

Division of WATER RESOURCES Humboldt River

An Overview of 2024

October 2, 2024

Landon Harris Colton Brunson

DEPARTMENT OF CONSERVATION & NATURAL RESOURCES

2024 Irrigation Season

- Palisade: 313,468.08 AF (3/15-9/15)
- 80 days of a 1921
- Imlay: 217,449.67 af (3/15-9/15)
- Lower Humboldt
- Upper Humboldt

Figure 1- Humboldt River Basin (Courtesy of U.S. Geological Survey (USGS), Water Resources Division, Carson City, Nevada)

2023 Irrigation Season

- Palisade: 454,516.89 af (3/15-9/15)
- 91 days of a 1921
- Imlay: 258,636.44 af (3/15-9/15)
- Lower Humboldt
- Upper Humboldt

42

The Court finds that it requires 698,379 acre feet to satisfy priorities to the year 1928 over the entire river, and 306,171 acre feet to satisfy such priorities below Palisade, and 392,208 acre feet to satisfy such priorities for the Elko District. The average flow of the stream at Palisade for 28 years is estimated at 255,650 acre feet.

3

The evidence shows, and the Court finds, that the climatic variations between the lower and upper reaches of the Humboldt River are great, and it is exceedingly difficult to determine when seasonal irrigation flow may, with any degree of certainty, be expected. The waters from Palisade require from three to six weeks to reach Lovelock Valley at the lower end of said stream system, and the flow varies from year to year and during the same year. The tributaries of the Humboldt River, serving priorities, vary as between themselves from year to year, and during the same year, as to time of flow, amount of flow and season of year in which the flow may occur.

The evidence shows, and the Court finds, that as an example Huntington Creek, in Elko County, one of the tributaries of the South Fork River, has a flow commencing in the usual season about the 1st day of April, flowing for a period of approximately 30 days, and then ceases, and after that time there is no flow of water in that tributary, although during the time of flood this stream carries considerable amounts of water. The next tributary to the South Fork River and to the east is Smith Creek, which in the usual season has its flow from approximately the 1st day of May until the 20th day of June, both dates being approximate, at which time the tributary ceases to flow. The next tributary to the South Fork River, being the South Fork River proper, has its flow starting usually about the 1st day of May, and flowing water until approximately the 5th day of July or later. Numerous other tributaries fall into the general class of these tributaries, having early flows for short periods, later flows for different periods, and still later flows for longer periods. The tributaries from the north, having southern exposures, generally flow earlier than the tributaries from the south having northern exposures. The time of irrigation must of necessity vary to meet seasonal conditions, but the evidence shows that the earlyflow streams have only small areas in cultivation, at or near the source of the stream, whereas the later-flow streams have larger areas in cultivation practically along their entire lengths.

4

The Court finds that the water of the stream system is fully appropriated, and that in the average year, as shown by the flow in the said stream system, there is no surplus water for irrigation. The Court makes no finding on the water available for storage water in the nonirrigation season on the Humboldt River stream system.

The Court finds that the provisions of the Order of Determination providing for four districts is not sustained by the evidence. The evidence shows, and the Court finds, that there should be but two districts on the Humboldt River stream system, making Elko a district down to Palisade, to be known as District No. 2, and Battle Mountain, Winnemucca and Lovelock areas a single district, to be known as District No. 1, this finding being amplified by the findings in the other paragraphs. Herein the Court finds that the designation of "districts" is the most intelligible way of specifying the system to be used in the distribution

*Ordered stricken by Judge H. W. Edwards, page 9, Sec. 2, Intervening Orders.

Acres Irrigated and Acre-feet of Water

pg 27-28 Finding 41 & 42 Bartlett Decree

Total	285.238 Acres	698.379 Acre-feet
Above Palisade	148,319 Acres	392,208 Acre-feet
Below Palisade	136,919 Acres	306,171 Acre-feet

Page 28 Finding 42 Bartlett Decree "The average flow of the stream at Palisade for 28 years is estimated at 255,650 acre feet."

Questions?

Humboldt River Region Water Resources update

Humboldt River Basin Stakeholder update

March 8, 2022, Lovelock and Winnemucca March 9, 2022, Elko NV

HUMBOLDT RIVER REGION WATER RESOURCES UPDATE -OUTLINE

- Intro and other NDWR updates (Adam Sullivan, State Engineer)
- Water supply update and forecast (Levi Kryder, Chief of Hydrology, NDWR)
- Capture 101 and Capture Study overview (Kip Allander, Hydrogeologist, NDWR)
- Model results and Tools (USGS and DRI)
 - Regionwide ET Analysis (Justin Huntington, Research Professor, DRI)
 - Upper Basin Model (Rosemary Carroll, Assoc. Research Professor, DRI)
 - Middle Basin Model (Kyle Davis & William Eldridge, Hydrologists, USGS)
 - Lower Basin Model (Cara Nadler, Hydrologist, USGS; Susan Rybarski, Asst. Research Scientist, DRI)
- Break (10 mins)
- Order 1329 overview (Jon Benedict, Hydrogeologist, NDWR)
- Moving forward with Conjunctive Management Framework (Adam Sullivan, SE)
- Q&A

INTRO AND OTHER NDWR UPDATES

NDWR

THE "WATERMASTER" IS RETIRING

The Watermaster: Commissioner watches over the Humboldt River

Flooding allows everyone to get the precious water they need

> By Forrest Newton The Humboldt Sun

WINNEMUCCA - All that water running down the Humboldt River is not available to just anybody that wants it and has not been since 1939. because it already belongs to somebody

"Basically there isn't any other water for appropriation," Humboldt Water Distribution District Water Commissioner Steve Del Soldato said.

From Battle Mountain to Rve Patch Reservoir, he watches over the flow of water and does his best to make sure those who are allocated the water actually get it - if it is available.

"There's been years where some of these ranches don't get rrigated at all," he said.

Additionally, Del Soldato's area ranges from Quinn River to Paradise to Kingston Creek. The Pershing County Water Conservation District takes over at Rye Patch.

oversees the entire Humboldt a stream or river.

FORREST NEWTON . The Humboldt Sur

Humboldt Water Distribution District Water Commissioner Steve Del Soldato holds a top The Sixth District Court setting wading rod with an attached current meter used to measure depth and velocity of

Steve Del Soldato is retiring March 29th

Winnemucca District water commissioner 1992 – 2022

Colton Brunson will be filling his waders

IMPROVEMENTS IN GROUNDWATER PUMPING DATA

2022: REPAIRS AT SOUTH FORK DAM

PUBLIC NOTICE OF RECENT WELL DRILLING SCAMS

Property owners are encouraged to take these steps to ensure they are working with a licensed driller:

- Check the NDWR website to make sure the well driller has an active license
- Contact NDWR to confirm the well driller has submitted notification and received approval to drill

WATER SUPPLY UPDATE AND FORECAST

NDWR

January 26, 2021

March 3, 2022

U.S. Drought Monitor Nevada

Map released: Thurs. March 3, 2022

Data valid: March 1, 2022 at 7 a.m. EST

Authors

United States and Puerto Rico Author(s): Brad Rippey, U.S. Department of Agriculture

Pacific Islands and Virgin Islands Author(s): Ahira Sanchez-Lugo, NOAA/NCEI

The Drought Monitor focuses on broad-scale conditions.

https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?NV

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/snowpackMaps/

https://www.nrcs.usda.gov/Internet/WCIS/AWS_PLOTS/basinCharts/POR/WTEQ/assocHUCnv_8/upper_humboldt.html

March 7, 2022

.....

13

IRRIGATION SEASON FLOW AT PALISADE

50,000 acre-feet less median flow during 1991 – 2020 period than during 1981 – 2010 period.

END OF FEB 2022: NRCS RESERVOIR STORAGE COMPARISON

Rye Patch Reservoir						
Current		Last Year				
KAF	% of Capacity	KAF	% of Capacity			
9.2	5	65	33			

Lahontan Reservoir					
Current		Last Year			
KAF	% of Capacity	KAF	% of Capacity		
106.8	34	108.3	35		

CUMULATIVE ZERO FLOW DAYS AT IMLAY GAGE SINCE 1945

Humboldt River at Imlay is increasingly intermittent during drought periods.

CUMULATIVE ZERO FLOW DAYS AT IMLAY GAGE SINCE 1945

Humboldt River at Imlay is increasingly intermittent during drought periods.

ANALOGOUS DROUGHT COMPARISON

RESOURCES

National Weather Service <u>https://www.weather.gov</u>

NRCS

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring

Great Basin Weather and Climate Dashboard

https://gbdash.dri.edu

USGS National Water Dashboard

https://dashboard.waterdata.usgs.gov/app/nwd/?region=lower48&aoi=default

CAPTURE 101 AND STUDY OVERVIEW

NDWR

WHAT IS STREAM CAPTURE? CAPTURE 101

Stream Capture = Streamflow Depletion

A

WATER MANAGEMENT PERSPECTIVE

CAPTURE STUDY COMPONENTS

Regional Evapotranspiration Study

* Model results are provisional and subject to change*

REGION WIDE ET ANALYSIS

DRI

Groundwater Discharge via Evapotranspiration

Justin Huntington, Research Professor, Hydrology

Paradise Valley, NV

Groundwater Discharge via Evapotranspiration

Objective

- Delineate areas where phreatophytes discharge groundwater through the process of evapotranspiration
- Use best available science to estimate the rates of groundwater evapotranspiration (ETg) from phreatophyte vegetation
- Summarize and compare to previous studies, and provide results to USGS and DRI groundwater modeling groups to use for calibration of groundwater models

Satellite and Climate Data

1960s-1980s

1980s-current

Geospatial Data Approach

- Previous phreatophyte boundaries, aerial imagery, Landsat imagery, digital elevation models, soils data, wells and water levels, field surveys of phreatophytes
- Landsat satellite imagery to compute vegetation indices
 - 1985-2015, summer period
- gridMET weather data for estimating precipitation and evaporative demand
 - Solar radiation, temperature, humidity, and wind speed

Landsat

Groundwater Discharge Boundaries

True Color NAIP Imagery

Vegetation Index (30m)
Groundwater Discharge Boundaries

Groundwater Discharge Boundaries

Carico Lake Valley

Crescent and Pine Valley Areas

Landsat and Climate -> ETg Rates

Moreo et al (2007)

$$ET^* = \frac{ET - PPT}{ETo - PPT}$$

 $ET^* = \beta_0 + \beta_1 EVI + \beta_2 EVI^2$

Rate of ETg (ft/yr) = (ETo - PPT) * ET^*

Groundwater ET Distribution

Kelley Creek Area, Clovers Area, and Pumpernickel Valley

Evapotranspiration Discharge

Comparison to Previous Studies

Figure 7b. Spatial distribution of ET Units and 1985-2015 median annual ETg rates for Huntington Valley, upper Humboldt River Basin.

Comparison to Previous Studies

Report and Data Access

Groundwater Discharge from Phreatophyte Vegetation, Humboldt River Basin, Nevada

Justin Huntington Matthew Bromley Blake Minor Charles Morton Guy Smith

February 2022

Publication No. 41288

Prepared by Division of Hydrologic Sciences, Desert Research Institute

Prepared for

Nevada Department of Conservation and Natural Resources, Division of Water Resources

https://www.dri.edu/humboldt-etg

C 🔒 dri.edu/project/humboldt-etg/

् 🔄 🚖 🗐 🔏। Home Partner With Us Faculty & Staff Directory Careers Press Room Contact

⊜DRI

Who We Are * What We Do * News & Events * Our Impact DONATE

Groundwater Discharge from Phreatophyte Vegetation, Humboldt River Basin, Nevada

Project Description

Groundwater evapotranspiration (ETg) from phreatophyte vegetation is the primary component of natural groundwater discharge within the Humboldt River Basin. This report summarizes previous study estimates of ETg, and details methods and results of updated groundwater discharge areas. ETg rates, and ETg volume estimates developed in this study. Estimates derived in this study are summarized for the period of 1985-2015 and were based on a consistent placebased approach that relies on Geographic Information System and groundwater level data and a least-squares regression model that relates Landsat vegetation indices with evaporative demanda, precipitation, and in-situ estimates of phreatophyte ET. Median annual ETg rates and volumes reported in this study are representative of pre-development conditions. Where irrigated areas were identified, ETg rates were adjusted to reflect the phreatophyte vegetation indices thickly occupied irrigated areas prior to cultivation. Results from this study were used to inform groundwater modeling studies by the U.S. Geological Survey and the Desert Research Institute, in cooperation with Nevada Division of Water Resources, to support conjunctive water

CONTACT

Justin Huntington, PhD Justin.Huntington@dri.edu

LOCATION Desert Research Institute 2215 Raggio Parkway Reno, NV 89512

> DIVISION Hydrologic Sciences

Results and datasets are summarized and documented in the form of maps, graphs, tables, geodatabases, and metadata following Federal Geographic Data Committee standards and are available at www.dri.edu/humboldt.etg. Estimated pre-development total annual ETg volumes for the upper, middle, and lower Humboldt River basin are 158,500, 361,600, 55,900 ac-fvyr, and 85,700, 248,400, and 46,100 ac-fvyr when riparian lands are excluded, respectively. Discharge areas and median annual ETg rates and volumes were compared to previous estimates for respective ET Units and Hydrographic Areas. Results reported for the upper Humboldt River Basin indicate that potential areas of groundwater discharge are generally lower, and ETg rates and Smith (2013). Results reported for the middle Humboldt River Basin indicate that ETg volumes are generally less than one half of the ETg rates and volumes reported by Plume and Smith (2013). Results reported for the middle Humboldt River Basin indicate that ETg volumes are higher in six, and lower in seven HAs when compared to previous estimates in the middle Humboldt River Basin are also generally less than one half when compared to those reported by Berger (2000). Differences in ETg volumes are primarily due to differences in ETg rates and differences in groundwater discharge areas.

This study used place-based satellite remote sensing, climate and GIS datasets, groundwater levels, and in-situ based phreatophyte ET empirical regression models to estimate potential areas of groundwater discharge, and ETg rates and volumes within the Humboldt River Basin. Future study estimates of ETg within the Humboldt River Basin could be improved by refining delineation of groundwater discharge areas, variability in ETg with respect to climate and land use change, and collection of in-situ ET estimates in areas where large uncertainty exists.

Report - Groundwater Discharge from Phreatophyte Vegetation, Humboldt River Basin, Nevada

Appendix A – Previously Reported Groundwater Discharge Areas, ETg Rates, ETg Volumes, and Study Source Information

Appendix B – Meteorological Station Mean Annual Ratios of Station Calculated ASCE Grass Reference ET (ETo) to Estimated Gridmet ETo

Appendix C - Percent Change in Median ETg for Select Basins

Appendix D - Groundwater Discharge Areas and Median ETa Volumes for Each ET Unit and HA

Appendix E Part 1 – Annual time series of median EVI, ET, ETg, ETo, and PPT rates from 1985-2015 for all groundwater discharge areas inclusive of riparian discharge areas

Appendix E Part 2 – Annual time series of median EVI, ET, ETg, ETo, and PPT rates from 1985-2015 for groundwater discharge areas excluding riparian discharge areas

Appendix F - Bar Charts Illustrating Estimated Discharge Areas, ETg Rates, and ETg Volumes

GIS Data - Potential areas of groundwater discharge

GIS Data - Geotiff raster of median annual groundwater evapotranspiration

GIS Data – Groundwater discharge areas digitized from NDWR Water Resource Bulletin and Reconnaissance Series reports

Report and Data Access

http://webgis.water.nv.gov/

-> Nevada Hydrology Data

Mapping Data Links

Mapping Applications	
Water Rights	
Nevada Hydrology Data	
Adjudications	
Lower White River Flow System	
Newlands Project	
Mason and Smith Valley Groundwater Pumping & Surface Water Deliveries	
Pahrump Water Rights Relinquishment Mapping Application	
NDWR Water Level Dashboard	
Nevada Water Use Map	

IQR code

Appendix D. Groundwater discharge areas and median ETg volumes for each ET Unit and HA.

			Phreatophyte Ri		parian Meadow		leadow	Irrigated Cropland		Bare Soil		Total		Total w/o Riparian		
	Hydrographic Area		Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume
Hydrographic Area	Number	Basin	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)
Antelope Valley	57	Middle	6,533	1,499	-	-	-	-	2,285	703	-	-	8,818	2,202	8,818	2,202
Boulder Flat	61	Middle	63,914	28,698	31,352	30,195	-	-	1,541	793	72	4	96,878	59,690	65,526	29,495
Buffalo Valley	131	Middle	35,557	5,460	-	-	-	-	-	-	10,106	506	45,662	5,965	45,662	5,965
Carico Lake Valley	55	Middle	10,020	2,665	-	-	229	153	306	181	771	39	11,326	3,038	11,326	3,038
Clovers Area	64	Middle	107,969	28,959	15,640	17,863	-	-	536	225	409	20	124,554	47,067	108,914	29,205
Crescent Valley	54	Middle	54,774	13,820	1,164	775	-	-	782	995	3,826	191	60,546	15,782	59,382	15,007
Dixie Creek-Tenmile Creek Area	48	Upper	5,423	3,652	2,153	1,620	4,176	2,803	-	-	-	-	11,751	8,075	9,599	6,455
Elko Segment	49	Upper	790	440	11,069	13,297	164	117	1,129	1,503	-	-	13,151	15,356	2,082	2,059
Grass Valley (138)	138	Middle	45,275	14,238	-	-	857	522	754	464	23,055	1,154	69,941	16,377	69,941	16,377
Grass Valley (71)	71	Middle	31,648	10,413	-	-	-	-	6,435	3,136	-	-	38,083	13,549	38,083	13,549
Hardscrabble Area	68	Middle	-	-	532	341	-	-	-	-	-	-	532	341	0	0
Huntington Valley	47	Upper	16,751	9,584	3,705	3,385	11,724	5,802	256	241	-	-	32,436	19,011	28,731	15,626
Imlay Area	72	Lower	27,263	3,420	6,554	6,646	-	-	-	-	-	-	33,817	10,066	27,263	3,420
Kelley Creek Area	66	Middle	38,841	9,694	3,381	4,286	-	-	2,486	905	38	2	44,745	14,887	41,364	10,600
Lamoille Valley	45	Upper	8,368	7,670	2,941	3,718	14,255	9,689	884	923	-	-	26,448	22,000	23,507	18,282
Little Humboldt Valley	67	Middle	8,895	7,166	1,910	1,251	1	1	-	-	-	-	10,806	8,418	8,896	7,167
Lovelock Valley	73	Lower	54,250	13,616	3,062	3,122	-	-	45,524	27,614	11,745	588	114,581	44,940	111,519	41,818
Lovelock Valley (Oreana Subarea	73A	Lower	3,221	854	74	38	-	-	-	-	-	-	3,294	891	3,221	854
Lower Reese River Valley	59	Middle	85,284	17,313	7,071	5,732	-	-	2,893	1,478	3	0	95,251	24,523	88,180	18,791
Maggie Creek Area	51	Middle	1,735	903	6,316	5,644	-	-	301	316	-	-	8,352	6,862	2,036	1,219
Marys Creek Area	52	Middle	-	-	1,280	1,445	85	69	-	-	-	-	1,365	1,515	85	69
Marys River Area	42	Upper	13,897	7,001	22,833	23,357	6,369	4,956	4,584	1,813	-	-	47,684	37,126	24,851	13,769
Middle Reese River Valley	58	Middle	10,930	2,514	-	-	-	-	434	188	4	0	11,368	2,702	11,368	2,702
North Fork Area	44	Upper	15,288	6,401	8,838	7,887	12,153	7,171	2,154	1,918	-	-	38,433	23,378	29,595	15,490
Paradise Valley	69	Middle	43,114	12,126	744	608	39,685	12,404	13,004	4,530	-	-	96,547	29,668	95,803	29,060
Pine Valley	53	Middle	25,581	13,201	1,436	1,166	3,186	1,700	2,072	1,947	-	-	32,274	18,015	30,838	16,849
Pumpernickel Valley	65	Middle	29,835	7,006	14,375	17,028	-	-	1,170	480	14	1	45,394	24,514	31,019	7,487
Rock Creek Valley	62	Middle	9,006	2,978	-	-	-	-	98	64	-	-	9,104	3,042	9,104	3,042
South Fork Area	46	Upper	520	472	3,600	4,561	5,579	3,703	-	-	-	-	9,698	8,736	6,098	4,175
Starr Valley Area	43	Upper	4,820	3,280	11,889	14,935	11,965	6,231	684	362	-	-	29,358	24,808	17,468	9,873
Susie Creek Area	50	Middle	7	6	2,574	1,756	39	17	-	-	-	-	2,620	1,778	46	23
Upper Reese River Valley	56	Middle	41,595	25,846	-	-	50	72	1,337	961	-	-	42,982	26,879	42,982	26,879
Whirlwind Valley	60	Middle	6,874	2,347	4,084	4,308	-	-	-	-	-	-	10,958	6,655	6,874	2,347
Willow Creek Valley	63	Middle	6,944	3,653	-	-	3,584	2,186	-	-	-	-	10,528	5,839	10,528	5,839
Winnemucca Segment	70	Middle	1,684	749	19,351	20,821	848	310	480	399	-	-	22,362	22,279	3,011	1,457
Totals			816,604	267,641	187,925	195,784	114,946	57,907	92,127	52,138	50,042	2,504	1,261,643	575,974	1,073,718	380,189
L						,				,			· · ·			

Appendix D is the result of

1 computing the spatial average ETg rate for each ET Unit for each year as a table of values

2 reading the table of spatial average ETg rates for each year, and computing the temporal median for each ET Unit

3 multiplying the temporal median ETg rate by respective ET Unit areas to produce volumes

4 summing the median ETg volumes across all ET Units, and all ET Units less riparian.

Summary

- The purpose of this study was to develop and summarize new groundwater discharge areas, ETg rates, and ETg volumes within the Humboldt River Basin using best available science.
- The approaches applied in this study to estimate ETg were based on state-of-the-art satellite remote sensing, climate modeling, GIS datasets, groundwater levels, and in-situ ET estimates from phreatophyte vegetation in the Great Basin
 - Delineated and revised potential areas of groundwater discharge
 - Estimated ETg rates from phreatophyte vegetation using a measurement-based regression model
- Summarize ETg rates and volumes by land cover type (e.g. phreatophyte, riparian, meadow) and compared to previous studies
- Provided results to USGS and DRI groundwater modeling teams for integration into models
- Produced a technical report and GIS data that are publicly available -<u>https://www.dri.edu/humboldt-etg</u>

UPPER HUMBOLDT RIVER BASIN MODEL

DRI

Upper Humboldt River Capture Model

Rosemary Carroll Desert Research Institute

Humboldt Stakeholder Meeting March 8-9, 2022

Outline

- Upper Basin Modeled Characteristics
- Water Budget
- Capture
 - Historical (1960-2016)
 - Predictive (2017-2116)
 - Analysis
- Project Status

Cells 900 ft x 900 ft: ~half a million active cells

Model Characteristics

USGS Stream Gauge

LIIIII

A. Gaining stream

Stream with streambed and streambank sediments less permeable than surrounding aquifer sediments.

Simulating Rivers

- MODFLOW RIV package
- Allows gaining and losing based on water table elevation.
- Does not allow for ephemeral conditions.
- Riverbed conductance calibrated to match observed streamflow
- Riverbed conductance is important to estimated stream capture.

Pre-GW Development Water Budget

Inflows: Recharge adjusted at hydrographic basin scale to match estimated outflows.

o Previous Studies: 147,300-470,000 AFY

o Updated Maxey-Eakin: 253,000 AFY

o Simulated Total=177,443 AFY

<u>Outflows</u>: Streamflow, springs, interbasin gw flow and phreatophyte Evapotranspiration (ET)

River Capture

The amount of pumping in each basin explains a significant component of stream capture (r^2 =0.65). The remaining variability is due to proximity to stream, subsurface hydraulic properties, riverbed permeability (conductance).

River Capture Maps

Year 1

• River capture to satisfy hypothetical pumping is very low & limited to locations immediately adjacent to a river.

River Capture Maps

Year 1

• River capture to satisfy hypothetical pumping is very low & limited to locations immediately adjacent to a river.

Year 10

• Capture increases, expands away from the river and spatial variability along river reaches emerges.

River Capture Maps

Year 1

• River capture to satisfy hypothetical pumping is very low & limited to locations immediately adjacent to a river.

Year 10

• Capture increases, expands away from the river and spatial variability along river reaches emerges.

Year 50

- Capture continues to increase and expand away from the river corridors
- Capture in dense stream networks merge.

50-year Capture Maps

Project Status

- Report written: August 2021
- Reviewed by Co-Authors: September 2021
- Internal & External Review: October-November 2021
- Report Revisions: December 2021
- **Review by NDWR**: anticipate completion March 2022
- Possible Revisions: April 2022
- Final Review: May 2022.

Evaluation of Stream Capture Related to Groundwater Pumping, Upper Humboldt River Basin, Nevada

Rosemary W.H. Carroll	
Gregory Pohll	
Hai Pham	

April 2022

Publication No. 41XXX

MIDDLE HUMBOLDT RIVER BASIN MODEL

USGS

Middle Humboldt Capture Model

Middle Humboldt Team: Kyle Davis, William Eldridge

USGS, Nevada Water Science Center

Humboldt Stakeholder Meeting: March 8/9, 2022

All model results are provisional and subject to change

EXPLANATION

Layer 1: Basin fill deposits—playa, valley floor, alluvial slope, fluvial deposits (thickenss 25 to 50 feet)

- Layer 3: Lower basin fill—valley floor, fluvial deposits (thickness up to 400 feet)
- Layer 4: Older basin fill—Tertiary fine-grain semi-consolidated sediments (thickness up to 1,000 feet)

Layer 6: Lower hard rock—clastic sedimentary, carbonate and mixture, intrusive, metamorphic, clastic sandstones (thickness variable ~1,800 feet)

Groundwater inflow

Groundwater outflow

Surface water flow direction

-118°30

-118°

-117°30'

-117°

-116°30'

-115°30'

-116°

Steady-state distribution

All model results are provisional and subject to change

Pumping

All model results are provisional and subject to change

Capture Map – Imlay Depletion: 10-yr and 25-yr

Capture Map – Imlay Depletion: 25-yr and 50-yr

Capture Maps – Stream, ETg, and Storage (50-yr)

All model results are provisional and subject to change
Stream Capture: Non-Mining Pumping

All model results are provisional and subject to change

Stream Capture: Mining Pumping

All model results are provisional and subject to change

Stream Capture: All Sources

Change in Streamflow at Imlay: Mining Operations

Explanation						
Carlin North	Carlin South	Cortez	Cove McCoy	Goldstrike		
Lone Tree	Pinson	■ Turquoise Ridge ■ Twin Creeks				

All model results are provisional and subject to change

Groundwater Pumping and Stream Capture

System efficiency: percentage of Palisade streamflow measured at the Imlay gage-observed and simulated

All model results are provisional and subject to change

Humboldt Capture Query Tool – Query page

Humboldt Capture Query Tool – Results page

Humboldt Capture Query Tool – Exported results

Humboldt Capture Query Tool Results

After 28 years of pumping at location 40.718702, -117.004395, at a depth of 10 feet below land surface, groundwater is derived from the following sources:

Years of Pumping	Streamflow Depletion	Salvaged ET	Storage Change	Drain Capture
1	0.1%	1.4%	98.5%	0.0%
5	9.6%	9.6%	80.8%	0.0%
10	19.8%	17.8%	62.4%	0.0%
20	27.9%	28.5%	43.6%	0.0%
25	29.6%	32.2%	38.2%	0.0%
28	30.4%	34.1%	35.5%	0.0%
50	33.8%	42.6%	23.6%	0.0%
75	35.2%	47.5%	17.3%	0.0%
100	36.0%	50.1%	13.9%	0.0%

Middle Humboldt Product Status

- Report, Capture Query Tool, and Model Data Release in production
- Report to colleague review this month (March 2022)
- Capture Query Tool and Model Data Release after return of report colleague reviews
- Anticipated availability of products: October 1, 2022

LOWER HUMBOLDT RIVER BASIN MODEL

DRI/USGS

Lower Humboldt River Basin Model Update

Susie Rybarski/Cara Nadler March 8-9, 2022 DRI/USGS

* Model results are provisional and subject to change*

Model Domain

- 500 ft grid cell resolution
- Includes mountain block/bedrock
- 3 layers, generally representing clay (layer 1), alluvium/valley fill (layer 2), bedrock (layer 3)
- Thickness of clay layer set to 50 feet
- Depth to basement based on Ponce and Damar (2017) and used to define elevation of top of layer 3, with a minimum depth of 20 feet below land surface

Lakes and River

- Humboldt River simulated using River package (RIV)
- Rye Patch Reservoir simulated as a constant head boundary (CHD) using mean annual stage
- Pitt-Taylor Reservoirs, Toulon Lake, and Humboldt Lake not simulated as they are frequently dry and heads are unknown
- River conductance calibrated to estimated steady-state river loss of 9,900 acre-feet/year
- Simulated loss of 100 AFA determined by model given calibration to ET in Imlay area and local heads

Interbasin Flow

- Specified flux boundary applied along shared boundary with Middle Humboldt model (in review)
- Limited to extent of alluvial slope/fluvial deposits/playa/valley floor
- Inflow of 771 acre-feet per year based on current outflow from Middle Humboldt model

Recharge

	Mountain Block Recharge (AFY)				
Reference	Lovelock	Oreana	Imlay	Model Domain	Methodology
Everett and Rush, 1965	1,200	2,000			Maxey-Eakin, 1949
Eakin, 1962			4,000		Maxey-Eakin, 1949

- Mountain block recharge estimates from USGS Recon Reports distributed proportionally over Hardman map intervals
- Ag recharge rate applied as median of 1960-1990 regression (127,800 acre-feet per year)
- Simulated mountain block recharge = 5,700 acrefeet per year

Drains

- Represents agricultural runoff/recharge lost to sink; simulated using the MODFLOW Drain (DRN) package
- Drain bottoms set to 9 ft bls
- Drain outflow estimated to be ~18,000 AFA

Evapotranspiration

• ET zones applied over DRI polygons, estimated at 126,000 acrefeet per year (AFA).

Transient Pumping

- Domestic wells pumping outside of Lovelock Meadows service area simulated at 0.7 acre-feet per year.
- Public supply wells pumped at rates extrapolated backwards to 1960 based on population.
- Mining well pumpage extrapolated earliest known rates backwards to 1986.
- Irrigation well pumpage inversely proportional to the ratio of estimated ag recharge relative to the mean agricultural recharge 1960-1990.

Estimated Humboldt River Historical and Predictive Stream Capture

50 years, 10% or more all capture sources

Percentage of Pumping

Information Product Status

- Report written: March 2021
- Report reviewed by supervisor, colleagues, and specialist: April-September 2021
- Sent to publisher: December 2021
- Anticipated availability: Fall 2022

- Model archive drafted: March 2021
- Model archive reviewed: April 2021
- Second review: Spring 2022
- Anticipated availability: Fall 2022

COMPOSITE 50-YEAR CAPTURE MAP

NDWR

HUMBOLDT RIVER REGION 50-YEAR CAPTURE MAP

- Some disconnected reaches
- Mountains are masked
- Capture between models has different character
 - Upper has dense stream network.
 - Middle has many ephemeral/intermittent streams.
 - Lower represents finer/tighter aquifers
 - ET capturability differences.
- Boundary effects
 - External boundaries 'reflect' drawdowns

* Model results are provisional and subject to change*

END OF TECHNICAL PRESENTATIONS

ORDER 1329 OVERVIEW

NDWR

ORDER 1329 OVERVIEW

Acknowledges that groundwater pumping is causing stream capture that results in conflict.

New appropriations or water right changes that would increase capture from fully appropriated sources aren't being approved.

All applications reviewed and assessed for stream capture.

Capture is permissible if it can be offset by:

- Replacement surface water
- Withdrawn groundwater right with existing capture.

Establishes interim thresholds for capture offset.

Establishes goal of using Capture Studies for future capture management.

Articulates intent to establish public process to develop capture management framework.

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA

ORDER

#1329

ESTABLISHING INTERIM PROCEDURES FOR MANAGING GROUNDWATER APPROPRIATIONS TO PREVENT THE INCREASE OF CAPTURE AND CONFLICT WITH RIGHTS DECREED PURSUANT TO THE HUMBOLDT RIVER ADJUDICATION

I. OVERVIEW

WHEREAS, it is well established that the source of water to a pumping well originates from three primary sources; first from groundwater storage, then increasing over time from capture of streamflow (where present in a hydrographic system) and evapotranspiration.^{1,2} The terms "stream capture" or simply "capture," as used in this Order, refer to a reduction in streamflow caused by groundwater pumping. Decades of groundwater pumping in the Humboldt River Region (Region) has led to increasing capture of the Humboldt River and its tributaries, resulting in growing conflict with rights of the Humboldt Decree.

ORDER 1329 DOES NOT:

Predetermine the final capture management framework.

Apply to domestic well use or minor stock water use (<5 afy of capture in 50 yrs).

Provisional estimated Historical Capture for middle Humboldt River Basin*

TECHNICAL ASPECTS

Objective:

Utilize existing SW or GW right to avoid increasing capture that would otherwise cause conflict

Interim Thresholds:

- Evaluation Threshold
 - >10% capture after 50 years
- Long-term Threshold (50-yr Rule)
- Annual Threshold (80% Rule)

Replacement by SW Right

GW Right Withdrawal

DETERMINATION OF SURFACE WATER AVAILABILITY FOR REPLACEMENT ("WET WATER")

WET WATER FACTORS BASED ON 1912-1965 FLOW PALISADE GAGE							
	Upper			Lower			
Priority	Upper Harvest	Upper Meadow	Upper Diversified	Lower Harvest	Lower Meadow	Lower Diversified	
1861				1.000	1.000	0.908	
1862	0.999			0.998	1.000	0.907	
1863	0.981			0.982	0.992	0.907	
1864	0.933			0.897	0.975	0.907	
1865	0.929		0.908	0.890	0.975	0.906	
1866	0.911		0.907	0.859	0.973	0.906	
1867	0.907		0.905	0.852	0.971	0.905	
1868	0.903		0.903	0.844	0.970	0.905	
1869	0.898	0.962	0.904	0.834	0.970	0.905	
1870	0.882	0.959	0.903	0.802	0.967	0.904	
1871	0.795	0.920	0.881	0.701	0.926	0.872	
1872	0.779	0.912	0.876	0.685	0.913	0.859	
1873	0.680	0.839	0.791	0.586	0.818	0.752	
1874	0.627	0.788	0.734	0.517	0.719	0.612	
1875	0.618	0.779	0.722	0.509	0.708	0.595	
1876	0.589	0.753	0.685	0.475	0.663	0.531	
1877	0.567	0.728	0.649	0.448	0.619	0.467	
1878	0.553	0.711	0.627	0.432	0.597	0.436	
1879	0.536	0.690	0.605	0.417	0.575	0.416	
1880	0.520	0.674	0.584	0.400	0.551	0.382	
1881	0.517	0.672	0.581	0.397	0.548	0.376	
1882	0.516	0.672	0.581	0.396	0.547	0.375	

Wet Water Factors based on Mean Annual Hypothetical Deliveries 1912-1965

Provisional*

WHAT AFFECTS WET WATER DETERMINATION?

1882 PRIORITY EXAMPLE:

- Typical Year, 208,000 afs
- Delivery based on Palisade Flow

Upper Rights "wetter" than Lower Rights

Lower Humboldt Delivery

- Shorter Season of Use
- Sweet spot of runoff

Upper Humboldt Delivery

REPLACEMENT WATER EXAMPLE

89110 (UG) 90379 (Replacement)

*Supports ~5% Stream Loss

WITHDRAWAL OF GROUNDWATER EXAMPLE

41509 (Existing Right)90466 (Proposed Change)

Existing = 7.75 afa Changed Duty = 3.16 afa Withdrawn = 4.59 afa 0 0.25 0.5 Miles **Spring Creek** Stoffer Creek 41509 Memeter Creey blos, CNES/Altitus DS, USDA, USGS,

EXEMPTIONS

- Applications whose proposed PODs cause capture at <10% during 50-year period
- Change applications whose proposed PODs cause same or less capture than existing PODs
- Applications whose proposed PODs cause < 5 afy capture during 50-year period
- Temporary change applications to provide for multiple PODs from Mining, Milling, and Dewatering operations (Centralized POD)

TAKE HOME MESSAGES

- UG Applications within ~10 miles of fully appropriated stream likely be in capture zone.
- Applications for <5 afy are generally exempt.
- Applications that would otherwise be denied, can be approved if capture can be offset.
- Thresholds and criteria are interim and subject to capture management framework.

MOVING FORWARD WITH CONJUNCTIVE MANAGEMENT FRAMEWORK

NDWR

WHERE ARE WE GOING FROM HERE?

Develop capture management framework with Stakeholders for managing existing capture.

Examples of potential future strategies

- Curtailment in capture threshold areas
- Offset credit for artificial recharge
- Enhanced storage through ASR
- Conservation funds to purchase water rights with greatest conflict
- Private party agreements to resolve conflict
- Withdrawal/abandonment of committed rights

Provisional estimated Historical and Forecasted Capture for middle Humboldt River Basin*

MOVING FORWARD WITH CONJUNCTIVE MANAGEMENT

Questions

Contact

Levi Kryder, Chief Hydrology Section Phone: 775-684-2866 Email: <u>lkryder@water.nv.gov</u>

Estimated effects of pumping on HR Flow (model results refresher)

Humboldt River Stakeholder Working Group

October 2, 2024, Winnemucca

NDWR

water.nv.gov I 🛛 🥤 🕑 @NevDCNR

CAPTURE STUDY COMPONENTS

Regional Evapotranspiration Study

* Middle Model results are provisional and subject to change*

Groundwater Discharge via Evapotranspiration (ET_g)

PI: Justin Huntington, Research Professor, Hydrology

Paradise Valley, NV

Estimated ET_g using Satellite and Climate Data

1960s-1980s

1980s-current

Updated delineations of ET_g boundaries

True Color NAIP Imagery

Vegetation Index (30m)

ET_{g} Rates estimated based on relation of ET_{g} with vegetation greenness

Moreo et al (2007)

$$ET^* = \frac{ET - PPT}{ETo - PPT}$$

 $ET^* = \beta_0 + \beta_1 EVI + \beta_2 EVI^2$

Rate of ETg (ft/yr) = (ETo - PPT) * ET^*

Mapped distribution of ET_g

Kelley Creek Area, Clovers Area, and Pumpernickel Valley

Results of ET_a study across Humboldt Region

Total ETg for Humboldt Region ~576,000 AFY

Report and Data Access

https://water.nv.gov/library/water-resource-bulletins

Groundwater Discharge from Phreatophyte Vegetation, Humboldt River Basin, Nevada

Justin Huntington Matthew Bromley Blake Minor Charles Morton Guy Smith

February 2022

Publication No. 41288

Prepared by Division of Hydrologic Sciences, Desert Research Institute

Prepared for Nevada Department of Conservation and Natural Resources, Division of Water Resources

https://www.dri.edu/humboldt-etg

Upper Humboldt River Capture Model

Rosemary Carroll Desert Research Institute

Humboldt Stakeholder Meeting March 8-9, 2022

Represented Streams

USGS Seepage Sites
USGS Stream Gauge

0 5 10 20 Miles

Estimated Stream Capture

Historical capture ~ 10,000 AFY, Predicted future capture ~12,000 AFY

50-Year Potential Stream Capture Maps

Report and Model Access

https://water.nv.gov/library/water-resource-bulletins

Evaluation of Stream Capture Related to Groundwater Pumping, Upper Humboldt River Basin, Nevada

Rosemary W.H. Carroll Gregory Pohll Hai Pham

August 2023

Publication No. 41299

Prepared by

Division of Hydrologic Sciences, Desert Research Institute, Nevada System of Higher Education

Prepared for Nevada Division of Water Resources

Middle Humboldt Capture Model

Middle Humboldt Team: Kyle Davis, William Eldridge

USGS, Nevada Water Science Center

Humboldt Stakeholder Meeting: March 8/9, 2022

All model results are provisional and subject to change

Stream Capture: Non-Mining Pumping

All model results are provisional and subject to change

Groundwater Pumping and Stream Capture

50-year Potential Stream Capture Map

Lower Humboldt River Basin Model

Susie Rybarski/Cara Nadler March 8-9, 2022 DRI/USGS

Streams, Rye Patch, and Drains

Estimated Humboldt River Historical and Predictive Stream Capture

50-year Potential Stream Capture Map

HUMBOLDT RIVER REGION 50-YEAR POTENTIAL STREAM CAPTURE MAP

- Some disconnected reaches
- Mountains are masked
- Capture between models has different character
 - Upper has dense stream network.
 - Middle has many ephemeral/intermittent streams.
 - Lower represents finer/tighter aquifers

* Middle model results are provisional and subject to change*

HUMBOLDT CAPTURE QUERY TOOL – QUERY PAGE

HUMBOLDT CAPTURE QUERY TOOL – RESULTS PAGE

🔀 Humboldt Capture Query Tool 1 3 Legend Humboldt Capture Query Tool Results RED HOUSE FLAT Study Area Hydrographic Area After 33 years of pumping at location 40.838561, -117.170752, at a Humboldt River Basin) Topo ELKO depth of 25 feet below land surface, groundwater is derived from No Data LANDER Imagery the following sources: Step 1: Select Location Streamflow Depletion Select a location by either clicking within the Salvaged ET 33 study area on the map, or by entering the Storage Change Years coordinates below: Drain Capture Latitude (decimal degrees): 40.838561 INTAIN 100% Longitude (decimal degrees): 90% 80% --117,170752 Locate 70% -0 60% ā f 50% -40% -Step 2: Select Depth 30% -The maximum depth in feet for this location is: 20% e 3997 10% 0% Depth below surface: 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Years of Pumping 25 FALO MOUNTA example: 500 All Years ummary Years of Pumping Streamflow Depletion Salvaged ET Drain Capture Step 3: Select Years 0.8% 99.2% 0.0% 0.0% 0.3% 8.3% 91.3% 0.0% Number of years pumping (1-100): 10 1.4% 19.2% 79.5% 0.0% 20 3.9% 36.2% 59.9% 0.0% 33 years 25 4.8% 42.1% 53.1% 0.0% 33 6.0% 49.9% 44.1% 0.0% 50 7.6% 61.4% 31.0% 0.0% Results 75 9.0% 70.6% 20.4% 0.0% ANT. 100 10.0% 75.2% 14.9% 0.0%

SUMMARY OF MAJOR FINDINGS

- Total pre-development ET_g from Humboldt Region is 576,000 AFY, including riparian vegetation.
- Total estimated capture from existing pumping ~25,000 AFY.
- Capture expected to increase to ~35,000 AFY in 100 years, based on existing non-mine pumping.
- Basins contributing to most capture are those with greatest pumping in proximity to Humboldt River or tributaries:
 - Winnemucca segment, Paradise Valley, Elko Segment, Dixie-Tenmile.
- Capture zone of 10% capture in 50 years of pumping varies in width from narrow to 10 miles from River.

Provisional estimated Historical and Forecasted Capture for middle Humboldt River Basin*

MOVING FORWARD WITH CONJUNCTIVE MANAGEMENT

uestions

Contact

Levi Kryder, Chief Hydrology Section Phone: 775-684-2866 Email: lkryder@water.nv.gov

Previous stakeholder material & model results presentation

https://water.nv.gov/bulletinboard/humboldt-river-communications/

EXTRA STUFF BELOW HERE
HUMBOLDT RIVER REGION WATER RESOURCES UPDATE -OUTLINE

- Capture 101 and Capture Study overview (Kip Allander, Hydrogeologist, NDWR)
- Model results and Tools (USGS and DRI)
 - Regionwide ET Analysis (Justin Huntington, Research Professor, DRI)
 - Upper Basin Model (**Rosemary Carroll**, Assoc. Research Professor, DRI)
 - Middle Basin Model (**Kyle Davis & William Eldridge**, Hydrologists, USGS)
 - Lower Basin Model (Cara Nadler, Hydrologist, USGS; Susan Rybarski, Asst. Research Scientist, DRI)
- Moving forward with Conjunctive Management Framework (Adam Sullivan, SE)

CAPTURE 101 AND STUDY OVERVIEW

NDWR

WHAT IS STREAM CAPTURE? CAPTURE 101

Stream Capture = Streamflow Depletion

WATER MANAGEMENT PERSPECTIVE

ET_G DATA VISUALIZATION

•• ieeeše ••• L

......

.....

https://water.nv.gov/maps-and-gis-data/web-map-applications -> Hydrology Web Map

ET_G is summarized by basin in Appendix D.

			Phreatophyte		Riparian		Meadow		Irrigated Cropland		Bare Soil		Total		Total w/o Riparian	
	Hydrographic Area		Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume	Area	ETg Volume
Hydrographic Area	Number	Basin	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)	(acres)	(ac-ft/yr)
Antelope Valley	57	Middle	6,533	1,499	-	-	-	-	2,285	703	-	-	8,818	2,202	8,818	2,202
Boulder Flat	61	Middle	63,914	28,698	31,352	30,195	-	-	1,541	793	72	4	96,878	59,690	65,526	29,495
Buffalo Valley	131	Middle	35,557	5,460	-	-	-	-	-	-	10,106	506	45,662	5,965	45,662	5,965
Carico Lake Valley	55	Middle	10,020	2,665	-	-	229	153	306	181	771	39	11,326	3,038	11,326	3,038
Clovers Area	64	Middle	107,969	28,959	15,640	17,863	-	-	536	225	409	20	124,554	47,067	108,914	29,205
Crescent Valley	54	Middle	54,774	13,820	1,164	775	-	-	782	995	3,826	191	60,546	15,782	59,382	15,007
Dixie Creek-Tenmile Creek Area	48	Upper	5,423	3,652	2,153	1,620	4,176	2,803	-	-	-	-	11,751	8,075	9,599	6,455
Elko Segment	49	Upper	790	440	11,069	13,297	164	117	1,129	1,503	-	-	13,151	15,356	2,082	2,059
Grass Valley (138)	138	Middle	45,275	14,238	-	-	857	522	754	464	23,055	1,154	69,941	16,377	69,941	16,377
Grass Valley (71)	71	Middle	31,648	10,413	-	-	-	-	6,435	3,136	-	-	38,083	13,549	38,083	13,549
Hardscrabble Area	68	Middle	-	-	532	341	-	-	-	-	-	-	532	341	0	0
Huntington Valley	47	Upper	16,751	9,584	3,705	3,385	11,724	5,802	256	241	-	-	32,436	19,011	28,731	15,626
Imlay Area	72	Lower	27,263	3,420	6,554	6,646	-	-	-	-	-	-	33,817	10,066	27,263	3,420
Kelley Creek Area	66	Middle	38,841	9,694	3,381	4,286	-	-	2,486	905	38	2	44,745	14,887	41,364	10,600
Lamoille Valley	45	Upper	8,368	7,670	2,941	3,718	14,255	9,689	884	923	-	-	26,448	22,000	23,507	18,282
Little Humboldt Valley	67	Middle	8,895	7,166	1,910	1,251	1	1	-	-	-	-	10,806	8,418	8,896	7,167
Lovelock Valley	73	Lower	54,250	13,616	3,062	3,122	-	-	45,524	27,614	11,745	588	114,581	44,940	111,519	41,818
Lovelock Valley (Oreana Subarea	73A	Lower	3,221	854	74	38	-	-	-	-	-	-	3,294	891	3,221	854
Lower Reese River Valley	59	Middle	85,284	17,313	7,071	5,732	-	-	2,893	1,478	3	0	95,251	24,523	88,180	18,791
Maggie Creek Area	51	Middle	1,735	903	6,316	5,644	-	-	301	316	-	-	8,352	6,862	2,036	1,219
Marys Creek Area	52	Middle	-	-	1,280	1,445	85	69	-	-	-	-	1,365	1,515	85	69
Marys River Area	42	Upper	13,897	7,001	22,833	23,357	6,369	4,956	4,584	1,813	-	-	47,684	37,126	24,851	13,769
Middle Reese River Valley	58	Middle	10,930	2,514	-	-	-	-	434	188	4	0	11,368	2,702	11,368	2,702
North Fork Area	44	Upper	15,288	6,401	8,838	7,887	12,153	7,171	2,154	1,918	-	-	38,433	23,378	29,595	15,490
Paradise Valley	69	Middle	43,114	12,126	744	608	39,685	12,404	13,004	4,530	-	-	96,547	29,668	95,803	29,060
Pine Valley	53	Middle	25,581	13,201	1,436	1,166	3,186	1,700	2,072	1,947	-	-	32,274	18,015	30,838	16,849
Pumpernickel Valley	65	Middle	29,835	7,006	14,375	17,028	-	-	1,170	480	14	1	45,394	24,514	31,019	7,487
Rock Creek Valley	62	Middle	9,006	2,978	-	-	-	-	98	64	-	-	9,104	3,042	9,104	3,042
South Fork Area	46	Upper	520	472	3,600	4,561	5,579	3,703	-	-	-	-	9,698	8,736	6,098	4,175
Starr Valley Area	43	Upper	4,820	3,280	11,889	14,935	11,965	6,231	684	362	-	-	29,358	24,808	17,468	9,873
Susie Creek Area	50	Middle	7	6	2,574	1,756	39	17	-	-	-	-	2,620	1,778	46	23
Upper Reese River Valley	56	Middle	41,595	25,846	-	-	50	72	1,337	961	-	-	42,982	26,879	42,982	26,879
Whirlwind Valley	60	Middle	6,874	2,347	4,084	4,308	-	-	-	-	-	-	10,958	6,655	6,874	2,347
Willow Creek Valley	63	Middle	6,944	3,653	-	-	3,584	2,186	-	-	-	-	10,528	5,839	10,528	5,839
Winnemucca Segment	70	Middle	1,684	749	19,351	20,821	848	310	480	399	-	-	22,362	22,279	3,011	1,457
Totals			816,604	267.641	187.925	195,784	114,946	57,907	92,127	52,138	50.042	2.504	1.261.643	575,974	1.073.718	380,189

EXPLANATION

Layer 1: Basin fill deposits-playa, valley floor, alluvial slope, fluvial deposits (thickenss 25 to 50 feet)

- Layer 2: Clay layer below layer 1 (thickness 10 to 130 feet)
- Layer 3: Lower basin fill-valley floor, fluvial deposits (thickness up to 400 feet)
- Layer 4: Older basin fill—Tertiary fine-grain semi-consolidated sediments (thickness up to 1,000 feet)

Layer 6: Lower hard rock-clastic sedimentary, carbonate and mixture, intrusive, metamorphic, clastic sandstones (thickness variable ~1,800 feet)

Groundwater outflow

Steady-state distribution

All model results are provisional and subject to change

Pumping

All model results are provisional and subject to change

HUMBOLDT RIVER REGION WATER RESOURCES UPDATE -OUTLINE

- Capture 101 and Capture Study overview (Kip Allander, Hydrogeologist, NDWR)
- Model results and Tools (USGS and DRI)
 - Regionwide ET Analysis (Justin Huntington, Research Professor, DRI)
 - Upper Basin Model (**Rosemary Carroll**, Assoc. Research Professor, DRI)
 - Middle Basin Model (**Kyle Davis & William Eldridge**, Hydrologists, USGS)
 - Lower Basin Model (Cara Nadler, Hydrologist, USGS; Susan Rybarski, Asst. Research Scientist, DRI)
- Moving forward with Conjunctive Management Framework (Adam Sullivan, SE)

CAPTURE 101 AND STUDY OVERVIEW

NDWR

WHAT IS STREAM CAPTURE? CAPTURE 101

Stream Capture = Streamflow Depletion

WATER MANAGEMENT PERSPECTIVE

HUMBOLDT REGION ET ANALYSIS

Develop capture management framework with Stakeholders for managing existing capture.

UPPER HUMBOLDT RIVER BASIN MODEL

DRI

MIDDLE HUMBOLDT RIVER BASIN MODEL

USGS

LOWER HUMBOLDT RIVER BASIN MODEL

DRI/USGS

COMPOSITE 50-YEAR CAPTURE MAP

MOVING FORWARD WITH CONJUNCTIVE MANAGEMENT FRAMEWORK

NDWR

Capture Terminology

Concepts for managing existing capture - Goal

Hypothetical Capture for a well that has pumped since 1978

NDWR Preferred goal

Visualizing management goal for varying capture rates

Low Capture -25% after 100 yrs

Moderate Capture -75% after 100 yrs

High Capture -95% after 100 yrs

Overview Of Conservancy Districts And Carson Water Subconservancy District

Presented by: Edwin James General Manager October 2, 2024

05/09/2009 15:27

NRS 541 Water Conservancy Districts

Establishment of Conservancy Districts

- Before any water conservancy district is established a petition must be filed with the district court
- The petition **must be approved by the board of county commissioners** of each county in which the district is situated.
- The **Governor shall appoint a board of directors** therefor in accordance with the petition.
- If the district includes land within more than one county, the representative or representatives of each county must be appointed from a list of two or more nominees submitted by the board of county commissioners of the represented county.

Conservancy Powers

Powers Of Board

- Power to take by appropriation, grant, purchase, bequest, devise or lease, and to hold and enjoy water, waterworks, water rights and sources of water supply and any and all real and personal property.
- Power to exercise the power of eminent domain
- **Power to contract** with federal, state, and local governments for the construction, preservation, operation and maintenance of tunnels, drains, pipelines, reservoirs, ditches and waterways, regulating basins, diversion canals and works, dams, etc.

Conservancy May Levy, Collect Taxes, and Special Assessments

Funding Methods

1. Class A. To **levy and collect taxes** upon all property within the district as provided in this chapter.

2. Class B. To **levy and collect assessments for special benefits** accruing to property **within municipalities** for which use of water is allotted as provided in this chapter.

3. Class C. To **levy and collect assessments for special benefits** accruing to lands within **irrigation districts** for which use of water is allotted as provided in this chapter.

4. Class D. To **levy and collect assessments for special benefits** accruing **to lands for which use of water is allotted** as provided in this chapter.

5. Class E. To **levy and collect assessments for special benefits** accruing **to lands from irrigation, flood control, drainage, safety and health resulting or to result from projects** undertaken by the district.

Carson River Watershed

Groundwater Basins In the Carson River Watershed

Perennial Yield vs Groundwater Usage (2013 to 2017) in the Carson River Watershed

Formation of the Carson Water Subconservancy District

1958 Carson Truckee Water Conservancy District

1959 CWSD was established

1980s Federal Government abandoned Dam Project

1989 Nevada Legislator's changed CWSD's Focus

• Special Acts Chapter 621

1989 Nevada Legislation

- **CWSD Board Members are appointed by the counties** not by the governor.
 - Douglas County has five members two are ag reps
 - Carson City has two members
 - Lyon County has two members
- CWSD is **prohibited from acquiring water rights** by eminent domain
- CWSD may levy tax on property at a rate not more than
 3 cent per \$100 assessed value
- CWSD may levy tax on property at a rate not more than
 7 cent per \$100 assessed value for projects

CWSD History Continued

- 1997 New Year Flood
- 1998 Carson River Conference Integrated Watershed Planning Implemented
- 1999 Churchill County through legislation becomes a member of CWSD
- 2001 Alpine County through a JPA becomes a member of CWSD
- 2021 Storey County through legislation becomes a member of CWSD
- <u>CWSD's History</u>

Structure of CWSD

15 Board Members

• 6 counties / 2 states

Funding

- Property Tax
- Grants (State, Fed., & others)

Staffing – 4.8 FTE

CWSD Work Includes:

CWSD Coordinates the Carson River Coalition (CRC) Process

- 1998 CRC Formed
- CWSD & NDEP funded Watershed Coordinator
- Critical element of watershed process
- Working Groups
- Regular meetings & forums, tours, conferences

Who We Are

- A unique multi-county, bi-state agency;
- Originally established in 1959, revised by the Nevada legislature in 1989;
- I4 Directors comprising elected officials from six counties, two agricultural representatives, and one advisory member;
- Serve as lead agency for integrated watershed planning and management of the Carson River Watershed;
- Funded with ad valorem taxes and federal, state, and local grants.

What We Do

- Promote cooperative action across agency and political boundaries;
- Establish a balance between the needs of communities in the Watershed and the function of the river system;
- Develop regional planning and management solutions for the Carson River Watershed;
- Provide local grant funding to local entities for project implementation;
- Coordinate the Carson River Coalition (CRC), a large stakeholder group of federal, state, county, and tribal agencies; non-governmental entities, private citizens and landowners.

CWSD Work Includes:

- Clean Water **208 Planning Agency**
- Developed a **Regional Floodplain Management Plan**
- FEMA Cooperating Technical Partner
 - CWSD has received **over \$6.9 million from FEMA** to conduct flood risk and floodplain studies
 - 2020 CWSD was recognized as **Floodplain Manager of the Year** by NV/CA Floodplain Association
- Developed an Adaptive Stewardship Plan for the Carson River Watershed
 - Meets EPA funding requirements clean water act, section 319

CWSD Work Includes:

- Funds a **Regional Weed Abatement** Program
- Developed a Watershed Literacy Action Plan
- Developed the <u>"I am Carson River Watershed"</u> campaign
- Funds part of **Streambank Restoration Projects**
- Coordinates with **EPA and FEMA** Regarding two Superfund Sites in Nevada and California
- Manage various federal, state, and local grants
- AB 380 Water Buyout Program for the Newlands Project

CWSD is currently conducting a 30-Year Regional Water Plan

Runoff Changes Monthly Streamflow – East Fork

From DWR August 2023 Presentation HUMBOLDT RIVER CONSERVANCY DISTRICT (NRS 541)-

- Establish a local District
- Governed by locally elected board members.
- Boundaries defined by CMZ.
- Levy base assessments on GW and SW users within CMZ.– Funds staff and facilities.
- Levy capture assessments for UG rights within assessment zone.
- Would require petition from counties, court action, or legislative action to stand up a Conservancy District.

HUMBOLDT RIVER CONSERVANCY DISTRICT-

- Manage the CMZ.
- Apply for/manage grants and other funding sources.
- Use capture assessments and other funds to purchase, retire, and/or resell water rights:
- To reduce conflict from capture impacts.
- To make Decree offset available for UG rights.
- Undertake river restoration or enhancement projects.
- Manage/Maintain water markets and water trading to offset impacts or incentivize conservation.

QUESTIONS

- For more
- information
- www.cwsd.org
 - 775-887-7450

