legend
1

4,080,000
1

4,060,000
1

216
GARNET
VALLEY

TABLE
MOUNTAIN
BASIN

\éés..?“ 3 j,"( Town
LI A= . = Major Road

. Potential for
Groundwater Flow
Across Hydrographic
Area* Boundary
== Permissible
| ikely
Unlikely
Hydrogeology
Map Unit - Description

1
4,080,000

220
LOWER
MOAPA

VALLEY

Tv  Tertiary volcanic rocks

Cretaceous-Triassic

KRs :
clastic rocks
PP Permian-Pennsylvanian
C carbonate rocks
MO Mississippian-Ordovician
C carbonate rocks
& Cambrian carbonate
222 € rocks
VIRGIN Cambrian-Pre-
AIVER Cambrian clastic rocks
Pre-Cambrian
p€m

metamorphic rocks

/VALLEY

// - Open water
Regional Faults

W -1 ..

pr— _T_ - o o Strike-slip and
= Oblique-slip fault
At .

1
4,060,000

® Normal fault

A {g ® Thrust fault
3 Subsidiary Faults
e 218 S L — — . <2 Normal fault
CALIFORNIA .7 (3 Strike-slip and
—— e D0 N ;
" Oblique-slip fault
A— — — . « - Thrust fault
~ — — . .2 Detachment fault
s — — . ., Quaternary

" Normal fault
Regional and subsidiary faults solid where
known; dashed where inferred; dotted where
concealed; dotted and queried where uncertain.
Arrows show direction of lateral movement.
Bar and ball on downthrown side of fault.
awtooth on upper plate.

MAP ID 18273-3210 05/17/2011 BP

g g
3 S S
O - =)
H
3 1:350,000 3 R
S Y < |
1.0 1 2 215 d S o N
i ™ e ™| : BLAGH L © b ‘ L
i y SWOUNTAINS W7 o
[ —L— N | AREA ||
688,000 710,000 Govaaped fom 30-m DEN. Sun A 45 Acimath 315+

*Hydrographic Area name and number shown

Figure 4-16
Hydrogeologic Map of Coyote Spring Valley to Lake Mead
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Hydrogeologic Map and Cross Section of

Southern Coyote Spring Valley and Hidden Valley SNWAEXhibit

58


ballashd
Typewritten Text

ballashd
Typewritten Text
SNWA Exhibit 58


4,064,000

4,060,000

CALIFORNIA
WASH

QTs

700,000 704,000 708,000 712,000
1 . 1 ] 1
(=3 o
s | Ppe S
ol pum O
© ©
SF (\q % 205 SF
Arr ow C3aYe ° (AN LOWER
. \ MEADOW
. VALLEY
Muddy WASH !
River 9
PPc Springs N

1
4,064,000

° o
=i O O O KRN0 . o 8
- . | . Q Y QTs S
PPc . 2 2 S
I . N <
PPc . 3
. . 4 . W E
. . l . %
— : ° L] I
L4 L]
=™ 3 QTs PPc) % aTs : | g ,
. 5 > . | 1:100,000
. . o l ‘ = rT_ 0.5 0 0.5
a 3 Q . - 0
.
. 4 . M Miles
MRSA MRSA'
West &
~~ 3,000
g
© 1,250
£
c -500
S
E=]
Y -2,250
<
W 4,000 ; , —L 4,000
8 3 3
Distance (Feet) S S S
Vertical Exaggeration = 0 0 =] e 1:100,000
*Hydrographic Area name and number shown
Legend .
9 Regional Faults
Hydrogeology
H c e = =m=® ® ® Normalfault
Map Unit - Description B * Town o o e .
=3 a T d PR S g‘g'l!‘e's“pl,a”fd 1t Nori American et 1083 Zone 11N et silsnads
s uaternary-Tertiary sediments = ique-slip fau ) ) developed from 30-m DEM, Sun Angle 45", Azimuth 315+
Solid where known; dashed wh?re inferred; dotted where Cross Section pl’OfIle
PPc Permian-Pennsylvanian carbonate rocks concealed. Aumows show dvection of lteral movement. Bar @  Spring
MOc Mississippian-Ordovician carbonate rocks Subsidiary Faults ~N~ River
— — —..% Normal fault ~‘w~~-  Intermittent Stream

Potential for Groundwater Flow
Across Hydrographic Area* Boundary

m—  |jkely

Unlikely

. Strike-slip and
Oblique-slip fault
. Quaternary

Normal fault
Solid where known; dashed where inferred; dotted where
concealed; dotted and queried where uncertain. Bar and
ball on downthrown side of fault.

MAP ID 18384-3211 05/18/2011 JAB/BP

State Route

Figure 4-17

Hydrogeologic Map and Cross Section of the Muddy River Springs Area
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Potential for Interbasin Groundwater Flow within the Geologic Study Area

SNWAEXhibit 58


ballashd
Typewritten Text
SNWA Exhibit 58


Volume 3

Physical Settings of Selected Springs in
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posei wine workings,

A Fiely iaspection was made during January 13%3 to in-
vestisate surface condiflions and to observe ground-water con-
dltions in fthe Deep Kuth Mlne., An inspection was made cf the
various open pits in the area and the underground workings of
the Cesp Kuth Rine., In additicn to the field inspection, a
study was also made of the ground-water Information In the
fites of the Nevada Mines Civision at Rufth and In U. 5.
Geological Survey Professional Paper 96 (The Geoloay and Gre
Deposlts of the Ely, Nevada, by Arthur C. Spencer). The
ground-water problem was Jiscussed with J, Ct Kinnear, Jr.,

. C. Nispal, L. A. Green, H. L. Bauser, Jr., and othar mining
officiais. Following the fleld inspection, tha probleﬁ was
discussegd with S. N, #lchaelson and C. B, Michaelson at tha
Kennecott Coppar Corporaflon offices in Sait Laka .lity.

The ore body at the Deep Ruth Mine éonsisfs of weathered
monzonitey poryphry. It is surrounded Dy beds of shale and
limastone. The monzonite and the boeds of shale are relatively
Imparmeable and yield vary littla ground water. The limestones,
howaver, contain many fractures, faults and solution openings
that contain large quentlfies cf ground water in storage. Some
of the fracture sysfems include openings that are closely inter-
cennected and can readily transmit large quantities of ground
water,

The timestones that produce water in the Deep Ruth Mlna
crop out extensively at the land surface, where they are
readily recharged whenaver modsrataly heavy precipltaticn occurs.

Kuth, Nevada is located in a semi-arld raeglon where the yearly

BHP 1034
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Figure 4-10

Hydrogeologic Map and Cross Section of Area between Butte Valley and Jakes Valley
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